

Constructing Category Hierarchies for Visual Recognition

Marcin Marszałek (marszale@inrialpes.fr) INRIA Grenoble, LEAR / LJK

Cordelia Schmid (schmid@inrialpes.fr) INRIA Grenoble, LEAR / LJK

Abstract

We evaluate class hierarchies currently constructed for visual recognition. We show that top-down as well as bottom-up approaches, which are commonly used to automatically construct hierarchies, incorporate assumptions about the separability of classes. Those assumptions do not hold for visual recognition of a large number of object categories. We therefore propose a relaxation which postpones decisions in the presence of uncertainty. This results in higher recognition accuracies and retains the sublinear complexity of the hierarchical approach.

1. Introduction

Hierarchical classification scales well in the number of classes:

 $O(n^2)$ one-against-one O(n) one-against-rest

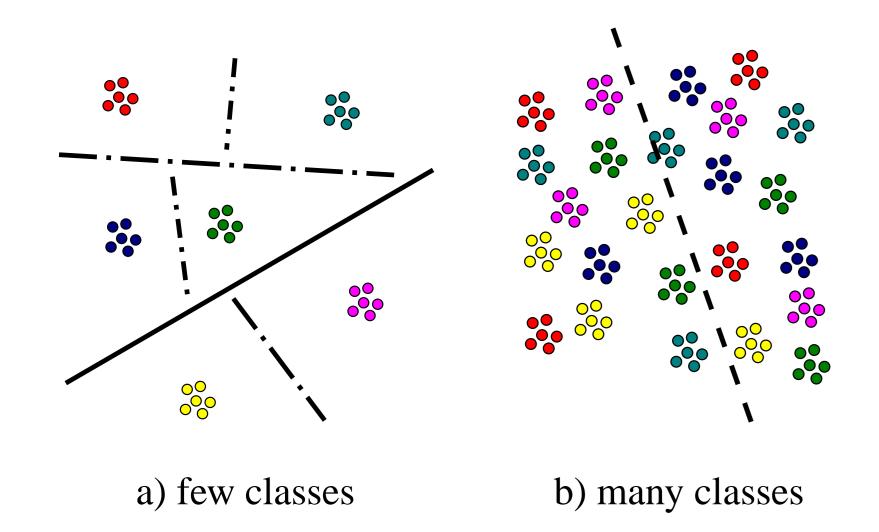
 $O(\log n)$ classification tree

Various methods to construct class hierarchies exist:

- By hand [Zweig'07]
- From external sources [Marszałek'07]
- From visual similarities
- -Exhaustive [Yuan'06]
- Top-down [Chen'04, Griffin'08]
- -Bottom-up [Zhigang'05, Griffin'08]

One common problem: disjoint trees

Disjoint partitioning of a set of classes might be easy for a few separated categories, but is increasingly difficult when the number of classes increases.

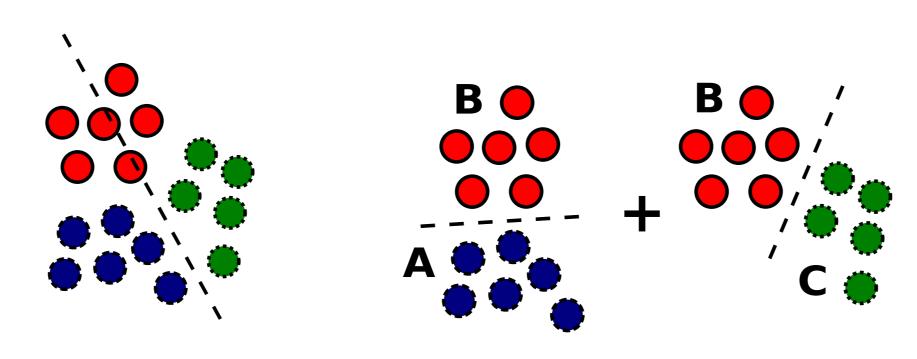


Conflicting requirements for high-level partitioning:

- generalization (e.g., animals vs man-made objects)
- precision (e.g., bear vs teddy bear)

2. Method

We propose a relaxation of the disjoint separation constraint:



a) separation problem

b) relaxed solution

A disjoint bi-partitioning of samples $S = A \sqcup B$ leads to a disjoint tri-partitioning of classes $\mathcal{C} = \mathcal{A} \sqcup \mathcal{X} \sqcup \mathcal{B}$ such that:

- \mathcal{A} have all samples in A
- ullet B have all samples in B
- $\bullet \mathcal{X}$ have samples in both partitions

