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1 Introduction

Over the past few years, parallel sparse direct solvers have made significant
progress [1, 4, 6, 10]. They are now able to solve efficiently real-life three-
dimensional problems with several millions of equations. Nevertheless, the need
of a large amount of memory is often a bottleneck in these methods. To control
memory overhead, the authors presented in [8] a method which exploits the par-
allel blockwise algorithmic approach used in the framework of high performance
sparse direct solvers. The goal was to develop a robust and parallel incomplete
factorization based on preconditioners for iterative solvers. But for some ap-
plications, direct solvers remain a generic and successful approach. Since the
last decade, most of the supercomputer architectures are based on clusters of
SMP (Symmetric Multi-Processor) nodes. In [7], the authors proposed a hy-
brid MPI-thread implementation of a direct solver that is well suited for SMP
nodes or modern multi-core architectures. This technique allows to treat large
3D problems where the memory overhead due to communication buffers was a
bottleneck to the use of direct solvers. Thanks to this MPI-thread coupling, our
direct solver PaStiX has been successfully used by the French Nuclear Agency
(CEA) to solve a symmetric complex sparse linear system arising from a 3D
electromagnetism code with more than 83 millions unknowns on the TERA-10
CEA supercomputer. Solving this system required about 5 Petaflops (in double
precision) and the task was completed in about 5 hours on 768 processors. To
our knowledge, a system of this size and this kind has never been solved by a
direct solver.

New NUMA (Non Uniform Memory Access) architectures have an impor-
tant effect on memory access costs, and introduce contentions problems which
do not exist on SMP nodes. Thus, the main data structure of our targeted
application have been modified to be more suitable for NUMA architectures.
A second modification, relying on overlapping opportunities, allows us to split
computational or communication tasks and to anticipate as much as possible
the data receptions. We also introduce a simple way of dynamically schedule
an application based on a dependency tree while taking into account NUMA
effects. Results obtained with these modifications are illustrated by showing
performances of the PaStiX solver on different platforms and matrices.

After a short description of architectures and matrices used for numerical ex-
periments, we study data allocation and placement taking into account NUMA
effects. Section 4 focuses on the improvement of the communication overlap as
a preliminary work for a dynamic scheduler. Finally, a dynamic scheduler is
described and evaluated on the PaStiX solver for various test cases.

2 Experimental platforms and test cases

Two NUMA (Non Uniform Memory Access) and one SMP (Symmetric Multi-
Processor) platforms have been used in this work :

❼ The first NUMA platform, see Figure 1(a), denoted as “NUMA8” in
the remaining of this paper, is a cluster of ten nodes interconnected
by an Infiniband network. Each node is made of four Dual-Core AMD
Opteron(tm) processors interconnected by HyperTransport. The system
memory amounts to 4GB per core giving a total of 32GB.

RR n➦ 7498
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(a) NUMA8 : four dual-
core opteron

(b) NUMA16 : eight
dual-core opterons

(c) SMP16 : 4× 4 Power5

Figure 1: Architectures used for benchmarks

❼ The second NUMA architecture, see Figure 1(b), called “NUMA16”, is a
single node of eight Dual-Core AMD Opteron(tm) processors with 64GB
of memory.

❼ The SMP platform is a cluster of six IBM p575 nodes, see Figure 1(c),
called “SMP16”. These nodes are interconnected by an IBM Federation
network. Four blocks of four Power5 with 8GB are installed in each node.
However, the memory available is limited to 28GB by the system.

Tests on NUMA effects have been performed on the three platforms and tests
on communications have been performed on the IBM Federation network and
on the Infiniband network with respectively the IBM MPI implementation and
Mvapich2 that support the MPI THREAD MULTIPLE threading model.

