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Chapter 5
Luminance: a New Visual Feature for Visual
Servoing

Christophe Collewet and Eric Marchand

Abstract This chapter is dedicated to a new way to achieve robotic tasks by 2D
visual servoing. Contrary to most of related works in this domain where geometric
visual features are usually used, we directly here consider the luminance of all pixels
in the image. We call this new visual servoing scheme photometric visual servoing.
The main advantage of this new approach is that it greatly simplifies the image pro-
cessing required to track geometric visual features all along the camera motion or
to match the initial visual features with the desired ones. However, as it is required
in classical visual servoing, the computation of the so-called interaction matrix is
required. In our case, this matrix links the time variation of the luminance to the
camera motions. We will see that this computation is based on a illumination model
able to describe complex luminance changes. However, since most of the classical
control laws fail when considering the luminance as a visual feature, we turn the
visual servoing problem into an optimization one leading to a new control law. Ex-
perimental results on positioning tasks validate the feasibility of photometric visual
servoing and show its robustness regarding to approximated depths, Lambertian and
non Lambertian objects, low textured objects, partial occlusions and even, to some
extent, to images content.

5.1 Introduction

Visual servoing is now a widely used technique is robot control [4]. More gen-
erally, it consists in using information provided by a vision sensor to control the
state of a dynamic system. Robust extraction and real-time spatio-temporal tracking
of visual cues is then usually one of the keys to success of a visual servoing task.
We will show here that this tracking process can be totally removed and that no
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other information than the image intensity (that is the pure luminance signal) can be
considered to control the robot motion.

Classically, to achieve a visual servoing task, a set of visual features has to be
selected from the image in order to control the desired degrees of freedom (DOF).
A control law has also to be designed so that these visual features s reach a desired
value s∗, leading to a correct realization of the task. The control principle is thus to
regulate to zero the error vector e = s− s∗. To build this control law, the interaction
matrix Ls is required. For eye-in-hand systems, this matrix links the time variation
of s to the camera instantaneous velocity v

ṡ = Ls v (5.1)

with v = (vvv,ωωω) where vvv is the linear camera velocity and ωωω its angular velocity.
Thereafter, if we consider the camera velocity as input of the robot controller, the
following control law is designed to try to obtain an exponential decoupled decrease
of the error e

v = −λ̂L+s e (5.2)

where λ is a proportional gain that has to be tuned to minimize the time-to-
convergence, and ̂L+s is the pseudo-inverse of a model or an approximation of Ls
[4].

As it can be seen, visual servoing explicitly relies on the choice of the visual
features s (and then on the related interaction matrix); that is the key point of this
approach. However, with a vision sensor providing 2D measurements x(rk) (where
rk is the camera pose at time k), potential visual features s are numerous, since 2D
data (coordinates of feature points in the image, contours, moments,...) as well as
3D data provided by a localization algorithm exploiting x(rk) can be considered.
In all cases, if the choice of s is important, it is always designed from the visual
measurements x(rk). However, a robust extraction, matching (between x(r0) and
x∗ = x(r∗) where r∗ is the camera desired pose) and real-time spatio-temporal track-
ing (between x(rk−1) and x(rk)) have proved to be a complex task, as testified by
the abundant literature on the subject (see [17] for a recent survey on this subject).
This image processing is, to date, a necessary step and considered also as one of
the bottlenecks of the expansion of visual servoing. That is why some works tend to
alleviate this problem. A first idea is to select visual features as proposed in [11, 14]
or as in [19] to only keep visual features that are tracked with a high confident level
(see also [7] where a more general approach is proposed). However, the goal of such
approaches is not to simplify the image processing step but to take into account that
it can fail. A more interesting way to avoid any tracking process is to use non ge-
ometric visual features. In that case, parameters of a 2D motion model are used as
in [21, 24, 23, 8]. Nevertheless, such approaches require an important and complex
image processing step. Removing the entire matching process is only possible when
using directly the luminance as we propose.

Indeed, to achieve this goal we use as visual features the simplest feature that
can be considered: the image intensity itself. We therefore called this new approach
photometric visual servoing. In that case, the visual feature vector s is nothing but
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the image while s∗ is the desired image. The error e is then only the difference
between the current and desired images (that is e = I− I∗ where I is a vector that
contains image intensity of all pixels).

