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ABSTRACT
SHapley Additive exPlanation (SHAP) values (Lundberg & Lee, 2017) provide a game
theoretic interpretation of the predictions of machine learning models based
on Shapley values (Shapley, 1953). While exact calculation of SHAP values is
computationally intractable in general, a recursive polynomial-time algorithm called
TreeShap (Lundberg et al., 2020) is available for decision tree models. However,
despite its polynomial time complexity, TreeShap can become a significant
bottleneck in practical machine learning pipelines when applied to large decision tree
ensembles. Unfortunately, the complicated TreeShap algorithm is difficult to map to
hardware accelerators such as GPUs. In this work, we present GPUTreeShap, a
reformulated TreeShap algorithm suitable for massively parallel computation on
graphics processing units. Our approach first preprocesses each decision tree to
isolate variable sized sub-problems from the original recursive algorithm, then solves
a bin packing problem, and finally maps sub-problems to single-instruction,
multiple-thread (SIMT) tasks for parallel execution with specialised hardware
instructions. With a single NVIDIA Tesla V100-32 GPU, we achieve speedups of up
to 19× for SHAP values, and speedups of up to 340× for SHAP interaction values,
over a state-of-the-art multi-core CPU implementation executed on two 20-core
Xeon E5-2698 v4 2.2 GHz CPUs. We also experiment with multi-GPU computing
using eight V100 GPUs, demonstrating throughput of 1.2 M rows per second—
equivalent CPU-based performance is estimated to require 6850 CPU cores.

Subjects Algorithms and Analysis of Algorithms, Data Mining andMachine Learning, Distributed
and Parallel Computing
Keywords Shapley values, GPU computing, Interpretability

INTRODUCTION
Explainability and accountability are important for practical applications of machine
learning, but the interpretation of complex models with state-of-the-art accuracy such as
neural networks or decision tree ensembles obtained using gradient boosting is
challenging. Recent literature (Ribeiro, Singh & Guestrin, 2016; Selvaraju et al., 2017;
Guidotti et al., 2018) describes methods for “local interpretability” of these models,
enabling the attribution of predictions for individual examples to component features. One
such method calculates so-called SHapley Additive exPlanation (SHAP) values quantifying
the contribution of each feature to a prediction. In contrast to other methods, SHAP
values exhibit several unique properties that appear to agree with human intuition

How to cite this article Mitchell R, Frank E, Holmes G. 2022. GPUTreeShap: massively parallel exact calculation of SHAP scores for tree
ensembles. PeerJ Comput. Sci. 8:e880 DOI 10.7717/peerj-cs.880

Submitted 4 November 2021
Accepted 18 January 2022
Published 5 April 2022

Corresponding author
Rory Mitchell,
ramitchellnz@gmail.com

Academic editor
Alberto Cano

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.880

Copyright
2022 Mitchell et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.880
mailto:ramitchellnz@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.880
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


(Lundberg et al., 2020). Although exact calculation of SHAP values generally takes
exponential time, the special structure of decision trees admits a polynomial-time
algorithm. This algorithm, implemented alongside state-of-the-art gradient boosting
libraries such as XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017), enables
complex decision tree ensembles with state-of-the-art performance to also output
interpretable predictions.

However, despite improvements to algorithmic complexity and software
implementation, computing SHAP values from tree ensembles remains a computational
concern for practitioners, particularly as model size or size of test data increases:
generating SHAP values can be more time-consuming than training the model itself. We
address this problem by reformulating the recursive TreeShap algorithm, taking advantage
of parallelism and increased computational throughput available on modern GPUs.
We provide an open source module named GPUTreeShap implementing a high
throughput variant of this algorithm using NVIDIA’s CUDA platform. GPUTreeShap is
integrated as a backend to the XGBoost library, providing significant improvements to
runtime over its existing multicore CPU-based implementation.

BACKGROUND
In this section, we briefly review the definition of SHAP values for individual features and
the TreeShap algorithm for computing these values from decision tree models. We also
review an extension of SHAP values to second-order interaction effects between features.