Our research targeted the parallel sparse direct solver PaStiX which uses a
hybrid MPI-Threads implementation. Improvements made on the solver have
been tested on a set of eight matrices described in the Table 1. All matrices are
double precision real matrices with the exception of the last one (HALTERE )

RR n➦ 7498
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Name Columns NNZA NNZL OPC
MATR5 485 597 24 233 141 1 361 345 320 9.84422e+12
AUDI 943 695 39 297 771 1 144 414 764 5.25815e+12
NICE20 715 923 28 066 527 1 050 576 453 5.19123e+12
INLINE 503 712 18 660 027 158 830 261 1.41273e+11
NICE25 140 662 2 914 634 51 133 109 5.26701e+10
MCHLNF 49 800 4 136 484 45 708 190 4.79105e+10
THREAD 29 736 2 249 892 25 370 568 4.45729e+10
HALTERE 1 288 825 10 476 775 405 822 545 7.62074e+11
NNZA is the number of off-diagonal terms in the triangular part of the matrix A,

NNZL is the number of off-diagonal terms in the factorized matrix L and OPC is

the number of operations required for the factorization.

Table 1: Matrices used for experiments

which is a double precision complex matrix. MATR5 is an unsymmetric matrix
(with a symmetric pattern).

3 NUMA-aware allocation

Modern multi-processing architectures are commonly based on shared memory
systems with a NUMA behavior. These computers are composed of several
chip-sets including one or several cores associated to a memory bank. The
chipset are linked together with a cache-coherent interconnection system. Such
an architecture implies hierarchical memory access times from a given core to
the different memory banks. This architecture also possibly incurs different
bandwidths following the respective location of a given core and the location
of the data sets that this core is using [2, 9]. It is thus important on such
platforms to take these processor/memory locality effects into account when
allocating resources. Modern operating systems commonly provide some API
dedicated to NUMA architectures which allow programmers to control where
threads are executed and memory is allocated. These interfaces have been used
in the following part to exhibit NUMA effects on our three architectures. The
first one studies different placement combinations of threads and memory. The
second one studies a more realistic case where all cores are simultaneously used.
Finally, we present some results on our solver where such programming interface
is used.

3.1 Data placement on NUMA architectures

To measure the NUMA effects of our architectures on BLAS routines, we use a
test program which makes 2500 calls to daxpy and dgemm routines on a set of
vectors and matrices: their sizes are respectively 128 and 128x128. Vectors and
matrices used by BLAS calls are allocated on one core while the calling thread
is bound to another core thanks to sched affinity and thread policy set

functions (for respectively LINUX and AIX systems) . The memory allocation
scheme follows the first touch rule of the system.

The following results have been obtained on the quad-dual-core opteron ar-
chitecture NUMA8. The time recorded for each combination of a thread location
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accessing its data at a specific memory location are given in Table 2 for BLAS1
tests and in Table 3 for BLAS3 tests. The results are normalized by the comput-
ing time of the favorable case where the computation thread and the memory
are located on the same core.

Computational thread location
0 1 2 3 4 5 6 7

D
a
ta

lo
ca
ti
o
n

0 1.00 1.34 1.31 1.57 1.00 1.34 1.31 1.57
1 1.33 1.00 1.57 1.31 1.33 1.00 1.57 1.31
2 1.28 1.57 1.00 1.33 1.29 1.57 1.00 1.32
3 1.56 1.32 1.34 1.00 1.56 1.31 1.33 0.99

4 1.00 1.34 1.31 1.57 1.00 1.34 1.30 1.58
5 1.33 1.00 1.58 1.30 1.33 1.00 1.57 1.30
6 1.29 1.57 1.00 1.33 1.29 1.57 1.00 1.32
7 1.57 1.32 1.33 1.00 1.57 1.32 1.35 1.00

Table 2: Influence of data placement on dAXPY on NUMA8

Computational thread location
0 1 2 3 4 5 6 7

D
at
a
lo
ca
ti
on

0 1.00 1.04 1.04 1.07 1.00 1.04 1.04 1.07
1 1.04 1.00 1.07 1.04 1.04 1.00 1.08 1.04
2 1.04 1.07 1.00 1.04 1.04 1.07 1.00 1.04
3 1.08 1.04 1.04 1.00 1.07 1.04 1.05 1.00