However, considering the whole image as a feature has previously been con-
sidered [18, 9]. As in our case, the methods presented in [9, 18] did not require
a matching process. Nevertheless they differ from our approach in two important
points. First, they do not use directly the image intensity since an eigenspace de-
composition is performed to reduce the dimensionality of image data. The control
is then performed in the eigenspace and not directly with the image intensity. More-
over, this way to proceed requires the off-line computation of this eigenspace and
then, for each new frame, the projection of the image on this subspace. Second, the
interaction matrix related to the eigenspace is not computed analytically but learned
during an off-line step. This learning process has two drawbacks: it has to be done
for each new object and requires the acquisition of many images of the scene at
various camera positions. Considering an analytical interaction matrix avoids these
issues.

An interesting approach, which also consider the pixels intensity, has been re-
cently proposed in [15]. This approach is based on the use of kernel methods that
lead to a high decoupled control law. However, only the translations and the rota-
tion around the optical axis are considered whereas, in our work, the 6 DOF are
controlled. Another approach that does not require tracking nor matching has been
proposed in [1]. It models collectively feature points extracted from the image as a
mixture of Gaussian and try to minimize the distance function between the Gaussian
mixture at current and desired positions. Simulation results show that this approach
is able to control the 3 DOF of robot (and the 6 DOF under some assumptions).
However, note that an image processing step is still required to extract the current
feature points. Our approach does not require this step. Finally, in [2], the authors
present an homography-based approach to visual servoing. In this method the image
intensity of a planar patch is first used to estimate the homography between current
and desired image which is then used to build the control law. Despite the fact that,
as in our case, image intensity is used as the basis of the approach, an important
image processing step is necessary to estimate the homography. Furthermore, the
visual features used in the control law rely on the homography matrix and not di-
rectly on the luminance.

In the remainder of this chapter we first compute the interaction matrix related to
the luminance in Section 5.2. Then, we reformulate the visual servoing problem into
an optimization problem in Section 5.3 and propose a new control law dedicated to
the specific case of the luminance. Section 5.4 shows experimental results on various
scenes for several positioning tasks.
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5.2 Luminance as a Visual Feature

The visual features that we consider here are the luminance I of each point of the
image, that is

s(r) = I(r) = (I1•,I2•, · · · ,IN•) (5.3)

where Ik• is nothing but the k-th line of the image. I(r) is then a vector of size
N ×M where N ×M is the size of the image. As mentioned in Section 5.1, an es-
timation of the interaction matrix is at the center of the development of any visual
servoing scheme. In our case, we have to derive the interaction matrix related to the
luminance of a pixel in the image, that is

lim
dt→0

I(x, t+dt)− I(x, t)
dt

= LI(x)v (5.4)

x = (x,y) being the normalized coordinates of the projection p of a point physical P
belonging to the scene.

Before computing the interaction matrix LI(x) in the general case, lets first con-
sider the simpler case where the temporal luminance constancy hypothesis is as-
sumed, as it is done in most of computer vision applications. Let us also assume
that p has a small displacement dx in the time interval dt

I(x+dx, t+dt) = I(x, t). (5.5)

If dx is small enough, a first order Taylor series expansion of (5.5) around x can be
performed yielding the so-called optical flow constraint equation (OFCE) [13]

∇I�ẋ+ It = 0 (5.6)

with ∇I the spatial gradient of I(x, t)1 and It = ∂I(x, t)/∂t. Moreover, considering the
interaction matrix Lx related to x (i.e. ẋ = Lxv)

Lx =

(−1/Z 0 x/Z xy −(1+ x2) y
0 −1/Z y/Z 1+ y2 −xy −x

)

(5.7)

(5.6) gives
It = −∇I�Lxv. (5.8)

However, note that It is nothing but the left part of (5.4). Consequently, from (5.4)
and (5.8), we obtain the interaction matrix LI(x) related to I at pixel x

LI(x) = −∇I�Lx. (5.9)

Of course, because of the hypothesis required to derive (5.5), (5.9) can only be
valid for Lambertian scenes, that is for surfaces reflecting the light with the same

1 Let us point out that the computation of ∇I is the only image processing step necessary to imple-
ment our method.
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intensity in each direction. Besides, (5.9) is also only valid for a motionless lighting
source with respect to the scene.