SHAP values
SHAP values are defined as the coefficients of the following additive surrogate explanation
model g, a linear function of binary variables

gðz0Þ ¼ f0 þ
XM

i¼1
fiz
0
i (1)

where M is the number of features, z′∈{0, 1}M, and fi 2 R. zi′ indicates the presence of
a given feature and ϕi its relative contribution to the model output. The surrogate model g
(z′) is a local explanation of a prediction f(x) generated by the model for a feature vector x,
meaning that a unique explanatory model may be generated for any given x. SHAP
values are defined by the following expression:

fi ¼
X

S�Mnfig

jSj!ðjMj � jSj � 1Þ!
jMj! ½fS[figðxÞ � fSðxÞ� (2)

where M is the set of all features and fS(x) describes the model output restricted to feature
subset S. Equation (2) considers all possible subsets, and so has runtime exponential in the
number of features.

We consider models that are decision trees with binary splits. Given a trained decision
tree model f and data instance x, it is not necessarily clear how to restrict model output f(x)
to feature subset S—when feature j is not present in subset S along a given branch of
the tree, and a split condition testing j is encountered, then how do we choose which path
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to follow to obtain a prediction for x? Lundberg et al. (2020) define a conditional
expectation for the decision tree model E[f(x)|xS], where the split condition on feature j is
represented by a Bernoulli random variable with distribution estimated from the training
set used to build the model. In effect, when a decision tree branch is encountered, and
the feature to be tested is not in the active subset S, we take the output of both the left and
right branch. More specifically, we use the proportion of weighted instances that flow
down the left or right branch during model training as the estimated probabilities for the
Bernoulli variable. This process is also how the C4.5 decision tree learner deals with
missing values (Quinlan, 1993). It is referred to as “cover weighting” in what follows.

Given this interpretation of missing features, Lundberg et al. (2020) give a polynomial-
time algorithm for efficiently solving Eq. (2), named TreeShap. The algorithm exploits the
specific structure of decision trees: the model is additive in the contribution of each
leaf. Equation (2) can thus be independently evaluated for each unique path from root to
leaf node. These unique paths are then processed using a quadratic-time dynamic
programming algorithm. The intuition of the algorithm is to keep track of the proportion
of all feature subsets that flow down each branch of the tree, weighted according to the
length of each subset |S|, as well as the proportion that flow down the left and right
branches when the feature is missing.

We reproduce the recursive polynomial-time TreeSHAP algorithm as presented in
Lundberg et al. (2020) in Algorithm 1, where m is a list representing the path of unique
features split on so far. Each list element has four attributes: d is the feature index, z is the
fraction of paths that flow through the current branch when the feature is not present,
o is the corresponding fraction when the feature is present, and w is the proportion of
feature subsets of a given cardinality that are present. The decision tree is represented by
the set of lists {v, a, b, t, r, d}, where each list element corresponds to a given tree node,
with v containing leaf values, a pointers to the left children, b pointers to the right children,
t the split condition, r the weights of training instances, and d the feature indices. The
FINDFIRST function returns the index of the first occurrence of a feature in the listm, or a
null value if the feature does not occur.

At a high level, the algorithm proceeds by stepping through a path in the decision tree of
depth D from root to leaf. According to Eq. (2), we have a different weighting for the size
of each feature subset, although we can accumulate feature subsets of the same size
together. As the algorithm advances down the tree, it calls the method EXTEND, taking a
new feature split and accumulating its effect on all possible feature subsets of length
1; 2; . . . up to the current depth. The UNWIND method is used to undo addition of a
feature that has been added to the path via EXTEND. UNWIND and EXTEND are
commutative and can be called in any order. UNWIND may be used to remove duplicate
feature occurrences from the path and to compute the final SHAP values. When the
recursion reaches a leaf, the SHAP values ϕi for each feature present in the path are
computed by calling UNWIND on feature i (line 7), temporarily removing it from the
path; then, the overall effect of switching that feature on or off is adjusted by adding the
appropriate term to ϕi.
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Algorithm 1 TreeShap.