4 1.00 1.04 1.04 1.07 1.00 1.04 1.04 1.07
5 1.05 1.00 1.08 1.04 1.05 1.00 1.08 1.04
6 1.04 1.07 1.00 1.05 1.04 1.07 1.00 1.04
7 1.08 1.04 1.05 1.00 1.08 1.04 1.05 1.00

Table 3: Influence of data placement on dGEMM on NUMA8

BLAS1 computations in Table 2 are limited by the bandwidth of memory
bus and allow to deduce NUMA coefficients for this machine. The NUMA factor
identified is about 1.3 for a single jump and 1.58 for two jumps on interconnec-
tion link. The results also confirm the presence of a shared memory bank for
each chip of two cores as described on Figure 1(a). These coefficients depend on
the architecture. For example, on the octo dual-cores opteron NUMA16, NUMA
factor varies between 1.1 and 2.1 for one to four jumps. On the contrary, for the
Power5 architecture SMP16, computation times are mostly independent from
the dataset location.

It is therefore important to take into account data-sets location. It is espe-
cially true for computations which do not reuse data as BLAS routines of level
1 and where data transfer is the bottleneck. In this case, effects can quickly
become expensive. However, HPC applications concentrate most calculations
in BLAS routines of level 3. One can observe on Table 3 that there is always
a significant factor which depends on the data distance. Thus, on the NUMA8
architecture, there is a coefficient of 1.04 for a single jump and 1.08 for 2 jumps.
This factor increases up to 1.20 on architecture NUMA16 for 4 jumps. As ex-
pected, the memory location does not influence the computation times on the

RR n➦ 7498
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SMP16 architecture.

In summary, this study highlights the need to take into account possible
NUMA effects during the memory allocation in threaded applications. Ap-
plications usually have a sequential initialization step that allocates and fills
data-sets. The main point here is to delay these operations to the threads used
for computations. Each thread needs to allocate and fills its own memory to
benefit from the default first touch algorithm. However, this does not reflect
reality because usually one wishes to use all the resources and not just one
core per node. Thus, the next part will study NUMA effects with contention
problems on a completely loaded computer.

3.2 Contention on NUMA architectures

This second study points out contention effects on NUMA architectures. Our
test program creates as many threads as computational cores available on the
node. Each thread is bound to a dedicated core and computes a set of 2500
vectors additions or matrices multiplications, as in the previous study. The
objective of these experiments is to measure the effect of contention on the
computations (see Figure 2). For each case, three methods are used to allocate
memory :

❼ On first core : all memory is allocated by the thread bound on the first
core.

❼ Good location : each thread allocates its own data-sets.

❼ Worst location : memory is allocated with the worse location for each
thread following the previous study. In practice, each thread t allocates
data-sets for the thread n − t, where n is the number of cores for the
architecture.

The last curve (No contention) represents the computational time for each core
in the best case of the previous study (computations and data-sets on the same
core) when there is no contention.

The results focus on the average execution time on each core of daxpy and
dgemm functions on the three architectures. The curves are the average time
of computations on all cores. All experiments are normalized with respect to
the best case where each thread allocates and initializes its own memory. All
results exhibit NUMA factors, with even bigger values for cases with contention.
A factor of 1.7 to 2.8 can be observed on the NUMA8 architecture on BLAS
routines of level 1, and from 1 to 2.3 on the NUMA16 architecture. On NUMA16
architecture, execution times are less regular over the different cores than on
NUMA8 architecture, in the case of the worst placement. The system seems to
give priority to threads close to the memory, rather than give an uniform access
times to each one. Typically, an application designed with an initialization step
that allocates memory before launching computational threads may suffer a
great penalty on the execution time. In the same way, if the programmer relies
on the system to allocate memory with a round-robin policy, the overhead could
be significant.