Indeed, to derive the interaction matrix in the general case, we have to consider
a more realistic reflection model than the Lambert’s one. The Lambert’s model can
only explained the behavior of non homogeneous opaque dielectric material [22].
It only describes a diffuse reflection component and does not take into account the
viewing direction. We propose to use the well-known Phong model [20]. However,
note that this model is not based on physical laws, but comes from the computer
graphics community. Although empirical, it is widely used thanks to its simplicity,
and because it is appropriate for various types of materials, whether they are rough
or smooth. Note that other models could be considered such as the Blinn-Phong [3]
as reported in [5].

According to the Phong model (see Fig. 5.1), the intensity I(x) at point x writes
as follows

I(x) = Ks coskα+Kd cosθ+Ka. (5.10)

This relation is composed of a diffuse, a specular and an ambient component and
assumes a point light source. The scalar Ks describes the specular component of the
lighting; Kd describes the part of the diffuse term which depends on the albedo in
P; Ka is the intensity of ambient lighting in P. Note that Ks,Kd and Ka depend on P.
θ is the angle between the normal to the surface n in P and the direction of the light
source L; α is the angle between R (which is L mirrored about n) and the viewing
direction V. R can be seen as the direction due to a pure specular object, where k
allows to model the width of the specular lobe around R, this scalar varies as the
inverse of the roughness of the material.

In the remainder of this chapter, the unit vectors i, j and k correspond to the axis
of the camera frame (see Fig. 5.1).

Considering that R,V and L are normalized, we can rewrite (5.10) as

I(x) = Ksu1
k +Kdu2+Ka (5.11)

where u1 = R�V and u2 = n�L. Note that these vectors are easy to compute, since
we have

V = − x̃
‖ x̃ ‖ (5.12)

R = 2u2n−L. (5.13)

with x̃ = (x,y,1).
In the general case, we consider the following dependencies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

V = V
(

x(t)
)

n = n
(

x(t), t
)

L = L
(

x(t), t
)

R = R
(

x(t), t
)

.

(5.14)
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Fig. 5.1 The Phong illumination model [20].

From the definition of the interaction matrix given in (5.4), its computation requires
to write the total derivative of (5.11)

İ = kKsu
k−1
1 u̇1+Kdu̇2. (5.15)

However, it is also possible to compute İ as

İ = ∇I�ẋ+ It = ∇I�Lxv+ It (5.16)

where we have introduced the interaction matrix Lx associated to x. Consequently,
from (5.15) and (5.16), we obtain

∇I�Lxv+ It = kKsu
k−1
1 u̇1+Kdu̇2 (5.17)

that is a general formulation of the OFCE considering the Phong illumination model.
Thereafter, by explicitly computing the total time derivative of u1 and u2 and

writing
u̇1 = L�

1 v and u̇2 = L�
2 v, (5.18)

we obtain the interaction matrix related to the intensity at pixel x in the general case

LI = −∇I�Lx + kKsu1
k−1L�

1 +KdL�
2 . (5.19)

Note that we recover the interaction matrix −∇I�Lx associated to the intensity
under temporal constancy (see (5.9)), i.e. in the Lambertian case (Ks = 0) and when
u̇2 = 0 (i.e. the lighting direction is motionless with respect to the point P).

To compute the vectors L1 and L2 involved in (5.19) we have to explicitly ex-
press u̇1 and u̇2. However, to do that, we have to assume some hypothesis about
how n and L move with respect to the observer. Various cases have been studied in
[6]. Nevertheless, to make this chapter more readable, we report here only the case
where the light source is mounted on the camera and only give the final equation.
However, all the details can be found in [6].

In this case, we simply have L = −k (see Fig. 5.1). After tedious computations,
it can be shown that

L�
2 = −∇n�z Lx+L�

4 (5.20)



5 Luminance: a New Visual Feature for Visual Servoing 79

where n = (nx,ny,nz) and L�
4 =

(

0 0 0 (n×k)� i (n×k)�j 0
)

. L�
1 is expressed as

follows:
L�

1 =
(

V�JR+R�JV)Lx +L�
3 (5.21)

where JR and JV are respectively the Jacobian matrices related to R and V (see [6])
with respect to x, while L�

3 =
(

0 0 0 L3x L3y L3z

)

with

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

L3x = 2
(

n�V(n×k)�+k�n
(

n×V
)�)i

L3y = 2
(

n�V(n×k)�+k�n
(

n×V
)�)j

L3z = 2k�n
(

n×V
)�k.