1: function TS(x, tree)

2: ϕ = array of len(x) zeroes

3: function RECURSE(j, m, pz, po, pi)

4: m = EXTEND(m, pz, po, pi)

5: if vj == leaf then

6: for i 2 to len(m) do

7: w = sum(UNWIND(m, i).w)

8: fmi:d ¼ fmi :d þ wðmi:o�mi:zÞvj
9: else

10: h; c ¼ xdj � tj?ðaj; bjÞ : ðbj; ajÞ
11: iz = io = 1

12: k = FINDFIRST(m.d, dj)

13: if k ≠ nothing then

14: iz, io = (mk.z, mk.o)

15: m = UNWIND(m, k)

16: RECURSE(h, m, izrh/rj, io, dj)

17: RECURSE(c, m, izrc/rj, 0, dj)

18: function EXTEND(m, pz, po, pi)

19: l = len(m)

20: m = copy(m) {m is copied so recursions down other branches are not affected.}

21: ml+1.(d, z, o, w) = (pi, pz, po, l = 0 ? 1 : 0)

22: for i l to 1 do

23: mi+1.w = mi+1.w + po ⋅ mi.w ⋅ i/(l + 1)

24: mi.w = pz ⋅ mi.w ⋅ (l + 1 − i)/(l + 1)

25: return m

26: function UNWIND(m, i)

27: l = len(m)

28: n = ml.w

29: m = copy(m1⋯l−1)

30: for j l � 1 to 1 do

31: if mi.o ≠ 0 then

32: t = mj.w

33: mj.w = n ⋅ l/(j ⋅ mi.o)

34: n = t − mj.w ⋅ mi.z ⋅ (l − j)/l

35: else

36: mj.w = (mj.w ⋅ l)/(mi.z ⋅ (l − j))

37: for j i to l − 1 do
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Given an ensemble of T decision trees, Algorithm 1 has time complexityO(TLD2), using
memory O(D2 + M), where L is the maximum number of leaves for each tree, D is the
maximum tree depth, andM the number of features (Lundberg et al., 2020). In this paper,
we reformulate Algorithm 1 for massively parallel GPUs.

SHAP interaction values
In addition to the first-order feature relevance metric defined above, Lundberg et al. (2020)
also provide an extension of SHAP values to second-order relationships between features,
termed SHAP Interaction Values. This method applies the game-theoretic SHAP
interaction index (Fujimoto, Kojadinovic & Marichal, 2006), defining a matrix of
interactions as

fi;j ¼
X

S�Mnfi;jg

jSj!ðM � jSj � 2Þ!
2ðM � 1Þ! rijðSÞ (3)

for i ≠ j, where

rijðSÞ ¼ fS[fi;jgðxÞ � fS[figðxÞ � fS[fjgðxÞ þ fSðxÞ (4)

¼ fS[fi;jgðxÞ � fS[fjgðxÞ � ½fS[figðxÞ � fSðxÞ� (5)

with diagonals

fi;i ¼ fi �
X

j 6¼i
fi;j: (6)

Interaction values can be efficiently computed by connecting Eqs. (5) to (2), for which
we have the polynomial time TreeShap algorithm. To compute ϕi,j, TreeShap should be
evaluated twice for ϕi, where feature j is alternately considered fixed to present and not
present in the model. To evaluate TreeShap for a unique path conditioning on j, the path is
extended as normal, but if feature j is encountered, it is not included in the path (the
dynamic programming solution is not extended with this feature, instead skipping to
the next feature). If j is considered not present, the resulting ϕi is weighted according to the
probability of taking the left or right branch (cover weighting) at a split on feature j. If j
is considered present, we evaluate the decision tree split condition xj < tj and discard ϕi
from the path not taken.

To compute interaction values for all pairs of features, TreeShap can be evaluated M
times, leading to time complexity of O(TLD2M). Interaction values are challenging to
compute in practice, with runtimes and memory requirements significantly larger than
decision tree induction itself. In “Computing SHAP Interaction Values”, we show how to

Algorithm 1 (continued)

38: mj.(d, z, o) = mj+1.(d, z, o)

39: return m

40: RECURSE(1, [], 1, 1, 0)

41: return ϕ
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reformulate this algorithm to the GPU and how to improve runtime to O(TLD3) (tree
depth D is normally much smaller than the number of features M present in the data).

