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Abstract. This article introduces a novel representation for thrieeedsional (3D) objects in
terms of local affine-invariant descriptors of their images the spatial relationships between
the corresponding surface patches. Geometric constrasssciated with different views of
the same patches under affine projection are combined withrraatized representation of
their appearance to guide matching and reconstructioowigly the acquisition of true 3D
affine and Euclidean models from multiple unregistered iesags well as their recognition
in photographs taken from arbitrary viewpoints. The pregbapproach does not require a
separate segmentation stage, and it is applicable to hihtiered scenes. Modeling and
recognition results are presented.

Keywords: Three-dimensional object recognition, image-based magledffine-invariant image descriptors, multi-
view geometry.

1. Introduction

This article addresses the problem of recognizing thregedsional (3D) objects
in photographs. Traditional feature-based geometric Gaagres to this problem—
such as alignment (Ayache and Faugeras, 1986; FaugerasstedtHL986; Grimson
and Lozano-Pérez, 1987; Huttenlocher and Ullman, 198Wd,d987) or geometric
hashing (Thompson and Mundy, 1987; Lamdan and Wolfson, ;1B8&hdan and

Wolfson, 1991)—enumerate various subsets of geometrigéfeatures before using
pose consistency constraints to confirm or discard competiatch hypotheses, but

they largely ignore the rich source of information contdime the image brightness
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and/or color pattern, and thus typically lack an effectivechmanism for selecting
promising matches. Appearance-based methods—as ohjgpraposed in the con-
text of face recognition (Turk and Pentland, 1991; Pentletnal., 1994; Belhumeur
etal., 1997) and 3D object recognition (Murase and Nay&51Selinger and Nelson,
1999)—take the opposite view, and prefer to explicit gesimeeasoning a classical
pattern recognition framework (Duda et al., 2001) that eiplthe discriminatory
power of (relatively) low-dimensional, empirical modefsgbobal object appearance
in classification tasks. However, they typically deemphatiie combinatorial aspects
of the search involved in any matching task, which limitsithtability to handle
occlusion and clutter.

Viewpoint and/or illumination invariants (anvariantsfor short) provide a natu-
ral indexing mechanism for object recognition tasks. Unfioately, although planar
objects and certain simple shapes—such as bilateral symeséNalwa, 1988) or
various types of generalized cylinders (Ponce et al., 1289¢t al., 1993)—admit
invariants, general 3D shapes do not (Burns et al., 1993khnik the main reason
why invariants have fallen out of favor after an intense flwf activity in the early
1990s (Mundy and Zisserman, 1992; Mundy et al., 1994). Wpgse in this article
to revisit invariants as bcal description of truly three-dimensional objects: Indeed,
although smooth surfaces are almost never planar in the,ltrgy are always planar
in the small—that is, sufficiently small patches can be @@as being comprised
of coplanar points. The surface of a solid can thus be represented by a collection
of small patches, their geometric and photometric invasiaand a description of
their 3D spatial relationships. The invariants provide #eotive appearance filter
for selecting promising match candidates in modeling acdgaition tasks, and the
spatial relationships afford efficient matching algorithfor discarding geometrically

inconsistent candidate matches.

1 Physical solids are of course not bounded by ideal smoofhces. We assume in the rest of this presentation
that all objects of interest are observed from a relativehals range of distances, such that their surfaces appear
geometrically smooth, and patches projecting onto smadlgenregions are indeed roughly planar compared to
the overall scene relief. This has proven reasonable inxperénents, where the apparent size of a given object
never varies by a factor greater than five.
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Concretely, we propose using local image descriptors tiedhaariant under affine
transformations of the spatial domain (Garding and Liralgh1996; Lindeberg, 1998;
Baumberg, 2000; Schaffalitzky and Zisserman, 2002; Mikalk and Schmid, 2002)
and of the brightness/color signal (Lowe, 2004) to captbhesdppearance of salient
surface patches, and a set of multi-view geometric comtraglated to those studied
in the structure from motion literature (Tomasi and Kand®9?2) to capture their spa-
tial relationship. Our approach is directly related to a benof recent techniques that
combine local models of image appearance in the neighbdrbbsalient features—
or “interest points” (Harris and Stephens, 1988)—with |laad/or global geometric
constraints in wide-baseline stereo matching (Tell andsSan, 2000; Tuytelaars
and Van Gool, 2004), image retrieval (Schmid and Mohr, 1923pe and Lowe,
2000), and object recognition tasks (Weber et al., 200@u=eet al., 2003; Mahamud
and Hebert, 2003; Lowe, 2004). These methods normally reréguire storing a
large number of views for each object (Schmid and Mohr, 19fe and Lowe,
2000; Mahamud and Hebert, 2003; Lowe, 2004), or limitingrdmege of admissible
viewpoints (Schneiderman and Kanade, 2000; Weber et &lQ; Fergus et al., 2003).
In contrast, our approach supports the automatic acaunsiti explicit 3D affine and
Euclidean object models from multiple unregistered images their recognition in
heavily-cluttered pictures taken from arbitrary viewgsin

The rest of this presentation is organized as follows: 8aci presents the main
elements of our approach. Its applications to 3D object riogland recognition are
discussed in Sections 3 and 4. In practice, object modelsoarstructed in controlled
situations with little or no clutter, and the stronger caetesncy constraints associ-
ated with 3D models make up for the presence of significaritezland occlusion
in recognition tasks, avoiding the need for a separate segtien stage. Modeling
and recognition examples can be found in Figures 1, 15-1&n2026, and a de-
tailed description of our experiments, including quatit&recognition results, can
be found in Sections 3.3 and 4.5. We conclude in Section 5aviitief discussion of

the promise and limitations of the proposed approach.
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Figure 1. Results of a recognition experiment. Left: A test image.lRignstances of five models (a
teddy bear, a doll stand, a salt can, a toy truck and a vase)theen recognized, and the models are
rendered in the poses estimated by our program. Boundingsbimx the reprojections are shown as
black rectangles.

A preliminary version of this article has appeared in (Ratiger et al., 2003).

2. Approach

This section presents the three main components of our appto object modeling
and recognition: (1) thaffine regionghat provide us with a normalized, viewpoint-
independent description of local image appearance; (2)gdmmetric multi-view
constraints associated with the corresponding surfaahestand (3) the algorithms
that enforce both photometric and geometric consistenogtcaints while matching

groups of affine regions in modeling and recognition tasks.

2.1. AFFINE REGIONS

The construction of local invariant models of object appaae involves two steps, the
detection of salient image regions, and their descriptieally, the regions found in
two images of the same object should be the projections fdhee surface patches.
Therefore, they must beovariant with regions detected in the first picture mapping
onto those found in the second one via the geometric and piatt transformations

induced by the corresponding viewpoint and illuminatioamges. In turn, detection
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must be followed by a description stage that constructs emegpresentatiom-
variant under these changes. For small patches of smooth Lambetiréaces, the
transformations are (to first order) affine, and this seqii@sents the approach to de-
tection and description of affine regions (Garding and keimelg, 1996; Mikolajczyk

and Schmid, 2002) used in our implementation.

2.1.1. Detection

Several approaches to finding perceptually-salient hlkadbinage primitives in nat-
ural images were proposed in the mid-eighties (Crowley aartd?, 1984; Voorhees
and Poggio, 87). Blostein and Ahuja (1989) took a first stepatd building some
invariance in this process with a multi-scale region detelbaised on maxima of the
Laplacian. Lindeberg (1998) has extended this detectdvaframework of automatic
scale selection, where a “blob” is defined by a scale-sparaitm where a normal-
ized Laplacian measure attains a local maximum. Gardidd_ardeberg (1996) have
also proposed aaffine adaptatiorprocess based on the second moment matrix for
finding affine image blobs. Recently, Mikolajczyk and Schi{@@02) have combined
these ideas into an integrated affine region detédBiefly, their algorithm iterates
over steps where (1) an elliptical image region is defornoehéiximize the isotropy
of the corresponding brightness pattern (shape adaptagerGarding and Lindeberg,
1996); (2) its characteristic scale is determined as a Bdaémum of the normalized
Laplacian in scale space (scale selection, see Lindeb888§)1and (3) the Harris
(1988) operator is used to refine the position of the ellgpsehnter (localization, see
Mikolajczyk and Schmid, 2002). The scale-invariant ing¢i@oint detector proposed
in (Mikolajczyk and Schmid, 2001) provides an initial guéssthis procedure, and
the elliptical region obtained at convergence can be showse tovariant under affine
transformations (see Garding and Lindeberg, 1996; Liragb1998; Mikolajczyk
and Schmid, 2002 for additional details).