(5.22)

However, the interaction matrix is very often computed at the desired position
[4]. Indeed, this way to proceed avoid to compute on-line 3D information like the
depths for example. We also here consider this case. More precisely, we consider
that, at the desired position the depth of all the points where the luminance is mea-
sured are equal to a constant value Z∗. That means that we consider that the object
is planar and that the camera and the object planes are parallel at this position. This
case is depicted on the Fig. 5.2. Here, since we suppose that Jn = 0 and n = −k, it
is straightforward to show that L�

2 = 0. Besides, since n = −k and L = −k, we have
R = −k. We also have JR = 0. Consequently, from (5.21), L�

1 becomes

L�
1 = −k�JVLx+L�

3 (5.23)

while L�
3 writes

(

0 0 0 −2V�j −2V�i 0
)

. Finally, using explicitly V, JV and Lx,
we simply obtain

L�
1 =

1
‖ x̃ ‖

(

x

Z̄

y

Z̄
− x2+ y2

Z̄
y −x 0

)

(5.24)

where Z̄ = Z∗‖ x̃ ‖2.
As it can be seen, even if the computation of the vectors L1 and L2 to derive the

interaction matrix is not straightforward, their final expression is very simple and
easy to compute on-line.

5.3 Visual Servoing Control Law

The interaction matrix associated to the luminance being known, the control law
can be derived. Usually it is based on a desired behavior for the error signal e. More
often, an exponential decoupled decrease of this signal is required, that is ė = −λe
where λ is a positive scalar. Therefore, expressing the temporal derivative of e, we
have

ė = Lsv = −λe (5.25)

leading to the classical control law given in (5.2) when considering that only an
approximation or an estimation of the interaction matrix is available.
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Fig. 5.2 Light source mounted on the camera for a planar object when the camera and the object
planes are parallel.

However, we think that presenting the design of a control law from an optimiza-
tion problem, as proposed in [16], can lead to more powerful control laws.

5.3.1 Visual Servoing as an Optimization Problem

In that case, the cost function that we have to minimize with respect to the camera
current pose writes as follows

C(r) =
1
2
‖ e ‖2 (5.26)

where e = I(r)− I(r∗).
Nevertheless, regardless of the complexity of the shape of (5.26), since to evalu-

ate (5.26) at a given pose a motion has to be performed, this problem becomes more
complex than a classical optimization one if we want to ensure a suitable camera
trajectory. Therefore, powerful approaches based on backstepping cannot be used.
Indeed, in practice, only differential approaches can be employed to solve this par-
ticular optimization problem. In that case, a step of the minimization scheme can be
written as follows

rk+1 = rk ⊕ tkd(rk) (5.27)

where “⊕” denotes the operator that combines two consecutive frame transforma-
tions; rk is the current pose, tk is a positive scalar (the descent step) and d (rk) a
descent direction ensuring that (5.26) decreases if

d (rk)�∇C (rk) < 0. (5.28)
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Consequently, the following velocity control law can be easily derived consider-
ing that tk is small enough

v = λkd(rk) (5.29)

where λk is a scalar that depends on tk and on the sampling rate. However, here
again, since (5.26) cannot be simply evaluated or estimated, line search algorithms
cannot be used and this value is often chosen as a constant one. In the remainder of
this chapter we will omit the subscript k for the sake of clarity.

Several descent directions can be used, nevertheless they lead to the following
generalized expression of (5.2) (see [6] for more details)

v = −λ̂Nse (5.30)

where:

• Ns = Ls
� for a steepest descent (gradient) method. For instance, this approach

has been used in [12];
• Ns = Ls

+ for a Gauss–Newton (GN) method. It is the control law usually used.
Note also that the case where Ns = Ls∗+ is also very used in practice [10];

• Ns =
(

H+μdiag(H)
)−1L�

s for a Levenberg–Marquardt method. H = Ls
�Ls is an

approximation of the Hessian matrix of the cost function (see Section 5.3.2). The
parameter μ makes possible to switch from a steepest descent like approach2 to
a GN one thanks to the observation of (5.26) during the minimization process;

• Ns = (Ls +Ls∗ )+ for the efficient second order minimization (ESM) method pro-
posed in [16]. Note that this method takes benefit of knowing the shape of the
cost function near the global minimum (through Ls∗ ); it is thus less sensitive to
local minima than the above-mentioned methods. Its convergence domain is also
larger.

In practice, since the convergence of the control law (5.30) highly depends on
the cost function (5.26), we focus in the next section on its shape.