RR n➦ 7498
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(a) dAXPY on NUMA8 architecture (b) dGEMM on NUMA8 architecture

(c) dAXPY on NUMA16 architecture (d) dGEMM on NUMA16 architecture

(e) dAXPY on SMP16 architecture (f) dGEMM on SMP16 architecture

Figure 2: Influence of contention on three platforms

For BLAS routines of level 3, the gain is less significant since cache effet hides
a large part of the data access. As expected, the tests on SMP architecture give
homogeneous access to memory.

3.3 Results on PaStiX solver

The hybrid MPI/thread version of the PaStiX solver already uses a function
to bind threads on cores for different systems (LINUX, AIX, MacOS, . . . ).
However, in its initial version, PaStiX does not take into account NUMA effects
in memory allocation. The initialization step allocates all structures needed by
computations and especially the part of the matrix computed on the node,
and fills it with local coefficients provided by the user. After this step, as
many threads as cores are created to compute the numerical factorization (eight

RR n➦ 7498
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(a) Localization of new NUMA-aware allocation in the matrix

(b) Initial allocation (c) New NUMA-aware allocation

Figure 3: NUMA-aware allocation

threads for NUMA8 platform and sixteen threads for NUMA16 and SMP16
clusters). The problem is therefore that all data-sets are allocated close to the
core where the initialization steps has occurred. Memory allocation is not evenly
spread on the node and access times are thus not optimal (see Figure 3(b)).

In the new version of PaStiX, data structures have been modified to allow
each thread to allocate and to fill its part of the matrix as shown in Figure 3(a).
This example shows the allocation repartition on each process and on each
thread of each process. The memory is better spread over the nodes as shown in
Figure 3(c) and thus allows to obtain the best memory access as seen previously.
Moreover, thanks to the method used to predict the static scheduling [5, 6],
access to remote data is restrained, as well as in the results presented in [11].

Matrix
NUMA8 NUMA16 SMP16

Global Local Global Local Global Local
MATR5 437 410 527 341 162 161
AUDI 256 217 243 185 101 100
NICE20 227 204 204 168 91.40 91
INLINE 9.70 7.31 20.90 15.80 5.80 5.63
NICE25 3.28 2.62 6.28 4.99 2.07 1.97
MCHLNF 3.13 2.41 5.31 3.27 1.96 1.88
THREAD 2.48 2.16 4.38 2.17 1.18 1.15
HALTERE 134 136 103 93 48.40 47.90

Table 4: Influence of NUMA-aware allocation on numerical factorization of
PaStiX solver (in seconds)

Table 4 highlights the influence of NUMA-aware allocation on the factor-
ization time on the different platforms. The Global columns are the times for
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the numerical factorization in the initial version of PaStiX with a global al-
location performed during the initialization step. The Local columns are the
factorization times with the new NUMA-aware allocation: the columns-blocks
are allocated locally by the thread which factorizes them. A gain of 5% to
15% is observed on the NUMA8 architecture on all the matrices (except for the
complex test case where there is no improvement). The gains on the NUMA16
platform are of 10% to 35% even with the complex test case. And, as expected,
the SMP16 architecture shows no meaningful improvement.

Finally, results on a high performance application confirm the outcome of
the benchmarks realized previously about the importance of taking into account
the locality of memory on NUMA architectures. This could indeed significantly
improves the execution time of algorithms with potentially huge memory re-
quirements. And as shown by the last results, these effects increase with the
size of the platforms used.

4 Communication Overlap

In large distributed applications, communications are often a critical limit to the
scalability and programmers try to overlap them by computations. Often, this
consists in using asynchronous communications to give the MPI implementation
the opportunity to transfer data on the network while the application performs
computations. Unfortunately, not all implementations make the asynchronous
communications progress efficiently. It is especially true when messages reach
the rendezvous threshold. A non-overlapped rendezvous forces a computing
thread to delay the data exchange until a call to MPI Wait or MPI Test.