2 For related approaches to scale and affine region detesgenBaumberg (2000), Kadir and Brady (2001),
Schaffalitzky and Zisserman (2002), Matas et al. (2002)yé¢.(2004), Tuytelaars and Van Gool (2004).



The affine region detection process used in this articleemyints both this algo-
rithm and a simple variant where a difference-of-GausdBo$5) operator (Crowley
and Parker, 1984; Voorhees and Poggio, 87; Lowe, 2004)ceplie Harris interest
point detector. Note that this operator tends to find coraeid points where sig-
nificant intensity changes occur, while the DoG detectoingyéneral) attracted to
the centers of roughly uniform regions (blobs). Intuitiyethe two operators pro-
vide complementary kinds of information: The Harris detecesponds to regions of
“high information content” (Mikolajczyk and Schmid, 20Q0®&)hile the DoG detector

produces a perceptually plausible decomposition of theyenato a set of blob-like

primitives. Figure 2 shows examples of the outputs of thesedetectors.




2.1.2. Description

As mentioned above, the affine regions output by our detegtiocess have an ellipti-
cal shape. It is easy to show that any ellipse can be mappedhamtit circle centered
at the origin using a one-parameter family of affine transftions separated from
each other by arbitrary orthogonal transformations (tively, this follows from the
fact that circles are unchanged by rotations and reflecadasit their centers). This
ambiguity can be resolved by determining the dominant gradbrientation of the
image region (Lowe, 2004), turning the corresponding sdlijlmto a parallelogram
and the unit circle into a square (Figure 3). Thus, the outpthe detection process
is a set of image regions in the shape of parallelogramsthegwith affinerectifying
transformationsthat map each parallelogram onto a “unit” square centeretieat

origin (Figure 4).

Figure 3. Normalizing patches. The left two columns show a patch framage 1 of Krys-
tian Mikolajczyk’s graffiti dataset (available from the INR LEAR Group’s web page:
http://lear.inrialpes.fr/software). The right two columns show the matching patch
from image 4. The first row shows a portion of the original imaghe second row shows the ellipse
determined by affine adaptation. This normalizes the shHaydeaves a rotation ambiguity, as illus-
trated by the normalized circles in the center. The last roans the same patches with orientation
determined by the gradient at about twice the charactesgstle.



Figure 4. Affine regions. Left: A sample of the regions found in an imade teddy bear (most of
the patches actually detected in this image are omittedl&oity). Top right: A rectified patch and
the original image region. Bottom right: Geometric integation of the rectification matriR and its
inverseS (see Section 2.2 for details).

A rectified affine region is a normalized representation @f litcal surface ap-
pearance, invariant under planar affine transformatiomsled affine—that is, or-
thographic, weak-perspective, or para-perspective—eptign models, this represen-
tation is invariant under arbitrary viewpoint changes. Eambertian patches and
distant light sources, it can also be made invariant to cesng illumination (ig-
noring shadows) by subtracting the mean patch intensity fach pixel value and
normalizing the Frobenius norm of the corresponding imagayao one. Equiva-
lently, normalized correlation can be used to comparefredtpatches, irrespective
of viewpoint and (affine) illumination changes. Maximiziogrrelation is equivalent
to minimizing the squared distance between feature vefiiarsed by mapping every
pixel value onto a separate vector coordinate. Other feapaces may of course be
used as well. In particular, the SIFT descriptor introdubgd.owe (2004) has been
shown to provide superior performance in image retrievakdaMikolajczyk and
Schmid, 2003). Briefly, the SIFT description of an imageoegs a three-dimensional
histogram over the spatial image dimensions and the gradrentations, with the

original rectangular area broken into 16 smaller ones, &edgradient directions
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Figure 5. Two (rectified) matching patches found in two images of a yeloielar, along with the cor-
responding SIFT and color descriptors. Here (as in Figurater), the orientation histogram values
associated with each spatial bin are depicted by lines feréifit lengths for each one of the 8 quantized
gradient orientations. As recommended in (Lowe, 2004), vedesthe feature vectors associated with
SIFT descriptors to unit norm, and compare them using thdidaan distance. In this example, the
distance is 0.28. The (monochrome) correlation of the twtified patches is 0.9, and thé distance
between the color histograms (as defined in Section 4.1P& &ach histogram appears as a grid of
colored blocks, where the brightness of a block indicateswhight on that color. If a bin has zero
weight, it appears as neutral gray.
quantized into 8 bins (Figure 5), and it can thus be represdoy a 128-dimensional
feature vector (Lowe, 2004).

In practice, our experiments have shown that combining tkR& 8escriptor with
a 10 x 10 color histogram drawn from the UV portion of YUV space impesvhe
recognition rate in difficult cases with low-contrast pashWe will come back to this

issue in Section 4.

2.2. GEOMETRIC CONSTRAINTS

2.2.1. Geometric Interpretation of the Rectification Process

Let us denote byR andS = R~ the rectifying transformation associated with an
affine region and its inverse. Tl3ex 3 matrix S enjoys a simple geometric interpre-
tation, illustrated by Figure 4 (bottom right), that willgwe extremely useful in the

sequel. It has the form
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The matrixR is an affine transformation from the image patch to its rextiform,
and thusS is an affine transformation from the rectified form back toithage patch.
Since the center of the rectified patch has homogeneousinated0, 0, 1]7, the third
column of S gives the homogeneous coordinates of the centéthe corresponding
image parallelogram. Likewise, it is easy to see fhaihdv are the vectors joining
to the mid-points of the parallelogram’s sides (Figure 4).

The matrixS effectively contains the locations of three points in thage, so a
match betweem > 2 images of the same patch contains exactly the same informa-
tion as a match between triples of points. It is thus clear that all the machinery of
structure from motion (Tomasi and Kanade, 1992) and posaa&tsbn (Huttenlocher
and Ullman, 1987; Lowe, 1987) from point matches can be eguian modeling and
object recognition tasks. Reasoning in terms of multi-veenstraints associated with
the matrixS will provide in the next section a unified and convenient espntation
for all stages of both tasks, but one should always keep i rhia simple geomet-
ric interpretation of the matrix§ and the deeply rooted relationship between these

constraints and those used in motion analysis and poseatsiim

2.2.2. Multi-View Constraints

Let us assume for the time being that we are ginvgratches observed in images,
together with the (inverse) rectifying transformatia$is defined as in the previous
sectionfori = 1,...,mandj = 1,...,n (i andj serving respectively as image and
patch indices). We use these matrices to derive in this@eetiset of geometric and
algebraic constraints that must be satisfied by matchingemnegions.

A rectified patch can be thought of as a fictitious view of thgioal surface patch
(Figure 6), and the mapping§;; can thus be decomposed into iamerse projection
N (Faugeras et al., 2001) that maps the rectified patch ontmtinesponding surface
patch, followed by a projection; that maps that patch onto its projection in image

numberi. In particular, we can writ&,; = M;N;fori=1,...,mandj =1,...,n,
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Scene patch Fictitious
numberj image
T number|
Rectified

patch

Image number

Figure 6. Geometric interpretation of the decomposition of the mag;; into the product of a
projection matrix\; and an inverse projection matti;.

or, in a more compact form:

. 811 e Sln Ml
S =] ML N,
Sml s Smn Mm
and it follows that th&m x 3n matrix S has at most rank 4.

As shown in Appendix A, the inverse projection matrix can béten as

_[H; V; Cj
A/;_ 0 0 1|’

and it satisfies the constrainf] TI; = 0, wherell, is the coordinate vector of the
planell; that contains the patch. In addition, the columns of the imatf; admit in
our case a geometric interpretation related to that of thieixng;;: Namely, the first
two contain the “horizontal” and “vertical” axes of the sagé patch, and the third
one is the homogeneous coordinate vector of its center.