GPU computing
GPUs are massively parallel processors optimised for throughput, in contrast to
conventional CPUs, which optimise for latency. GPUs in use today consist of many
processing units with single-instruction, multiple-thread (SIMT) lanes that very efficiently
execute a group of threads operating in lockstep. In modern NVIDIA GPUs such as
the ones we use for the experiments in this paper, these processing units, called “streaming
multiprocessors” (SMs), have 32 SIMT lanes, and the corresponding group of 32 threads
is called a “warp”. Warps are generally executed on SMs without order guarantees,
enabling latency in warp execution (e.g., from global memory loads) to be hidden by
switching to other warps that are ready for execution (NVIDIA Corporation, 2020).1

Large speed-ups in the domain of GPU computing commonly occur when the problem
can be expressed as a balanced set of vector operations with minimal control flow. Notable
examples are matrix multiplication (Fatahalian, Sugerman & Hanrahan, 2004; Hall,
Carr & Hart, 2003; Jiang & Snir, 2005), image processing (Fang et al., 2005; Moreland &
Angel, 2003), deep neural networks (Perry, Prosper & Meyer-Baese, 2014; Coates et al.,
2013; Chetlur et al., 2014), and sorting (Green, McColl & Bader, 2012; Satish et al., 2010).
Prior work exists on decision tree induction (Sharp, 2008; Mitchell & Frank, 2017;
Zhang, Si & Hsieh, 2017; Dorogush, Ershov & Gulin, 2018) and inference (Sharp, 2012) on
GPUs, but we know of no prior work on tree interpretability specifically tailored to GPUs.
Related work also exists on solving dynamic programming type problems (Liu et al.,
2006; Steffen, Giegerich & Giraud, 2010; Boyer, El Baz & Elkihel, 2012), but dynamic
programming is a broad term, and the referenced works discuss significantly different
problem sizes and applications (e.g., Smith-Waterman for sequence alignment).

In “GPUTreeShap”, we discuss a unique approach to exploiting GPU parallelism,
different from the above-mentioned works due to the unique characteristics of the
TreeShap algorithm. In particular, our approach efficiently deals with large amounts of
branching and load imbalance that normally inhibits performance on GPUs, leading to
substantial improvements over a state-of-the-art multicore CPU implementation.

GPUTREESHAP
Algorithm 1 has properties that make it unsuitable for direct implementation on GPUs in a
performant way. Conventional multi-threaded CPU implementations of Algorithm 1
achieve parallel work distribution by instances (Chen & Guestrin, 2016; Ke et al., 2017). For
example, interpretability results for input matrix X are computed by launching one parallel
CPU thread per row (i.e., data instance being evaluated). While this approach is
embarrassingly parallel, CPU threads are different from GPU threads. If GPU threads in
a warp take divergent branches, performance is reduced, as all threads must execute
identical instructions when they are active (Harris & Buck, 2005). Moreover, GPUs can
suffer from per-thread load balancing problems—if work is unevenly distributed between
threads in a warp, finished threads stall until all threads in the warp are finished.

1 AMD GPUs have similar basic proces-
sing units, called “compute units”; the
corresponding term for a warp is
“wavefront”.
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Additionally, GPU threads are more resource-constrained than their CPU counterparts,
having a smaller number of available registers due to limited per-SM resources. Excessive
register usage results in reduced SM occupancy by limiting the number of concurrent
warps. It also results in register spills to global memory, causing memory loads at
significantly higher latency.

To mitigate these issues, we segment the TreeShap algorithm to obtain fine-grained
parallelism, observing that each unique path from root to leaf in Algorithm 1 can be
constructed independently because the ϕi obtained at each leaf are additive and depend
only on features encountered on that unique path from root to leaf. Instead of allocating
one thread per tree, we allocate a group of threads to cooperatively compute SHAP
values for a given unique path through the tree. We launch one such group of threads
for each (unique path, evaluation instance) pair, computing all SHAP values for this
pair in a single GPU kernel. This method requires preprocessing to arrange the tree
ensemble into a suitable form, avoid some less GPU-friendly operations of the original
algorithm, and partition work efficiently across GPU threads. Our GPUTreeShap
algorithm can be summarised by the following high-level steps:

1. Preprocess the ensemble to extract all unique decision tree paths.

2. Combine duplicate features along each path.

3. Partition path subproblems to GPU warps by solving a bin packing problem.

4. Launch a GPU kernel solving the dynamic programming subproblems in batch.

These steps are described in more detail below.