We propose to split the set of classes $C = L \cup R$ such that:

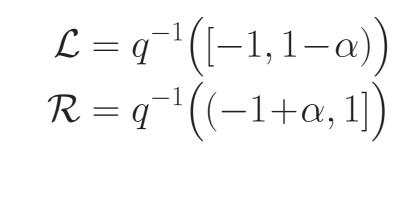
$$\mathcal{L} = \mathcal{A} \cup \mathcal{X} = \{C : \exists_{s \in A} [s] = C\}$$

$$\mathcal{R} = \mathcal{B} \cup \mathcal{X} = \{C : \exists_{s \in B} [s] = C\}$$

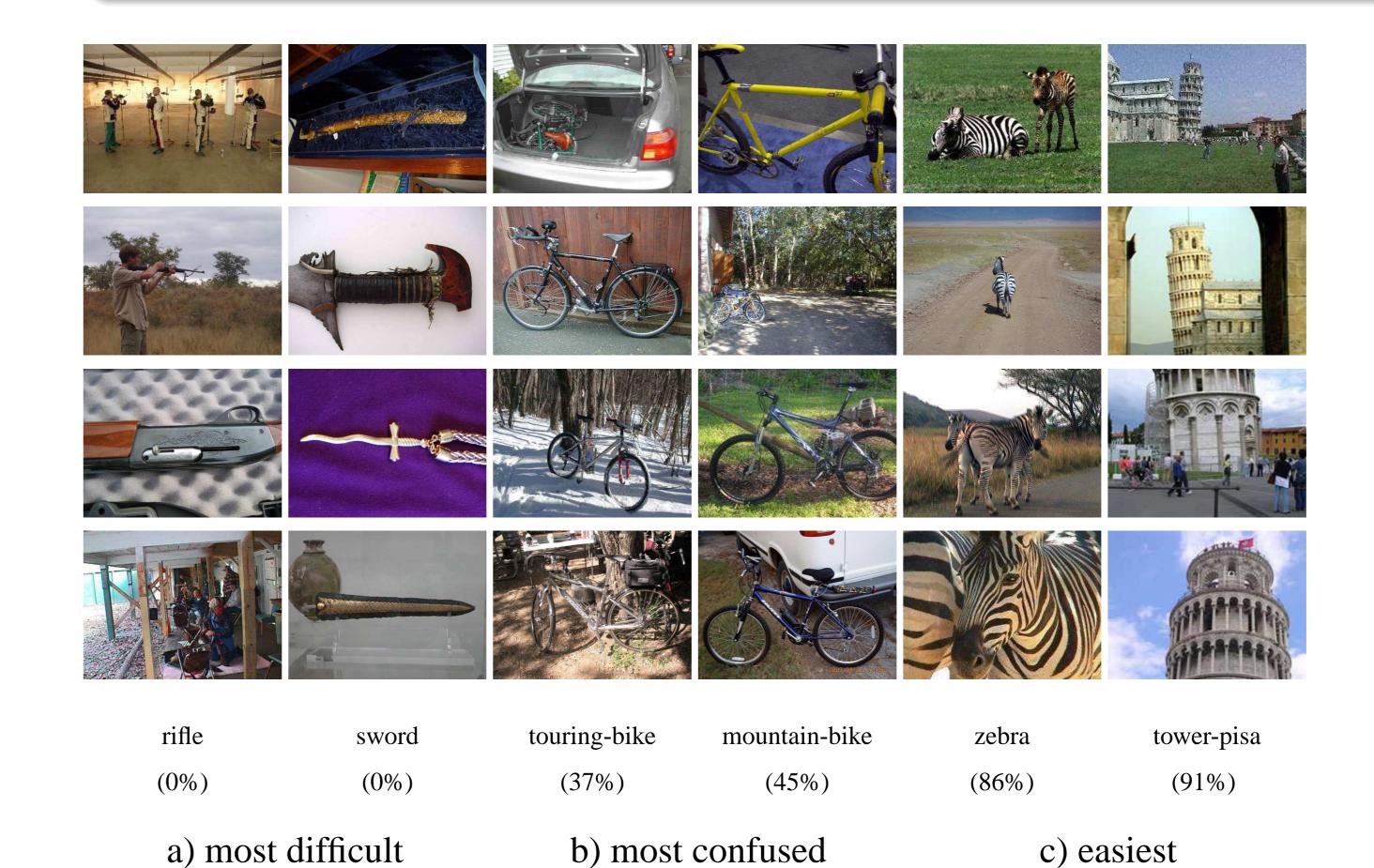
Furthermore, we note that a partitioning $p: S \to \{-1, 1\}$ determines a soft assignment of classes $q: \mathcal{C} \to [-1, 1]$:

$$q(C) = \frac{1}{|C|} \sum_{s \in C} p(s)$$

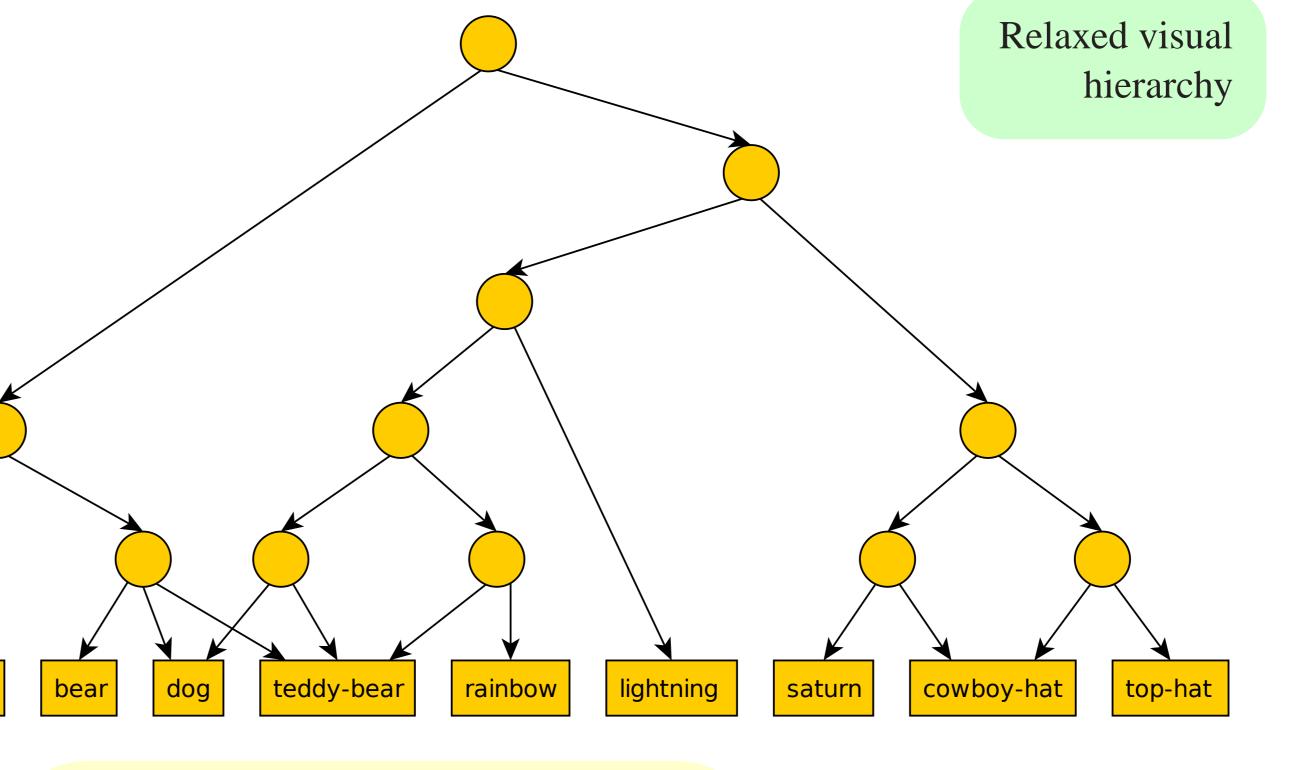
This allows to control the strength of the relaxation by defining:

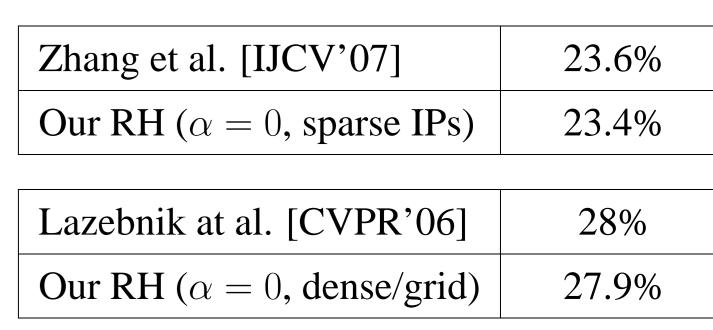


3. Results



Sample images of Caltech-256 categories.





Average per-class accuracy on Caltech-256.

Complexity in the number of classes.