To account for the form alV;, we construct a reduced factorization®by pick-
ing, as in (Tomasi and Kanade, 1992), the center of mass dflikerved patches’
centers as the origin of the world coordinate system, andehéer of mass of these

points’ projections as the origin of every image coordirgtstem. In this case, the
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projection equatios;; = M, N, becomes

D1 [A 01 B -
[001}_[0T 1“001]’ or Dy =Ab;,

whereA; is a2 x 3 matrix, D;; = [h;; v;; ¢;;| isa2x3 matrix,andB; = [H; V; C|]
is a3 x 3 matrix. It follows that the reduce®n x 3n matrix

Dy ... D, A

D=AB, whereD¥ | : . | AY | |, BY B ... B,
D, ... Dy, A

(1)

has at most rank 3.

2.2.3. Matching Constraints
The rank deficiency of the matri® can be used as a geometric consistency constraint
when at least two potential matches are visible in at leastwews. Alternatively,
singular value decomposition can be used, as in (Tomasi amdde, 1992), to fac-
torize D and compute estimates of the matricésind B that minimize the squared
Frobenius norm of the matri® — AB. Geometrically, the (normalized) Frobenius
normd = |D — AB|/v/3mn of the residual can be interpreted as the root-mean-
squared distance (in pixels) between the center and naedabide points of the
patches observed in the image and those predicted fromdheaed matricegl and
B. Givenn matches established acraossimages (a match is am-tuple of image
patches), the residual errdrcan thus be used as a measure of inconsistency between
the matches.

Together with the normalized models of local shape and appea proposed
in Section 2.1.2, this measure will prove an essential iigre of the approach to
(pairwise) image matching presented in the next sectionilllalso prove useful in
modeling tasks where the projection matrices are knowrhie8D configuration of
a single patch is unknown, and in recognition tasks when #éitehes’ configurations
are known but a single projection mattikis unknown. In general, Eq. (1) provides
an over-constrained set of linear equations on the unkn@sainpeters of the matrix

B (B with n = 1) in the former case, and an over-constrained set of linezstcaints
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on the unknown parameters of the matdxX.A with m = 1) in the latter one. Both are
easily solved using linear least-squares, and they deterthe corresponding value

of the residual error.

2.3. MATCHING

The core computational components of model acquisitionadojelct recognition are
matching procedures: In image-based modeling, we seelpgmiumatches between
the affine regions found in two pictures that are consistétit both the local appear-
ance models introduced in Section 2.1.2 and the geometnisti@nts expressed by
Eq. (1). In object recognition, one image is replaced by gaatlmodel consisting of
a collection of 3D patches, but the matching task and the nlyidg constraints are
essentially the same. Both tasks can be understood ioath&trained-searcmodel
proposed by Grimson (1990), who has shown that finding ammabtsolution—
maximizing, say, the number of matches such that photomatrd geometric dis-
crepancies are bounded by some threshold, or some oth@nedds criterion—is
in general intractable (i.e., exponential in the number aftahed features) in the
presence of uncertainty, clutter, and occlusion.

Various approaches to finding a reasonable set of geombtrazmsistent matches
have been proposed in the past, includirtgrpretation tregor alignmenj techniques
(Ayache and Faugeras, 1986; Faugeras and Hebert, 1986s@riamd Lozano-Pérez,
1987; Huttenlocher and Ullman, 1987; Lowe, 1987), amdmetric hashingLam-
dan and Wolfson, 1988; Lamdan and Wolfson, 1991). An alter@as offered by
robust estimatioralgorithms, such aRANSAC(Fischler and Bolles, 1981), and its
variants (Torr and Zisserman, 2000), amedian least-squareshat consider can-
didate correspondences consistent with a small seeefimatches asliers to be
retained in a fitting process, while matches exceeding soeunsistency threshold
are considered asutliersand rejected. Although, like all other heuristic approache
to constrained search, RANSAC and its variants are not gtegd to output an op-

timal set of matches, they often offer a good compromise éetwthe number of
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feature combinations that have to be examined and the gruwaipabilities afforded
by appearance- and geometry-based constraints: In gartithe number of samples
necessary to achieve a desired performance with high pildpaan easily be com-
puted from estimates of the percentage of inliers in thesgdtand it is independent
of the actual size of the dataset (Fischler and Bolles, 1981)

Briefly, RANSAC iterates over two steps: In teamplingstage, a (usually, but not
always) minimal set of seed matches is chosen randomly,taadised to estimate
the geometric parameters of the fitting problem at hand. ddresensustage then
adds to the initial seed all the candidate matches that ausstent with the estimated
geometry. The process iterates until a sufficiently largeseasus set is found, and
the geometric parameters are finally re-estimated. Degpiadtractive features, pure
RANSAC only achieves moderate performance in the chaltengbject recognition
experiments presented in Section 4, where clutter may ibotgr 90% or more of
the detected regions. As will be shown in that section, thgphks variant outlined in
Algorithm 1 below achieves better results. This algoritheesithe idea of consensus
from RANSAC while it seeks the maximal set of consistent heshetween two sets
of patches. It operates in three key steps, explained below.

Step 1 of the algorithm takes advantage of appearance aoristto reduce the
practical cost of the search. It focuses the matching psooesthe portion of the
space of all matchesA(x B) which isa priori most likely to be correct. Here we
are using appearance similarity as a heuristic, since nadme a perfect indicator of
correct matches. Noise present in actual image measursihogrdrs the appearance
scores for some true matches. Furthermore, nothing prevastdrrect matches from
appearing the same.

Step 2 applies RANSAC to the limited set of match hypothesémt a geomet-
rically consistent subset. Our assumption is that the &rgech consistent set will
contain mostly true matches. This establishes the geametdtionship between the
two sets of patches. Proceeding to Step 3 is optional butilisa@ice it maximizes the

number of resulting matches.



15

Input: Two sets of patched andB.
Output: A setT C A x B of trusted matches.

Step 1: Appearance-based selection of potential matches.
e Initialize the set of putative matchd? by finding patch pairs fromd x B with high
appearance similarity.
Step 2: Robust estimation.
e Apply robust estimation to find a st C P of geometrically consistent (“trusted”)
matches.
e Use consistency constraints to remove outliers ffiom
Step 3: Geometry-based addition of matches.
repeat
repeat
e Form a geometric modelfrom 7.
¢ Replacel” with all matches inP that are consistent with
until 7" stops changing.
e Use consistency constraints to remove outliers filom
e Re-estimate from T'.
e Add more putative matches # usingr as a guide.
until P stops changing.

Algorithm 1: Overall Matching Procedure.

Step 3 explores the remainder of the space of all matchelsingesther matches
which are consistent with the established geometric melatiip between the two sets
of patches. Obtaining a (nearly) maximal set of matches éuligor recognition
(where the number of matches acts as a confidence measuffey amateling (where
they provide more coverage of the object).

The same overall matching procedure is used in both our nmagahd recognition
experiments. In practice, object models are constructedmrolled situations with
little or no clutter. Algorithm 1 has proven extremely réli@in this case, irrespective
of the RANSAC variant used in its second step (Section 3). Adavily cluttered
images used in our recognition experiments are much motéengang, with differ-
ent variants giving significantly different performancés extensive experimental

comparison between several reasonable choices is prdser8ection 4.
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3. 3D Object Modeling from Images

This section presents our approach to the automated atouisif affine and Eu-
clidean 3D object models from collections of unregisteredtpgraphs. These models
consist of collections of 3D surface patches in the shapeaddlielograms, along
with the corresponding appearance models, defined in tefrtiseccorresponding
texture patterns and rectifying transformations. We wsi uhe teddy bear shown in
Figure 7 to illustrate some of the steps of the modeling mecAdditional modeling

experiments will be presented in Section 3.3.