5.3.2 Shape of the Cost Function

In fact, we are interested in the shape of the cost function since we want to min-
imize it. Therefore, we are interested in studying the Hessian of (5.26). It is given
by

∇2C(r) =

(

∂s
∂r

)�(
∂s
∂r

)

+

i=dim s
∑

i=1

∇2si
(

si(r)− si(r∗)
)

. (5.31)

However, this expression is far too complex to derive some useful results. Thus, we
study it around the desired position r∗, leading to

2 More precisely, each component of the gradient is scaled according to the diagonal of the Hessian,
which leads to larger displacements along the direction where the gradient is low.



82 Christophe Collewet and Eric Marchand

∇2C(r∗) =
(

∂s
∂r

)�(
∂s
∂r

)

. (5.32)

Moreover, since we have ṡ=
∂s
∂r

ṙ=Lsv, we are interested in practice in the following

matrix
H∗ = Ls∗

�Ls∗ . (5.33)

This matrix allows us to estimate the cost function around r∗. Indeed, a first order
Taylor series expansion of the visual features s(r) around r∗ gives

s(r) = s(r∗)+Ls∗Δr (5.34)

where Δr denotes the relative pose between r and r∗. Therefore, by plugging (5.34)
into (5.26), we obtain an approximation of the cost function in a neighborhood of r∗

̂C(r) =
1
2
Δr�H∗Δr. (5.35)

Of course, the graal would be that the eigenvalues of H∗ are the most similar as
possible since in that case the cost function would be an hypersphere. Indeed, only
a global minimum would exist and a simple steepest descent method would ensure
to reach this minimum. Unfortunately, when using the luminance as visual feature,
the eigenvalues are very different3. On the other hand, the eigenvectors of H∗ point
out some directions where the cost function decreases slowly when its associated
eigenvalue is low or decreases quickly when its associated eigenvalue is high. That
means that the cost function (5.26) presents very narrow valleys. More precisely,
an eigenvector associated to a small eigenvalue corresponds to a valley where the
cost varies slowly. In contrast, the cost function varies strongly along an orthogonal
direction. It can be shown that is in a direction near ∇C (r) [6]. These preferential
directions where the cost function is low are easy explained by the fact that it is very
difficult to distinguish in an image an x axis translational motion (respectively y)
from a y axis rotational motion (respectively x). The z axis being the camera optical
axis.

5.3.3 Control Law

As shown in Section 5.3.1, several control laws can be used to minimize (5.26).
We first used the classical control laws based on the GN approach and the ESM
approach [16, 25]. Unfortunately, they all failed, either because they diverged or
because they led to unsuitable 3D motion. It is well-known in optimization theory

3 Note that this phenomenon also holds for most of the geometrical visual features usually used
in visual servoing since a term related to the depth always occurs in the translational part of the
interaction matrix (see (5.7)).
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that minimizing a cost function that presents narrow valleys is a complex problem.
Therefore, a new control law has to be derived.

We propose the following algorithm to reach its minimum. The camera is first
moved to reach the valleys and next along the axes of the valleys towards the desired
pose. It can be easily done by using a control law formally equal to the one used in
the Levenberg–Marquardt approach (see Section 5.3.1). However, the way to tune
the parameter μ is different. We denote this method in the remainder of the chapter
as modified Levenberg–Marquardt (MLM). As stated in the Section 5.3.2, the first
step can be easily done by using a gradient approach, that is by choosing a high
value for μ (typically μ = 1). Once the bottom of valleys has been reached (see [6]
for more details), the parameters μ is forced to decrease to turn the behavior of the
algorithm to a GN approach. The resulting control law is then given by

v = −λ (H+μ diag(H)
)−1 LI

�e (5.36)

where μ is not a constant value.

5.4 Experimental Results

In all the experiments reported here, the camera is mounted on a 6 DOF gantry
robot. Control law is computed on a Core 2 Duo 3 GHz PC running Linux. Image
are acquired at 66 Hz using an IEEE 1394 camera with a resolution of 320 × 240.
The size of the vector s is then 76800. Despite this size, the interaction matrix LI
involved in (5.36) can be computed at each iteration if needed.

5.4.1 Positioning Tasks under Temporal Luminance Constancy

We assume in this section that the luminance I(x) at a given pixel is constant. To
make this assumption as valid as possible, a diffuse lighting as been used so that I(x)
can be considered as constant with respect to to the viewing direction. Moreover, the
lighting is also motionless with respect to the scene being observed. In this section,
we will first compare the GN and MLM methods and then show that the photometric
visual servoing is robust.