Extract paths
Figure 1 shows a decision tree model, highlighting a unique path from root to leaf. The
SHAP values computed by Algorithm 1 are simply the sum of the SHAP values from every
unique path in the tree. Note that the decision tree model holds information about the

Figure 1 Unique decision tree path. Solid arrows indicate the path taken for an example test instance.
Dashed lines indicate paths not taken. Full-size DOI: 10.7717/peerj-cs.880/fig-1
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weight of training instances that flow down paths in the cover variable. To apply GPU
computing, we first preprocess the decision tree ensemble into lists of path elements
representing all possible unique paths in the ensemble. Path elements are represented as
per Listing 1.

As paths share information that is represented in a redundant manner in the collection
of lists representing a tree, reformulating trees increases memory consumption: assuming
balanced trees, it increases space complexity from O(TL) to O(TDL) in the worst case.
However, this additional memory consumption is not significant in practice.

Considering each path element, we use a lower and an upper bound to represent the
range of feature values that can flow through a particular branch of the tree when the
corresponding feature is present. For example, the root node in Fig. 1 has split condition f0
< 0.5. Therefore, if the feature is present, the left branch from this node contains instances
where �1 � f0 < 0:5, and the right branch contains instances where 0:5 � f0 <1. This
representation is useful for the next preprocessing step, where we combine duplicate
feature occurrences along a decision tree path.

Figure 2 shows two unique paths extracted from Fig. 1. An entire tree ensemble can be
represented in this form. Crucially, this representation contains sufficient information to
compute the ensemble’s SHAP values.

Remove duplicate features
Part of the complexity of Algorithm 1 comes from a need to detect and handle multiple
occurrences of a feature in a single unique path. In Lines 12 to 15, the candidate feature of
the current recursion step is checked against existing features in the path. If a previous
occurrence is detected, it is removed from the path using the UNWIND function. The pz

Listing 1 Path element structure.

struct PathElement {

// Unique path index

size_t path_idx;

// Feature of this split, −1 is root

int64_t feature_idx;

// Range of feature value

float feature_lower_bound;

float feature_upper_bound;

// Probability of following this path

// when feature_idx is missing

float zero_fraction;

// Leaf weight at the end of path

float v;

};
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and po values for the old and new occurrences of the feature are multiplied, and the path
extended with these new values.

Unwinding previous features to deal with multiple feature occurrences in this manner is
problematic for GPU implementation because it requires threads to cooperatively evaluate
FINDFIRST and then UNWIND, introducing branching as well as extra computation.
Instead, we take advantage of our representation of a tree ensemble in path element form,
combining duplicate features into a single occurrence. To do this, recognise that a path
through a decision tree from root to leaf represents a single hyperrectangle in the M
dimensional feature space, with boundaries defined according to split conditions along the
path. The boundaries of the hyperrectangle may alternatively be represented with a lower
and upper bound on each feature. Therefore, any number of decision tree splits over a
single feature can be reduced to a single range, represented by these bounds. Moreover,
note that the ordering of features within a path is irrelevant to the final SHAP values. As
noted in Lundberg et al. (2020), the EXTEND and UNWIND functions defined in
Algorithm 1 are commutative; therefore, features may be added to or removed from a path
in any order, and we can sort unique path representations by feature index, combining
consecutive occurrences of the same feature into a single path element.