3.1. CONSTRUCTING PARTIAL MODELS FROMIMAGE PAIRS

As shown in Section 2.2, two images of two surface patchesudfieient to estimate
the corresponding (affine) projection matrices and 3D pattfigurations. Thus,
object models can be constructed by matching pairs of queirlg images—a process
akin to wide-baseline stereo (Baumberg, 2000; Matas e2@D2; Mikolajczyk and
Schmid, 2002; Pritchett and Zisserman, 1998; Schaffgligaid Zisserman, 2002; Tell
and Carlsson, 2000; Tuytelaars and Van Gool, 2004) and gtpbtructure from mo-
tion (Tomasi and Kanade, 1992; Weinshall and Tomasi, 1968lnfan and Kanade,
1997)—nbefore stitching the corresponding partial moddls & complete one. While
it is possible to select these pairs automatically (Schiefky and Zisserman, 2002),
we have chosen to specify them manually using prior knovdeofgthe modeling
setup: Typically, we acquire a number of views roughly ledain an equatorial ring
around the modeled object, as well as a couple of top andttorbosiews. Accord-
ingly, we match pairs of successive equatorial images, ptuse additional pairs
where a top or bottom view has enough overlap with one of tfrose the ring.

After processing through point detectors and affine adptatn image can be
viewed as simply a collection of affine regions. For each paimages, we apply
Algorithm 1 to match the two sets of regions. The remaindethef section gives

implementation specifics for the algorithm in the contexinaige matching.



17

Figure 7. The 20 images used to construct the teddy bear model. Thetamages roughly located
in an equatorial ring, and 4 overhead images. This setuf @wiine variation in the number of input
images) is typical of our modeling experiments.

3.1.1. Appearance-Based Selection of Potential Matches

We do not use color information in modeling tasks, and relglesively on SIFT
feature vectors to characterize local image appearanogathis an ordered pair of
patches, one from the first image and one from the second inf&geinitial list of
potential matches is found by selecting for each patch irfiteeimage the top’
patches in the second image as ranked by SIFT. In our expatsnte is typically set

to 5, which is sufficient to model any of the objects. For otgetith less distinctive
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texture (specifically the apple and truck shown in Figureitli§)useful to increasé&’

to 10, which gives a richer set of matches. The cost of ouv@amplementation is
O(n%logn), wheren is the number of affine regions found in the two images. Using
efficient (and possibly approximate) algorithms for findthe K nearest neighbors
of a feature vector would obviously lower this cost, but tioiss out to be negligible
compared to the overall cost of Algorithm 1.

Candidate matches whose SIFT feature vectors are sepasate&uclidean dis-
tance greater thaib are rejected. The remaining ones are used in the sampligg sta
of the matching procedure to estimate the projection nmegrand seed its consensus
step. For that process to be reliable, matching rectifiedbnsgshould line up as
well as possible despite the unavoidable imperfectionsffofeaadaptation in real
images. Itis therefore desirable to adjust the parametensaof the rectified regions
to maximize correlation with its match. Appendix B preseatsimple non-linear

least-squares solution to this problem (see Figure 8 foxamele).

Figure 8. Adjusting the parameters of matched affine regions. Imagghpa are shown in the top part
of the figure, and the corresponding rectified patches angrsirothe bottom one. From left to right:
The (constant) reference patch, and the variable patchrdoafad after refinement. As expected, the
rectified image patches are much closer to each other afteemgent.
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Once potential matches have been refined, we compare thesl peitches by nor-
malized correlation, and those that fall below a threshbltl®are rejected. A simple
neighborhood constraint is then used to further prune isistent ones: Forarimary
correspondence between image regiipsand R; to be retained, a sufficient fraction
of the 10 nearest neighbors Bf, should also match neighbors 8f. Call the number
of thesesecondarymatches thescoreof the primary correspondence they support.
Since every affine region has roughly potential matches, the score is bounded by
10K. We retain correspondences whose score is at least twasthaieliations above
average. In a typical case (matching the first two bear injJagesmean score is 1.2,
with a standard deviation of 3.1. The threshold for retagmmatches is thus 7.4, and

1,150 of the initial 16,800 correspondences are retaindusrcase.

3.1.2. Robust Estimation

The sampling and consensus parts of this procedure follewttdps described in Sec-
tion 2.3. During sampling, factorization is used to solve @¢ for the two projection
matrices and the 3D configurations of the two sample pat@hasng consensus, the
projection matrices are held constant, and the configuratieevery patch added to
the consensus set is estimated from Eq. (1) using linearsgaares.

Similar approaches have of course been used before in thextohwide-baseline
stereo, although the geometric constraints exploitedahdhse are usually related to
the distance between matching points and the correspoegipglar lines (Pritchett
and Zisserman, 1998; Schaffalitzky and Zisserman, 200anerg, 2000; Tell and
Carlsson, 2000; Matas et al., 2002; Tuytelaars and Van @06H). The reprojection
error is a more natural metric in our context where two maighpatches determine
both the projection matrices and the 3D patch configuratiand it yields excellent
results in practice. In our experiments, we have used bam lRANSAC and a
variant where the samples are chosen in a deterministiedgrashion. Concretely,
the greedy variant uses each potential match as a seed foup, gteratively adding

the match minimizing the mean reprojection error until #rior exceeds 0.1 pixels,
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or the group’s size exceeds 20. In practice, both methodsajimost identical results,
RANSAC being slightly more efficient, and its greedy varideing slightly more
reliable. The parameters used in our experiments are giveigure 9, along with the

computational costs for the two variants.

Method Cost K M | N
RANSAC | O(M|P]) | [5,10] | 1199 | 2
Greedy | O(N|P|?) | [5,10] | |P| | 20

Figure 9. Parameters for the two robust estimation strategies usedatoh pairs of images in our
experiments, along with their combinatorial cost. HeRé denotes the size of the sét of match
hypothesesK is the number of best matches kept per model pat¢his the number of samples
drawn, andN is the size of one seed. The value &f for RANSAC is based on an inlier rate of
w = 5%, M being chosen in this case B$M ) + 2.5 (M), whereE(M) = w—¥ is the expected value
of the number of draws required to get one good samplesiid) = /1 — w¥ /w" is its standard
deviation. See (Forsyth and Ponce, 2002, p. 347) for details

We use a second neighborhood constraint to remove outlietfseaend of this
stage. It involves finding the five closest neighbors of a fiainne image and the five
closest neighbors of its putative match in the other imaighel match is consistent,
the neighbors should also be matched with each other (gaogolusion). We test
for this by comparing the barycentric coordindte§the centers of matched regions
relative to all(g) = 10 triples of their neighbors (Figure 10). The test is done sym-
metrically for the two images, and it examines 20 triples @ighbors. Two vectors
of barycentric coordinates andy are judged consistent if their relative distance
|z —y|/maxX|z|, |y|) is less than 0.5, and matches consistent with fewer thant&of t

20 possible triples are rejected.

3.1.3. Geometry-Based Addition of Matches

The set of consistent matches found by the estimation spapatfy provide a good
estimate of the epipolar geometry of the image pair. For @atth in the first image,
we search for all patches in the second image whose “epipgdtance” is less than

2.5 pixels, and add up t& new matches. Specifically, we define the epipolar distance

% In a plane, the barycentric coordinat@s:, a2, a3) of a point P in the basis formed by three other points
A1, Az, and Az are uniquely defined b@ = a1071 + a2072 + a3073, whereQ is an arbitrary point in the
plane, andv; + a2 + a3 = 1. These coordinates are independent of the choie@, @nd invariant under affine
transformations.
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Figure 10. The barycentric neighborhood constraint. Left: Consistesitches. Right: Inconsistent ones.

asd(cy, Fey) + d(ez, FTep), whered(p, 1) gives the perpendicular distance between
a pointp and a lindl in pixels,c; andc, are the patch centers in the two images, and

F is the fundamental matrix.

3.2. MERGING PARTIAL MODELS INTO COMPOSITE ONES

The result of the image matching process is a collection dthes between neigh-
boring training images (Figure 11). There are several caatbrial and geometric
problems to solve in order to convert this information int8[a model. The overall
process is divided into four steps: (@)aining link matches across multiple images;
(2) stitching solve for the affine structure and motion while coping witilssing
data; (3)bundle adjustmentefine the model using non-linear least squares; and (4)
Euclidean upgradeuse constraints associated with (partially) known irsiGnpa-
rameters of the camera to turn the affine reconstructionaniuclidean one. The

following sections describe each of these steps in detail.