To avoid this problem, we try to let communications progress thanks to one
dedicated thread, following the tasklet mechanism used for instance in the PI-

OMan library implementation [14]. Moreover, in the perspective of a dynamic
scheduling, it is important to receive data as soon as possible to release new
tasks and provide more possibilities to choose the next task to compute.

The Gantt diagrams, presented at the end of the paper highlights these re-
sults (see Figures 6(b) and 6(a)). In the initial version, each thread manages its
own communications using asynchronous mode. The time for a communication
(white arrow) is significantly decreased thanks to a dedicated thread compared
to the diagram of the initial version. A substantial overlap, obtained with the
dedicated communication thread method, allows to reach better performances
on factorization time as we can see on Table 7 (between the versions V0 and
V1).

Another interesting question is to find how many threads should be dedi-
cated to communication when several network cards are available in the platform
nodes. For instance, two network cards per node are available in the SMP16
clusters. We study the impact of adding one more thread dedicated to commu-
nications on the PaStiX solver (see Table 5).

The results show that even with a small number of computation threads, hav-
ing two threads dedicated to communication is not useful. The performances
are quite similar for small numbers of MPI process but decrease significantly for
8 MPI process. We can conclude that this MPI implementation already makes
a good use of the two network cards. Adding one more thread to stress MPI is

RR n➦ 7498
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Nb.
Node

Nb.
Thread

AUDI MATR5
Initial 1 ThCcom 2 ThCom Initial 1 ThCom 2 ThCom

2

1 684 670 672 1120 1090 1100
2 388 352 354 594 556 558
4 195 179 180 299 279 280
8 100 91.9 92.4 158 147 147

16 60.4 56.1 56.1 113 88.3 87.4

4

1 381 353 353 596 559 568
2 191 179 180 304 283 284
4 102 91.2 94.2 161 148 150
8 55.5 48.3 54.9 98.2 81.2 87.3
16 33.7 32.2 32.5 59.3 56.6 56

8

1 195 179 183 316 290 300
2 102 90.7 94 187 153 164
4 56.4 47.1 50.7 93.7 78.8 101
8 31.6 27.6 32.4 58.4 50 58.7
16 21.7 20.4 32.3 49.3 41.6 43.5

Table 5: Impact of dedicated threads for communications on numerical factor-
ization (in seconds) on SMP16

not a good solution. This result is not surprising since the article [12] highlights
the bad performance of the IBM MPI implementation in multi-threaded mode
compared to the single thread mode.

In the remaining of this paper, we choose to dedicate a single thread to
manage communications.

5 Dynamic scheduling for NUMA architecture

We now present our works on the conception and on the implementation of a
dynamic scheduler for applications which have a tree shaped dependency graph,
such as sparse direct solvers, which are based on an elimination tree (see Fig-
ure 4(a)). In the following of this paper, Tnode will denote a node of the
elimination tree, and we will call Cnode a node of the cluster architecture used
for computations. Each Tnode corresponds to a column block to factorize and
needs the updates from its descendants. In the case of a right-looking version of
the standard Cholesky algorithm, it is possible to compute a dynamic schedul-
ing on a such structure. When a Tnode of the tree is computed, it sends its
contributions to different Tnodes upper in the tree and is able to know if a
Tnode is ready to be computed or not. Hence, a simple list of ready tasks is
the only data structure we need to design a dynamic algorithm.

However, Section 3 highlighted the problem of NUMA effects on memory
allocation. The main problem here is to find a way to preserve memory affinity
between the threads that look for a task and the location of the associated data
during the dynamic scheduling. The advantage of such an elimination tree is
that contributions stay close in the path to the root. Thus, to preserve memory
affinity, we need to assign to each thread a contiguous part of the tree and lead
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a work stealing algorithm which could takes into account NUMA effects.

Finally, there are two steps in proposed solution. The first one distributes
efficiently data among all the Cnodes of the cluster. The second one builds a
NUMA-aware dynamic scheduling on the local tasks mapped on each Cnodes.