5.4.1.1 Comparison between the GN and the MLM Methods

The goal of the first experiment is to compare the control laws based on GN and
MLM approaches when a planar object is considered (it is a photo). The initial error
pose was Δrinit = (5 cm, -23 cm, 5 cm, -12.5◦, -8.4◦, -15.5◦). The desired pose was so
that the object and charge-coupled device (CCD) planes are parallel at Z = Z∗ = 80
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Fig. 5.3 First experiment, MLM versus GN method (x axis in seconds): (a) comparison of cost
functions; (b) comparison of camera trajectories; (c) translation error for the GN method (in mm);
(d) translation error for the MLM method (in mm); (e) rotation error for the GN method (in deg);
(f) rotation error for the MLM method (in deg); (g) initial image; and (h) final image.

cm. The interaction matrix has been computed at each iteration but assuming that all
the depths are constant and equal to Z∗, which is of course a coarse approximation.

Fig. 5.3(a) depicts the behavior of cost functions using the GN method or the
MLM method while Fig. 5.3(b) depicts the trajectories (expressed in the desired
frame) when using either the GN or the MLM method. Fig. 5.3(c) and Fig. 5.3(d)
depict respectively the translation errors for the GN and MLM method while Fig.
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5.3(e) and Fig. 5.3(f) depict respectively the orientation errors for the GN and MLM
method. The initial and final images are reported respectively on Fig. 5.3(g) and Fig.
5.3(h). First, as it can be seen on Fig. 5.3(a), both the control laws converge since
the cost functions vanish. However, the time-to-convergence with the GN method is
much higher than the one of the MLM method. The trajectory when using the GN
method is also shaky compared to the one of the MLM method (Fig. 5.3(b)). Com-
pare also Fig. 5.3(c) with Fig. 5.3(d) and Fig. 5.3(e) with Fig. 5.3(f). The velocity
of the camera when using the MLM method is smoother than when using the GN
method (Fig. 5.3(d) and Fig. 5.3(c)). This experiment clearly shows that the MLM
method outperforms the GN one. Note that in both cases the positioning errors is
very low, for the MLM method we obtained Δr = (0.26 mm, 0.30 mm, 0.03 mm,
0.02◦, -0.02◦, 0.03◦). It is very difficult to reach so low positioning errors when
using geometric visual features as it is usually done. Indeed, these nice results are
obtained because I− I∗ is very sensitive to the pose r.

5.4.1.2 Influence of the Image Content

The goal of the next experiment is to show that, even if the luminance is used as
a visual feature, our approach does not depend too much on the texture of the scene
being observed. Fig. 5.4 depicts the behavior of our algorithm for the planar objects
respectively shown on Fig. 5.4(a), (c), (e) and (g) (the initial as well as the desired
pose is unchanged). As it can be seen, the control law converges in each cases, even
in the case of a low textured scene (Fig. 5.4(a) and (c)). Let us point out that similar
positioning errors than for the first experiment have been obtained. This result comes
from the fact that the shape of the cost functions (5.26) does not depend too much on
the image content (as long as the image does not contain periodic patterns or strong
changes of the spatial gradient). It always presents narrow valleys that our control
law can cope with.

5.4.1.3 Behavior with respect to Partial Occlusions

The third experiment deals with partial occlusions. The desired object pose as
well as the initial pose are still unchanged. After having moved the camera to its
initial position, an object has been added to the scene, so that the initial image is
now the one shown in Fig. 5.5(a) and the desired image is still the one shown in Fig.
5.3(h). Moreover, as seen in Fig. 5.5(b) and Fig. 5.5(c), the object introduced in the
scene is also moved by hand during the camera motion which highly increases the
occluded surface. Despite that, the control law still converges. Of course, since the
desired image is not the true one, the error cannot vanish at the end of the motion
(see Fig. 5.5(e)). Nevertheless, the positioning error is not affected by the occlu-
sions (see Fig. 5.5(h) and Fig. 5.5(i)) since the final positioning error is Δr = (-0.1
mm, 2 mm, 0.3 mm, 0.13◦, 0.04◦, 0.07◦). It is very similar with the previous experi-
ments. Compare also Fig. 5.3(d) with Fig. 5.5(h) and Fig. 5.3(f) with Fig. 5.5(i), the
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Fig. 5.4 Second experiment. Same positioning task with respect to various objects. Objects con-
sidered (left column) and cost functions (right column) (x axis in seconds).