3.2.1. Chaining

The matching process described in the previous sectiomtagffine regions matched
across pairs of views. These matches can be representedingla match graph
structure, where each vertex corresponds to an affine relgibaled by the image
where it was found, and arcs link matched pairs of regioraitinely, the set of views

of the same surface patch forms a connected component ofatod graph, which can
in turn be used to form a sparpatch-viewmatrix whose columns represent surface

patches, and rows represent the images in which they apfpigaré¢ 12).
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Figure 11. Matches between two images of the bear. For clarity, onlyr@Ghown.

) l'!'-l+ "=l Hl e [ -

Figure 12. A (subsampled) patch-view matrix for the teddy bear. Thiegdatch-view matrix has 4,212
columns. Each black square indicates the presence of agateh in a given image.

In practice, the construction of the patch-view matrix ispticated by the fact that
different paths may link a vertex of the match graph to moaa thne vertex associated
with a single view. We have chosen a simple heuristic to stbligeproblem: First, we
associate with each connected component of the graph aedek\corresponding to
the affine region with maximum scale. Second, we refine thapeaters of the region
associated with every vertex in the connected componenatomize its correlation
with the root, in much the same way as during image-to-imagéhing. This is
necessary because some drift may be introduced in the pmaEnvehen chaining

multiple views (Figure 13). Third, we enumerate all the \&s associated with each



23

image in the dataset, retain the representative vertexesios feature space to the
root vertex, and discard all others. This ensures that augaige is represented by at
most one vertex in each connected component, and affordaigrgforward method

for constructing the patch-view matrix.

Figure 13. Refining patch parameters across multiple views: Rectifedhes associated with a match
in four views before (top) and after (bottom) applying thémement process. The patch in the right-
most column is the “root”, and is used as a reference for therdhree patches. The errors shown in
the top row are exaggerated for the sake of illustration: fHgéons shown there are the unprocessed

output of the affine region detector. In actual experimehesrefined parameters found during image
matching are propagated along the edges of the match gragsbuigle better initial conditions.

3.2.2. Stitching

The patch-view matrix is comparable to the data matrix usethctorization ap-

proaches to affine structure from motion (Tomasi and Kana€élg?). If all patches

appeared in all views, we could indeed factorize the matii@ctly to recover the

patches’ 3D configurations as well as the camera positiongeheral, however, the
matrix is sparse, and we must find dense blocks (submattcésgtorize and stitch.

The problem of finding maximal dense blocks of views and pegaehithin the matrix

reduces to the NP-complete problem of finding maximal ckgumea graph. In our

implementation, we use a simple heuristic strategy whidhilearnot guaranteed to be
optimal or complete, generally produces an adequate salriefly, we find a dense
block for each patch—that is, for each column in the pat@wvnatrix—by searching

for all other patches that are visible in at least the sam&suitn practice, this strategy
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provides both a good coverage of the data by dense blocksaraadequate overlap
between blocks. Typically, patches appear in at least thréeur views, depending
on the separation between successive views in the sequerntéere are in general
two orders of magnitude more patches than views.

The factorization technique described in Section 2.2.2afaourse be applied to
each dense block to estimate the corresponding projectatniaes and patch con-
figurations in some local affine coordinate system (Figure THe next step is to
combine the individual reconstructions into a coherenbglanodel, or equivalently
register them in a single coordinate system. With a propeofseonstraints on the
affine registration parameters, this can easily be expdessan eigenvalue problem.
In our experiments, however, we have found this linear aggrdo be numerically
ill behaved (this is related to the inherent affigauge ambiguityf our problem,
see (Triggs et al., 1999) for a discussion of this issue)sThupractice, we pick an
arbitrary block asoot, and iteratively register all others with this one usinghnleast
squares, before using a non-linear method to refine the lglegiatration parameters.

We use thestitch graphto assist in this process. Its vertices are the blocks, and
an edge between two vertices indicates that the correspgridocks overlap. We
choose the largest block as root node and use its coordigatens as the global
frame. We then find the best path from the root to every othdensing a measure
that maximizes the number of points shared by adjacent b)dblk rationale being
that large overlaps will give reliable estimates of the esponding (local) registration
parameters. Specifically, we assign to each edgapacity(number of points com-
mon to the blocks associated with the incident verticeg), e a form of Dijkstra’s
algorithm to find for each vertex the path maximizing the catyaeaching the root.

The local registration parameters are concatenated dhesg paths, and they pro-
vide an estimate of the root-to-target affine transfornmation-linear least-squares
are finally used to minimize the mean-squared Euclideaanlistbetween the centers
of every pair of overlapping patches. After registering bhecks as described above,

we combine all the camera and patch matrices into a singleem&ihce several
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Figure 14. Sample partial models of the bear estimated from dense &lddie blocks in this illustra-
tion were found by taking adjacent modeling views and silgall patches they have in common.
The partial models are all presented in a common coordimated, rather than in their local frames

determined by factorization.
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blocks may provide a value for a given camera or patch, we gigierence to those

closer to the root.

3.2.3. Bundle Adjustment
Once all blocks are registered, the initial estimates ofvrgablesM; and.\; are
refined by minimizing
E=Y Y18, - MNP 2)
j=li€l;

where/; denotes the set of images where patch numhsrvisible. Given the rea-
sonable guesses available from the initial registratibis, hon-linear least-squares
process only takes (in general) a few iterations to converge

We have implemented two non-linear methods for minimiziveggrrorE in Eq. (2).
One is a sparse version of the Levenberg-Marquardt (LM)rélga. The other uses a
bilinear alternation strategy, that works by first holdimg fpatches constant while
solving for the cameras, then holding the cameras consthiié wolving for the
patches, and iterating until convergence (see Mahamud €2@01) for a related
approach to projective structure from motion). Note thatalernation strategy has
first-order convergence properties, while LM has secom@oconvergence (Triggs
et al., 1999). In general, LM requires fewer iterations thdmear alternation, but
its cost per iteration is much higher. For the size and dgmdithe matrices typical
of our modeling problems, we prefer the bilinear method;eiim practice it finishes
much sooner and produces essentially the same resultsras §da

The completed 3D model (Figure 15) consists of the matrieesand a description
of each 3D surface patch the matrix\/; and the corresponding rectified texture
patch. This patch can be constructed in a number of ways. @ssilplity is to
combine the texture information from each measured imagshpato a single high-
quality copy using super-resolution techniques (Cheereshal., 1994; Capel and
Zisserman, 2001; Baker and Kanade, 2002), provided thégssatisfy our assump-

tion of planarity and that they are well registered. Cutlsgnte simply choose the
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image patch with the largest characteristic scale and asggxture into the model.

This is sufficient for the purpose of matching the model toalanages.

Figure 15. The bear model, along with the recovered affine camera canafigns. These cameras are
shown at an arbitrary constant distance from the origin.

3.2.4. Euclidean Upgrade

It is not possible to go from affine to Euclidean structure aration from two views
only (Koenderink and van Doorn, 1991). When three or morevsiare available, on
the other hand, it is a simple matter to compute the corretipgrEuclidean weak-
perspective projection matrices (assuming zero skew apd/ikraspect-ratios) and
recover the Euclidean structure (Tomasi and Kanade, 1982¢e? 2000): Briefly,
we find the3 x 3 matrix Q such that4;Q is part of a (scaled) rotation matrix for
i = 1,...,m. This provides linear constraints @Q7, and allows the estimation of
this symmetric matrix via linear least-squares. The maftigan then be computed
via Cholesky decomposition for example (Poelman and Kar@®7; Weinshall and
Tomasi, 1995).
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3.3. EXPERIMENTAL RESULTS

The current implementation of our modeling approach isequatiable, but rather
slow: The teddy bear shown in Figure 15 is our largest modéh 4014 model
patches computed from 20 images (24 image pairs). Imagenmgttakes about 75
minutes per pair using pure RANSAC, for a total of 29.9 hduhmage matching
using the greedy algorithm takes 88 minutes per pair forad 66835.2 hours. The final
model is assembled from the partial ones in 1.5 hours. Thetggesingle expense in
our modeling procedure is patch refinement. By selecting $&sngent convergence
criteria for this process and using a fixgglx 16 resolution for the image regions used
to drive the LM procedure, it is possible to reduce the maighime to 6.6 minutes
per image pair and assemble the model in 42 minutes, at thefgstting 4% fewer
3D patches. Since modeling speed is not a priority in theedmf this presentation,
we have used the original refinement parameters in the restrafxperiments.