We will now focus on the direct sparse linear solver PaStiX, which is our
target application for this work. We summarize some details about the imple-
mentation of this solver and its static scheduling. Then we present the changes
to develop a dynamic scheduling.

5.1 Sparse direct solver and static scheduling

In order to achieve efficient parallel sparse factorization, three preprocessing
phases are commonly required in direct sparse solvers :

❼ The ordering phase, which computes a symmetric permutation of the ini-
tial matrix A such that factorization will exhibit as much concurrency as
possible while incurring low fill-in.

❼ The block symbolic factorization phase, which determines the block data
structure of the factored matrix L associated with the partition result-
ing from the ordering phase. This structure consists in N column blocks,
each of them containing a dense symmetric diagonal block and a set of
dense rectangular off-diagonal blocks. From this block structure of L, one
can deduce the weighted elimination quotient graph that describes all de-
pendencies between column blocks, as well as the super-nodal elimination
tree.

❼ The block repartitioning and scheduling phase, which refines the previous
partition by splitting large supernodes in order to exploit concurrency
within dense block computations, and maps resulting blocks onto the pro-
cessors of the target architecture.

In this work, we focus on the last preprocessing phase of the PaStiX solver,
detailed in [5], that computes a scheduling used during the numerical factoriza-
tion phase. To build a static scheduling, first, a proportionnal mapping algo-
rithm is applied on the processors of the target architecture. A BLAS2 and/or
BLAS3 time model gives weights for each column block in the elimination tree.
Then, a recursive top-down algorithm over the tree assigns a set of candidate
processors to each Tnode (see Figure 4(a)). Processors chosen to compute a
column block are assigned to its sons proportionally to the cost of each son and
to the computations already affected to each candidate. It is possible to map
the same processor on two different branches to balance the computations on
all available resources. The last step corresponds to the data distribution over
the Cnodes. A simulation of the numerical factorization is performed thanks to
an additional time model for communications. Thus, all tasks are mapped on
one of its candidates processors. Beforehand, tasks are sorted by priority based
on the cost of the critical path in the elimination tree. Then a greedy algorithm
distributes tasks onto the candidates able to compute it the soonest. We obtain
a vector of local tasks fully ordered by priority for each processor.

This static scheduling gives very good results on most platforms. However
we want to implement a dynamic scheduler at least as efficient as the static one,
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(a) First proportional mapping

(b) Second proportional mapping

Figure 4: Proportional mapping in elimination tree for static and dynamic
scheduler.

more suitable for NUMA or heterogeneous architectures. The objective is to
reduce some observed idle times due to approximations in our time cost models,
especially when communications have to be estimated. This can be highlighted
on the Figure 6(a). The other main objective is to preserve memory affinity and
locality particularly on architectures with a large number of cores. Our static
scheduling can be naturally adapted since all threads are bound on a processor
and data associated to the distributed tasks are allocated close to it.

5.2 Dynamic scheduling over an elimination tree

The dynamic scheduling expected has to dispatch tasks over the available threads
on a same Cnode but does not have to re-assign tasks between them. The first
step of our new algorithm is thus the same as in the static one: apply a pro-
portional mapping of the elimination tree over the Cnodes and simulate the
numerical factorization to distribute data. The simulation is based on the same
cost models with all the processors or cores available in the system.

Once we have apply the first proportional mapping, each Cnode owns a set
of subtrees of the initial elimination tree as in Figure 4(b). These subtrees are
refined with a smaller block size to obtain fine grain parallelism. Then, a second
proportional mapping is done on them based with the local number of available
processors. In that case, we do not allow a thread to be candidate for two
different subtrees to ensure memory affinity between tasks affected to each one.
This provides a tree with a list of fully ordered tasks where a set of candidate
threads is mapped on each node as shown in Figure 5.

RR n➦ 7498
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Figure 5: Work stealing algorithm

In the following, the nodes of the tree used for the work stealing algorithm
will be called Snodes. A set of candidate threads assigned to each Snode is a
subset of the candidate threads assigned to the father of this Snode.