positioning error, and thus the camera trajectory, are really not affected by the occlu-
sions. This very nice behavior is due to the high redundancy of the visual features
we use.
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Fig. 5.5 Third experiment, occlusions (x axis in seconds): (a) initial image; (b) image at t ≈ 11 s;
(c) image at t ≈ 13 s; (d) final image; (e) cost function; (f) I− I∗ at the initial position; (g) I− I∗ at
the end of the motion; (h) translation errors (in mm); and (i) rotation errors (in deg).
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Fig. 5.6 The nonplanar scene.
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Fig. 5.7 Fourth experiment, robustness with respect to depths (x axis in seconds): (a) cost function;
(b) initial image; (c) final image; (d) translation errors (in mm); and (e) rotation errors (in deg).

5.4.1.4 Robustness to the Depths

The goal of the last experiment is to show the robustness of the control law with
respect to the depths. For this purpose, a non planar scene has been used as shown on
Fig. 5.6. It shows that large errors in the depth are introduced (the height of the castle
tower is around 30 cm). The initial and desired poses are unchanged. Fig. 5.7 depicts
this experiment. Here again, the control law still converges (despite the interaction
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Fig. 5.8 Camera and light-ring mounted on the robot end-effector.

matrix has been estimated at a constant depth Z∗ = 80 cm) and the positioning error
is still low since we have Δr = (0.2 mm, -0.0 mm, 0.1 mm, -0.01◦, 0.00◦, 0.06◦).

5.4.2 Positioning Tasks under Complex Illumination

In this section we consider the more complex case when the temporal luminance
constancy can no more be assumed. Indeed, the scene is no more illuminated by a
diffuse lighting since a light-ring is located around the camera lens (see Fig. 5.8).
Therefore the light direction is aligned with the camera optical axis as described on
Fig. 5.2. This is the unique light in the scene. Note that, obviously, its direction is no
more constant with respect to the scene as in Section 5.4.1. The initial positioning
error and the desired pose are still unchanged (but with Z∗= 70 cm). The interaction
matrix has been estimated at the desired position using (5.24) to compute L�

1 while
L�

2 = 0 (see the very end of Section 5.2). For all the experiments using the complete
interaction matrix we used k = 100 and Ks = 200 (see (5.19)).

As it can be seen on Fig. 5.9(f), the specularities are very important and conse-
quently their motions in the image are important (for example the specularity can be
seen at the bottom of the image in the first image whereas it has moved to the middle
at the end of the positioning task). It also almost saturates the image meaning that
few information are available around the specularity. The behavior of the control
law is better when the complete illumination model is considered since the conver-
gence is faster (see Fig. 5.9(a)). It is also confirmed by observing the positioning
errors (compare Fig. 5.9(b) with Fig. 5.9(c) and Fig. 5.9(d) with Fig. 5.9(e)).

Note that tracking tasks and other positioning tasks (when the lighting is not
mounted on the camera) have been considered in [6]. These results show, here again,
the benefit of using a complete illumination model instead of using the classical
temporal luminance constancy.
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Fig. 5.9 Positioning task with the light source mounted on the camera: (a) cost function assuming
a temporal luminance constancy model (solid line) and using an illumination model (dashed line);
(b) translation error assuming a temporal luminance constancy model (in mm); (c) translation error
using an illumination model (in mm); (d) rotation error assuming a temporal luminance constancy
model (in deg); (e) rotation error using an illumination model (in deg); and (f) images acquired
during the positioning task (left) and I− I∗ (right).
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5.5 Conclusion and Future Works

We have shown in this chapter the benefit of using the photometric visual ser-
voing. This new visual servoing scheme avoid complex image processing, only re-
mains the image spatial gradient to compute. It also avoid a learning step required
with previous approaches based on the use of the image intensity as visual features.
This new visual servoing has also other important advantages. Concerning position-
ing tasks, the positioning errors are always very low. Moreover, this approach is not
sensitive to partial occlusions and to coarse approximations of the depths required
to compute the interaction matrix. Let us point out that the behavior of the robot is
not disturbed by complex illumination changes since the interaction matrix has been
derived from a suitable illumination model.

Future work will concern the case when the intensity of the lighting source may
vary during the servoing.
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