We have applied the modeling approach presented in thigoaect seven other
objects, namely, an apple, the rubble-covered stand forideB8pan action figure
(called simply “rubble” from now on), a salt can, a shoe, 8pitlimself, a toy truck,
and a vase (Figure 16). For each object, the figure shows omglsdrom the set of
input pictures. Each object model has been constructed diro 20 input images,
except for the apple which is modeled from 29 images to attamplete surface
coverage. Beside each sample input image, the figure shosvsetwderings of the
recovered Euclidean model. The models are rather spars@nleushould keep in
mind that they are intended for object recognition, not foege-based rendering

applications.

4 All computing times in this presentation are given for C+egnams executed on a 3Ghz Pentium 4 running
Linux.
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Apple | Bear Salt | Shoe| Spidey| Truck | Vase
Input images 29 20 16 16 16 16 20
Model patcheg 759 | 4014 737 | 866 | 488 526 | 518 1085
Figure 16. Object gallery. Left column: One of several input pictures éach object. Right column:

Renderings of each model, not necessarily in same pose aspigiure. Top to bottom: An apple,
rubble (Spiderman base), a salt can, a shoe, Spidey, a tky &nd a vase.
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4. 3D Object Recognition

We now assume that the modeling approach presented in 8&ckias been used to
create a library of 3D object models, and address the probfedentifying instances
of these models in a test image. In many respects, this pasemalogous to the
method described in Section 3.1 for pairwise image matclisdpefore, Algorithm 1

outlines the overall process. Further details are giveherrést of this section.

4.1. APPEARANCEBASED SELECTION OFPOTENTIAL MATCHES

Since matching is much more challenging in the recognitiomt&xt where images
may be heavily cluttered than in modeling tasks where treessentially no clutter,
we exploit both the SIFT descriptors and color histogramsetect initial matches.
More specifically, we use (1) a measure of the contrast (geesguared gradient
norm) in the patch, (2) a0 x 10 color histogram drawn from the UV portion of
YUV space, and (3) SIFT. To match feature vectors, we rely aordo filter out
unpromising matches before comparing the remaining ondgs SVFT. The level of
contrast determines whether to use a tight or relaxed thlésim color.
We compare color histograms with tyé metric, defined as

ai—bz-z
Z( )

—~ a;+0b '

wherea; andb; are bins corresponding to each other in the respectivegnestas, and
i iterates over the bins. The resulting value is in[th&] range, with 0 being a perfect
match and 2 a complete mismatch.

Figure 17 illustrates the usefulness of multiple local iedgscriptors in matching
tasks, particularly when the patches have low contrass &kample is taken from a
test image for the apple. The model patch is in the centedhect match is on the
left, and an incorrect match is on the right. By human peroeptll three patches
appear almost identical, except that the incorrect patstaldifferent color. By SIFT
distance, the incorrect match is actually closer than tineecbone. The use of a color

descriptor enables us to select the correct one.
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Figure 17. Comparing SIFT and color descriptors on low-contrast pegcfihe center column is the
model patch. The left column is the correct match in the image right column is the match in the
image ranked first by SIFT (but that is in fact an incorrectechatThe top row shows the patch, the
middle row shows the color histogram, and the bottom row shihwe SIFT descriptor. The incorrect
match has a Euclidean distance of 0.52 between SIFT descrighd ay? distance of 1.99 between
the corresponding color histograms; and the correct maashahSIFT distance of 0.67 and a color
distance of 0.03. The two patches on the left are red-grelenazh while the patch on the right is aqua.

We use as before non-linear least squares to refine the pamsnoé the matched
image regions to maximize their correlation with the cqoesding model patches.
Since this process is computationally expensive, we firgtyag neighborhood con-
straint similar to that used in image matching to discardaimsly inconsistent matches,

as described next.

4.1.1. Euclidean Neighborhood Constraints
We saw earlier that affine models constructed from multipésve can be upgraded
into Euclidean ones. In turn, a Euclidean model can be usedgose neighborhood

constraints on individual matches: It is well known thatetipoint matches—or in
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our case, a single match between the corners and center ofl@ petch and those
of an affine image region—are sufficient to determine the pbse3D object for cal-
ibrated cameras (Huttenlocher and Ullman, 1987). Thus,ewever the object pose
associated with each potential match, and use it to reprajeather model patches
into the image. Any patch whose reprojection falls closeugiido a compatible affine
region casts a vote for the match. Match candidates with edagerage support are
retained, and passed on to the refinement step.

In our implementation, the weight of each vote depends on three factors, namely
the characteristic scatg of theprimaryimage region associated with the match can-
didate, the distanaébetween the projection of the voting patch and the corredipgn
secondaryimage region, and the distandg between the primary and secondary
regions. In practice, we set = G,(d), whereG, is a Gaussian distribution with
standard deviation = 10 + dy/40, (Figure 18). With this choice, small values &f
correspond to large votes, and the contribution of eachnekeny patch is modulated
so the Gaussian sharply peaks for large primary regionkylikeyield accurate pose

estimates, and for secondary regions more likely to be atelyrlocalized because

they are close to the primary ones.

appears as a heavy parallelogram, and all the forward faaEtahes projected from the model appear
as light parallelograms. The projected center of the sujpmpmatch appears as ax™ surrounded
by a circle. The actual image position of the supporting imajgpears as anothex". The radius of
the circle is equal to the standard deviation of the Gausgdistnibution deciding the weight of the
corresponding vote.
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4.2. ROBUST ESTIMATION

As noted in Section 2, various methods for finding matchirsguiees consistent with
a given set of geometric constraints have been proposec ipast, including inter-
pretation tree—or alignment—techniques (Ayache and Fasg&986; Faugeras and
Hebert, 1986; Grimson and Lozano-Pérez, 1987; Hutteeloahd Ullman, 1987;
Lowe, 1987), geometric hashing (Lamdan and Wolfson, 19&8ndan and Wolf-
son, 1991), and robust statistical methods such as RANSAscHler and Bolles,
1981) and its variants (Torr and Zisserman, 2000). Bothnalignt and RANSAC
can easily be implemented in the context of Algorithm 1. Weehaxperimented
with several alternatives: The first one is a recursive im@etation of alignment
where an interpretation tree is visited in a depth-first neargmull matches between
model patches and “empty” image regions being used to hamdlesion and faulty
detection) until a maximum deptN is reached ' = 20 in our experiments), or the
mean reprojection error exceeds 1 pixel in all branches upabdepth (see Ayache
and Faugeras, 1986; Faugeras and Hebert, 1986 for mortsaet#is approach). We
have also implemented plain RANSAC and two variants: a ‘dyée&ersion where,
as before M groups of matches of size lesser than or equaNtare chosen in a
deterministic, greedy manner to minimize the mean prajeatrror, and used instead
of random samples; and an “exhaustive” version where alspdicandidate matches
are examined. The computational costs of the RANSAC vagiard easy to estimate,
and they are given in Figure 19. The cost of alignment is mdfieult to assess, but
can be shown to be a low-order polynomial in the sizef the model when there is
little or no clutter, and exponential imin the presence of clutter when no limit on the
depth of the tree search is imposed (Grimson, 1990). Thetwgase computational
complexity of our bounded tree search$n’), but determining its expected cost is
beyond the scope of this paper. As will be shown in Sectiontdés“greedy” version

of RANSAC has performed best in our experiments.
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Method Cost K M N
RANSAC | O(M|P|) | L/n | [1998,12498] | 2
Alignment | see Sec. 4.2 L/n n 20
Exhaustive] O(|P]*) | L/n |P|? 2

Greedy | O(N|P|?) | L/n |P| 20

Figure 19. Parameters for the different geometric estimation metfadslgorithm 1 used in our recog-
nition experiments, along with their combinatorial coserel, L denotes a preset number of potential
matches to be examined (= 12,000 in our experiments), and is the number of patches per object
model.