This tree, denoted by T , of task queues qn (where n is a Snode) has as
many leaves as threads required to factorize the matrix. At runtime, as well
as in the static version, threads are bound on one dedicated core in the order
of a breadth-first search to ensure that closer threads will be in the same sets.
During the numerical factorization, the threads will have to compute mainly the
tasks which belongs to Snodes from their critical path on T . Thus, tasks in the
queues qn associated with the leaves of T are allocated by the only thread that
is allow to compute them. Memory affinity is then preserved for the main part
of the column blocks. However, we also have to allocate data associated with
remaining tasks in Snodes which are not leaves. A set of threads are able to
compute them. We choose, in the current implementation, to use a round-robin
algorithm on the set of candidates to allocate those column blocks. Data alloca-
tion is then not optimal, but, if the cores are numbered correctly, this allocation
reflects the physical mapping of cores inside a Cnode. It is important to notice
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(a) Static scheduling

(b) Dynamic scheduling using a two ways of stealing method

Figure 6: Gantt diagrams for the MATR5 test case on NUMA8 with 4 MPI pro-
cess of 4 threads. Idle time is represented by black blocks and communications
by white arrows.

that two cores with two successive id are not always closed on the architecture.

The Gantt diagrams in Figures 6 correspond to the execution for theMATR5
test case (see Table 1) on the NUMA8 architecture. Jobs are executed on
4 MPI process of 4 threads and the diagram focuses on the activity of each
core (one thread per line). The second diagram presents one more line per
node corresponding to the communication thread. Each color corresponds to a
level in the elimination tree (ie one color corresponds to one set of candidate
processors) and black blocks highlight idle-times.

Once a thread t has no more jobs in its set of ready tasks qt, it steals jobs in
the queues of its critical path as described by the filled red arrows in Figure 5.
Thus, we ensure that each thread works only on a subtree of the elimination tree
and on some column blocks of its critical path. This ensures a good memory
affinity and improves performances in the upper levels of the tree T especially
when several threads are available.

However, there still remain idle times during the execution of the lower part
of the tree T (mainly due to approximations of our cost models). Performances
are improved using a two ways of stealing method (see Figure 6(b)). Once a
thread has no more ready tasks in its critical path, it tries to steal a task in the
sons of the Snodes that belong to its critical path as described by the dotted
blue arrows on the Figure 5.

5.3 Results on PaStiX solver

This section resumes the results obtained with the improved algorithms imple-
mented in the PaStiX solver and especially about the dynamic scheduler. The
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Table 6 highlights the improvements on the solver inside a single Cnode. All test
cases are run using eight threads for NUMA8 platform and sixteen threads for
NUMA16 and SMP16 clusters. The column V0 (respectively V1) presents the
factorization time obtained with the initial version without the NUMA-aware
allocation (respectively with the NUMA-aware allocation). The third column
gives the results with the NUMA-aware allocation and with the dynamic sched-
uler using the two ways of stealing method.

Firstly, we observe that results are globally improved for all the test cases and
for all the architectures when the dynamic scheduler is enabled. However, in few
cases, factorization time obtained with the dynamic scheduling can be less effi-
cient than with the static one. This is mainly due to the round-robin algorithm
used to allocate data in the upper levels of the elimination tree. Secondly, the
results presented on the SMP16 platforms show that the dynamic scheduler can
improve performances and thus, confirm that problems on NUMA architecture
are mainly due to weakness in memory location.