4.3. GEOMETRY-BASED ADDITION OF MATCHES

The matches found by the estimation step provide a projeatiatrix that places the
model into the image. All forward facing patches in the modaild potentially be
present in the image. Therefore, we project each such madeh mnd select th&

closest image patches as new match hypotheses.

4.4. OBJECTDETECTION

Once an object model has been matched to an image, someocritemeeded to
decide whether it is present or not. After experimentindgnaifew reasonable choices,

we have settled on the following criterion:
(number of matches m OR matched area/total areaa) AND distortion< d,

where nominal values for the parameterssare- 10, « = 0.1, andd = 0.15. Here,
the measure of distortion is

aia n <1 B min(|a,|, ‘%D) 7

la:||as| max(|ai|, |as|)

wherea! is theith row of the leftmos® x 3 portion.A of the projection matrix, and it
reflects how close to the top part of a scaled rotation thigima. The matched
surface area of the model is measured in terms of the patcheseannormalized
correlation is above the usual thresholds, and it is conaptaréhe total surface area
actually visible from the predicted viewpoint. The influenaf the three parameters

on recognition performance is studied in the next section.
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4.5. EXPERIMENTAL RESULTS

Our recognition experiments match all eight of our objectlels against a set of 51
images (the photograph from Figure 1 and the 50 pictures siWwigure 20). Each
image contains instances of up to five object models, evargthaost of them only
contain one or two. Figure 21 gives quantitative recognitiesults for the different
monochrome variants of our algorithm, where color infororatis not used. The
parameters for these tests are fixed to their nominal valties e= 10, « = 0.1,
andd = 0.15. With these settings, none of the methods tested gives falsitives,
and the “greedy” version of RANSAC withy = 20 gives the best performance, with
a recognition rate (averaged over the eight object modéIS§B®. The time costs
given in the table are per image-object combination, in n&su

Since it has consistently performed best in our experimevdsvill from now on
focus on the greedy variant of RANSAC witki = 20. It is interesting to compare
different image descriptors and to test whether the uselof adformation may boost
recognition performance. Figure 22 shows the results ofamfiative experiment: It
can be seen that the combination of color and SIFT gives teegegformance, with
a mean recognition rate of 94%. (This rate is for the nomiatirgys of the detection
parameters. The effect of these parameters is discussad. pelsing color together
with plain patch correlation results in performance simitathat of SIFT descriptors
without color information.

As is always the case in object recognition, many implentanrtgparameters can
be varied in our program: For example, Figure 23 shows tltetodf between com-
puting cost and recognition accuracy that can be achievethéyging the patch size
used to refine the alignment between matched affine regianshéwn by this figure,
selecting a fixed 6 x 16 resolution instead of the original resolution of the testpa
used in the previous experiments halves the computing tiitteagsentially no effect
on recognition accuracy. Lowering the resolution too maehthe other hand, clearly
affects recognition performance.
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Figure 20. The dataset (51 images) used in our recognition experimg@tef the images are shown
here. The last one is shown in Figure 1.
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Method Apple | Bear | Rubble | Salt| Shoe| Spidey| Truck | Vase | Mean | Time

11 11 9 10 9 4 12 12
RANSAC 3 11 8 9 2 3 9 11 | 71% | 4.3
Alignment 5 10 9 10 4 4 12 12 | 85% | 7.5
Exhaustive 5 11 9 10 4 4 12 12 | 86% | 7.7
Greedy (V = 2) 6 11 9 10 3 4 12 12 | 86% | 5.9
Greedy (V = 20) 5 11 9 10 5 4 12 12 | 88% | 6.7

Figure 21. Comparison of recognition rates for different monochroraeants of our method. See text
for details. The row of numbers immediately under the ohjaches gives the true number of instances
present in the test images.

Method Apple | Bear | Rubble| Salt| Shoe| Spidey| Truck | Vase | Mean | Time
11 11 9 10 9 4 12 12
Correlation 6 11 8 10 4 4 10 8 80% | 5.6
SIFT 5 11 9 10 5 4 12 12 | 88% | 6.7
Correlation + Color| 8 11 9 10 6 4 10 11 | 89% | 3.9
SIFT + Color 8 11 9 10 7 4 12 12 | 94% | 3.7

Figure 22. Comparison of recognition rates for different descriptming the greedy RANSAC variant
with N = 20.

The recognition rates reported so far are for fixed, nomiahles of the detection
parametersn, a, andd. A better understanding of our algorithm’s performance can
be gained by plotting the overall rates of true positivesténces where an object
is correctly identified in an image) and true negatives énsés where an object is
correctly determined to be absent) against a range of paeamalues. Figure 24
shows the corresponding plots for the color version of ogodhm, where we vary
one of the three parameters while holding the other two emnsit their nominal
values.

As shown by Figure 24, the recognition performance is québle over a reason-

able range of detection parameters. The equal-error-eatameter values correspond

Method Apple | Bear | Rubble| Salt| Shoe| Spidey| Truck | Vase | Mean | Time

11 11 9 10 9 4 12 12
Original resolution| 8 11 9 10 7 4 12 12 | 94% | 3.7
16 x 16 resolution 8 11 9 10 7 4 12 12 94% | 1.9
8 x 8 resolution 9 11 9 10 5 4 11 12 | 91% | 1.6

Figure 23. Effect of region sampling during patch refinement on comjiutacost and recognition
accuracy.
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Figure 24. Dependency of the recognition rate on the detection paemsiethe true positive (TP) and
true negative (TN) rates are plotted by holding two of thedi&bn parameters constant at their nominal
values and varying, from left to right, the number of matcpatthes, the ratio of matched to visible
area, and the distortion.

to the point (if any) where the true positive and true negatiurves cross, which
occurs in the 94-96% range in these graphs. The best remograte that we have
been able to obtain by tuning the detection parameters isv@ifl¥ao false positives.
In order to obtain a quantitative comparison of our methothwiher state-of-
the-art object recognition systems, we have provided otasg® to several other
research groups. The algorithms proposed by Ferrari, Tagre& Van Gool (2004),
Lowe (2004), Mahamud & Hebert (2003), and Moreels, Maire &dna (2004) have
been tested by their authors in this comparative study. Asvshoy Figure 25, all
the algorithms perform well on our data set, achieving redan rates of 90% and
above for false detection rates below 10%. In this expertntea color version of our
algorithm and Lowe’s (2004) program perform best for very false detection rates,
followed by the black-and-white version of our algorithmheltechnique proposed
by Ferrari et al. (2004) achieves an extremely high recagnitate at the cost of a
somewhat higher false detection rate. Although all five algms use multiple views
to form object models, only Lowe’s algorithm and ours adiuabmbine the infor-
mation associated with multiple views in the recognitiooqass’. The other methods
consider all training pictures independently, which eiaéiy reduces object recog-

nition to image matching. The five algorithms use differembmetric constraints to

® The data is publicly available &t t p: / / ww= cvr . ai . ui uc. edu/ ponce_gr p/ dat a.
6 Lowe’s algorithm does not construct an explicit 3D modelt iballows multiple training views sharing
common patches to vote for the same object (Lowe, 2004).
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reject inconsistent matches: We exploit the global 3D (aféind Euclidean) rigidity of
our object models. Ferrari et al. (2004) use instead a detaf2D affine rigidity con-
straints, which are somewhat weaker but allow the recagnitf deformable objects
such as magazines, and the remaining authors exgttal 2D (affine or Euclidean)
rigidity constraints, best suited to situations where thatng and test views are close
to each other, or the relief of the scene is small compareldegalistance separating
it from the observer. To test the power of these constramgshave included in our
comparative study a baseline recognition method whereahe/ise image matching
part of our modeling algorithm is used as a simple recogmitiogine, an object being
declared as recognized when a sufficient percentage of thlegsfounds in a training
view are matched to the test image. The geometric consdrased in this case are
quite weak, and amount to exploiting the epipolar geomedryventionally used in
wide-baseline stereo. As shown by Figure 25, although tiniple method gives
reasonable results (over 50% true positive rate with nefptssitives), it gives the

worse recognition rates of all methods tested.

False Positive Rate
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Figure 25. True positive rate plotted against number of false pogstfee several different recognition
methods. For our curve, the three recognition parameters andd assume their best values for each
level of false positives.
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These results should not be interpreted as a conclusivénokthe tested algo-
rithms, since our test dataset is quite small, and it is drybbiased in favor of our
method. However, they provide some evidence (and this dhoatl be particularly
surprising) that combining multiple views improves recitigm performance, and so
does the inclusion of geometric constraints in the matcpnogess. Of course, there
is a price to pay for the integration of multiple images intgsiagle model: First,
this makes modeling more costly and complicated. Secorslyeiquires the use of
training views with sufficient overlap, as confirmed by oupesiments with the data
of Ferrari et al. (2004), where the input images have too fatehes in common to
allow us to construct any meaningful model.

Let us conclude with some qualitative experimental resuissng as before the
color/SIFT greedy variant of RANSAC withh = 20. Figure 26 shows sample results
of some challenging—yet successful—recognition expemisievith a large degree
of occlusion and clutter. Figure 27 shows the images wheagration fails. Very lit-
tle of the apple is visible in two of the images where our paogffails to recognize it,
and highlights dominate its third picture. Maybe more sisipgly, the shoe occupies
a large portion of the two images where it escapes detedilmreason is simply that
we did not include overhead views of the shoe in the traingtg $he shoe images
shown in Figure 27 are separated by akgilitfrom the views used during modeling,
with very few of the model patches appearing in the test pgstuwhich explains our

program’s failure and illustrates its limitations.

5. Discussion

We have proposed in this article to revisit invariants ascallobject description that
exploits the fact that smooth surfaces are always plandreisinall. Combining this
idea with the affine regions of Mikolajczyk and Schmid (2002} allowed us to
construct a normalized representation of local surfaceamce that can be used to

” The shoe, like the apple, is now long gone, preventing us fidding any more training images.
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Figure 26. Some challenging but successful recognition results. Addare 1, the recognized models
are rendered in the poses estimated by our program, and ingubdxes for the reprojections are
shown as rectangles.
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Figure 27. Closeups of the images where recognition fails.

select promising matches in 3D object modeling and recagnitisks. We have used
multi-view geometric constraints to represent the largers8rface structure, retain
groups of consistent matches, and reject incorrect onaseXperiments demonstrate
the promise of the proposed approach to 3D object recognitio

Our current implementation is limited to affine viewing cdmahs. As noted in
Section 2.2, amatch between> 2 affine regions is equivalent to a match between
triples of points, thus the machinery developed in the stinedrom motion (Faugeras
et al., 2001; Hartley and Zisserman, 2000; Tomasi and Kane@®?) and pose es-
timation (Huttenlocher and Ullman, 1987; Lowe, 1987) kiieire can in principle
be used to extend our approach to the perspective case.slpasticularly relevant
in the context of scene interpretation (as opposed to iddali object recognition),
where the relief of each surface patch may be small compardgetoverall depth of
the scene, so that an affine projection model is appropaatesich patch, yet a global
affine projection model is inappropriate (think of streetrses, for example, that ex-
hibit significant perspective distortions). As a first steward tackling this problem,
we have recently introduced a local affine viewing model leteh by linearizing the
perspective projection equations in the neighborhood oh gmtch, and used it to
extend the approach proposed in this article to the prob@motion segmentation,
scene modeling, and scene recognition in video clips (Rotber et al., 2004).

Admittedly, our current implementation is slow, espegialbmpared to the sys-
tems proposed by Lowe (2004), and Mahamud and Hebert (20@®xchieve frame-

rate object detection in cluttered scenes. Speed was nav@riority (despite some
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efforts at optimizing our code), and we believe that our apph can (and should) be
sped up by at least an order of magnitude using a more carefilémentation. Two
key changes would be to use a voting scheme rather than aofulbarison of each
object with each image, and to avoid patch refinement if jpdessi

An obvious limitation of our approach is its reliance on teet Some objects (e.g.,
statues, cars, many kinds of fruit and vegetables) are gahgtextureless, yet easily
recognizable (for humans). Alternatively, many objects lagavily textured, but the
corresponding patterns may be more distracting than cteaistec (e.g., a cat's fur
may look like a patchwork of different colors, it may spontiss, or just be plain
black or white, yet a person will still recognize the cat ie fiicture). Handling such
objects will require new image descriptors that better egrshape (as opposed to
appearance) information, yet capture an appropriate levelewpoint invariance.
Developing these descriptors and the corresponding réomystrategies is next on
our agenda.
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Appendix A: Inverse Projection Matrices

Let us introduce more formally the inverse projection maassociated with a plane
under affine projection.
Consider a planél with coordinate vectoFI in the world coordinate system. For

any point in this plane we can write the affine projection imsoimage plane as
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p = MP andII” P = 0. These two equations determine the homogeneous coordi-
nate vectorP up to scale. To completely determine it, we can impose tedbiirth

coordinate be 1, and the corresponding equations become

M p
MpP=| II" |P=|0
0001 1

Not surprisingly, My is an affine transformation matrix. So is its inverse, and if

Ml_‘[l: 601 002 003 014 :
we can write
P = Mgl g = M {p] where M, & [C1 2 &
IT ] 1) I1 0 0 1

The 4 x 3 matrix Mh is theinverse projection matriXFaugeras et al., 2001)
associated with the plarié. Note that, for any poinp in the image plane, the point

_ t P
P_MHL]

lies in the plandl, thusII” P = 0. Since this must be true for all poings we must
havell” M{; = 0.

The matrix\; used in this paper is simply/l(ﬁ)j where MU) is the matrix asso-
ciated with the projection into the (fictitious) rectified age plane. Note that1©)
maps the centef’; of patch numbey onto the origin of the rectified image plane. It
follows that the coordinate vector of this point is

(5] =25 o).

or, equivalently, tha{ CI”] is the third column of the matriX/;. Similar reasoning
shows that the “horizontal” and “vertical” axes of the patsk respectively the first
and second columns df;. Finally, we write the inverse projection matrix as

_[H; V; Cal_[Bj]
Na_[ 0 0 1] loo1)
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whereB; is a3 x 3 matrix.

Appendix B: Patch Refinement

We use the Levenberg-Marquardt (LM) non-linear least segiatgorithm to do the
alignment. Here we give the error function being minimized ahow how to compute
its Jacobian analytically. LeP(x) be pixel values from the image containing the
variable patch, and leR(u) be pixel values from the normalized form of the fixed
(“reference”) patch, wherg andu are homogeneous coordinates with scale fixed at
1. Let S be the inverse rectification matrix associated with thealde patch. The

mapping function between the patches is

u1S11 + u2S12 + Si3
xr = S’U, = U1521 + UQSQQ + 523 (3)
1

We want to minimize the error
E= ) |P(Su) - R(u)P,
UcR
with respect taS. The error function for one pixel positiamis thene(u) = P(Su) —
R(w). The error function given to LM is the vector efu) values produced by iterat-
ing » over all the discrete pixel positions in the reference pattie parameters that

LM modifies are the six elemend;,;. We compute the elements of the Jacobian as

ﬁ . oP 8x1 I oP 01'2
&S‘kl W= 01'1 &S‘kl 01'2 &S‘kl

Notice that the second terf®(«) in the functione(w) drops out because it is constant
w.r.t. S. Also note that due to the form of the matrix multiplication(B8), only one of
the two partial derivatives w.r.&;; on the right is nonzero for any given subscript

All that remains is to compute the partial derivativé8/0z; and9P/0z, of P
w.r.t. to the components af. A low cost way to approximate these is to take the

pixel valuespgg, po1, p1o @ndp; from the four discrete locations closesttan P and
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compute the slope by interpolation. For exampld, # =, — |z |, we have

oP

Fr (1 =d)(por — poo) + d(p11 — p1o)-

The expression fod P/ 0z, is similar.
LM will of course only find a local minimum of the error functiacather than its
global minimum. In practice, the initial guess from affinepthtion is generally close

enough to the correct value for this method to give quite gesdlts.
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