Matrix
NUMA8 NUMA16 SMP16

V0 V1 V2 V0 V1 V2 V0 V1 V2
MATR5 437 410 389 527 341 321 162 161 150

AUDI 256 217 210 243 185 176 101 100 100

NICE20 227 204 227 204 168 162 91.40 91 90.30

INLINE 9.70 7.31 7.32 20.90 15.80 14.20 5.80 5.63 5.87
NICE25 3.28 2.62 2.82 6.28 4.99 5.25 2.07 1.97 1.90

MCHLNF 3.13 2.41 2.42 5.31 3.27 2.90 1.96 1.88 1.75

THREAD 2.48 2.16 2.05 4.38 2.17 2.03 1.18 1.15 1.06

HALTERE 134 136 129 103 93 94.80 48.40 47.90 47.40

Table 6: Comparaison of numerical factorization time in seconds on three versions of
PaStiX solver. V0 is the initial version with static scheduling and without NUMA-
aware allocation. V1 is the version with NUMA-aware allocation and static scheduling.
V2 is the version with NUMA-aware allocation and dynamic scheduling.

The Table 7 presents results of the dynamic scheduler with multiple MPI
process on NUMA8 and SMP16 platforms. All version have enable the NUMA-
aware allocation. Once again, all test cases are run using, for each MPI process,
eight threads for NUMA8 platform and sixteen threads for SMP16 clusters. The
first version V0 does not use a dedicated thread for communications contrary to
the two others versions, and the third version V2 uses the dynamic scheduler.

Nb.
Node

NUMA8 SMP16
AUDI MATR5 AUDI MATR5

V0 V1 V2 V0 V1 V2 V0 V1 V2 V0 V1 V2
1 217 - 210 410 - 389 100 - 100 161 - 150

2 142 111 111 212 208 200 60.4 56.1 56.8 113 88.3 87

4 69 60.5 57.7 171 121 114 33.7 32.2 32.6 59.3 56.6 54.6

8 45.3 37.2 35.6 117 82.7 78.8

Table 7: Comparaison of numerical factorization time in seconds of PaStiX solver with several
MPI process. The three versions (V0, V1 and V2) have the NUMA-aware allocation enabled.
V0 uses the initial communication model with static scheduling. V1 uses one thread dedicated
to communications with static scheduling. V2 uses one thread dedicated to communications
with dynamic scheduling.
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As seen in section 4, using a thread dedicated to communications improves
performances and using the dynamic scheduler still reduce the factorization
time. The first improvement allows a better communications/computations
overlap and the second improvement allows better reactivity to exploit incom-
ing contributions from other MPI process. Results are more significant with the
unsymmetric matrix MATR5, that generates more communications, than with
symmetric matrices.

The improvements are mainly due to communications overlap and the gain
obtained with the dynamic scheduler is about 5% on the factorization time.
Even if our dynamic scheduler is perfectible, it already improves the hybrid
MPI-thread version of the PaStiX solver for all the platforms.

6 Conclusion

The NUMA-aware allocation implemented in the PaStiX solver gives very good
results and can be easily adapted to many applications. This points out that
it is important to take care of memory allocation during the initialization steps
when using threads on NUMA architectures.

Splitting communication and computational tasks also achieves some im-
provements in connection with the communication/computation overlap in the
PaStiX solver. Future works on this subject is related to the PIOMan li-
brary [14]. Such additional overlapping technique needs to be evaluated in the
context of parallel sparse solvers. In the same time, we have to release some
remaining constraints concerning the scheduling of communications by using
the NewMadeleine library [3].

The dynamic scheduler gives encouraging results since we already improved
the execution time for different test cases on platforms having or not a NUMA
factor. The work stealing algorithm is perfectible. Firstly, it is possible to store
informations about data locations to lead the steal in the upper levels of the
elimination tree. Secondly, memory can be migrated closer to a thread, but such
migration can be expensive and so needs to be controlled. We now plan to test
the Marcel bubble scheduler [13] to still improve performances in the context
of applications based on a tree shaped dependency graph. Different threads and
their datasets will be grouped in a bubble and bound to a part of the target
architecture.

Finally, we are adapting the dynamic scheduler to the new Out-of-Core ver-
sion of the PaStiX solver. New difficulties arise, related to the scheduling and
the management of the computational tasks, since processors may be slowed
down by I/O operations. Thus, we will have to design and study specific al-
gorithms for this particular context by extending our work on scheduling for
heterogeneous platforms.
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