Bin packing for work allocation
Each unique path sub-problem identified above is mapped to GPU warps for hardware
execution. A decision tree ensemble contains L unique paths, where L is the number of
leaves, and each path has length between 1 and maximum tree depth D. To maximise
throughput on the GPU, it is important to maximise utilisation of the processing units by
saturating them with threads to execute. In particular, given a 32-thread warp, multiple
paths may be resident and executed concurrently on a single warp. It is also important to
assign all threads processing the same decision tree path to the same warp as we wish to use

Figure 2 Two unique paths from the decision tree in Fig. 1. The second path listed here corresponds to
the highlighted path in Fig. 1, encoding bounds on the feature values for an instance that reaches this leaf,
the leaf prediction value, and the conditional probability (‘zero_fraction’) of an instance meeting the split
condition if the feature is unknown. Full-size DOI: 10.7717/peerj-cs.880/fig-2
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fast warp hardware intrinsics for communication between these threads and avoid
synchronisation cost. Consequently, in our GPU algorithm, sub-problems are constrained
to not overlap across warps. This implies that the maximum depth of a decision tree
processed by our algorithm must be less than or equal to the GPU warp size of 32. Given
that the number of nodes in a balanced decision tree increases exponentially with depth,
and real-world experience showing D ≤ 16 in high-performance boosted decision tree
ensembles almost always, we believe this to be a reasonable constraint.

To achieve the highest device utilisation, path sub-problems should be mapped to
warps such that the total number of warps is minimised. Given the above constraint, this
requires solving a bin packing problem. Given a finite set of items I, with sizes s(i) ∈ Z+,
for each i ∈ I, and maximum bin capacity B, I must be partitioned into the disjoint
sets I0, I1,…, IK such that the sum of sizes in each set is less than B. The partitioning
minimising K is the optimal bin packing solution. In our case, the bin capacity, B = 32, is
the number of threads per warp, and our item sizes, s(i), are given by the unique path
lengths from the tree ensemble. In general, finding the optimal packing is strongly NP-
complete (Garey & Johnson, 1979), although there are heuristics that can achieve close to
optimal performance in many cases. In “Evaluating Bin Packing Performance”, we
evaluate three standard heuristics for the off-line bin packing problem, Next-Fit (NF),
First-Fit-Decreasing (FF), and Best-Fit-Decreasing (BFD), as well as a baseline where
each item is placed in its own bin. We briefly describe these algorithms and refer the
reader toMartello & Toth (1990) or Coffman, Garey & Johnson (1997) for a more in-depth
survey.

Next-Fit is a simple algorithm, where only one bin is open at a time. Items are added to
the bin as they arrive. If bin capacity is exceeded, the bin is closed and a new bin is opened.
In contrast, First-Fit-Decreasing sorts the list of items by non-increasing size. Then,
beginning with the largest item, it searches for the first bin with sufficient capacity and adds
it to the bin. Similarly, Best-Fit-Decreasing also sorts items by non-increasing size, but
assigns items to the feasible bin with the smallest residual capacity. FFD and BFD may be
implemented in Oðn log nÞ time using a tree data structure allowing bin updates and
insertions in Oðlog nÞ operations (see Johnson (1974) for specifics).

Existing literature gives worst-case approximation ratios for the above heuristics. For a
given set of items I, let A(I) denote the number of bins used by algorithm A, and OPT(I) be
the number of bins for the optimal solution. The approximation ratio RA � AðIÞ

OPTðIÞ
describes the worst-case performance ratio for any possible I. Time complexities and
approximation ratios for each of the three above bin packing heuristic are listed in Table 1,
as per Coffman, Garey & Johnson (1997).

Table 1 Bin packing time complexities and worst-case approximation ratios.

Algorithm Time RA

NF O(n) 2.0

FFD O(nlogn) 1.222

BFD O(nlogn) 1.222
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As this paper concerns the implementation of GPU algorithms, we would ideally
formulate the above heuristics in parallel. Unfortunately, the bin packing problem is
known to be hard to parallelise. In particular, FFD and BFD are P-complete, indicating
that it is unlikely that these algorithms may be sped up significantly via parallelism
(Anderson & Mayr, 1984). An efficient parallel algorithm with the same approximation
ratio as FFD/BFD is given in Anderson, Mayr & Warmuth (1989), but the adaptation of
this algorithm to GPU architectures is nontrivial and beyond the scope of this paper.
Fortunately, as shown by our evaluation in “Bin Packing For Work Allocation”, CPU-
based implementations of the bin packing heuristics give acceptable performance for our
task, and the main burden of computation still falls on the GPU kernels computing SHAP
values in the subsequent step. We perform experiments comparing the three bin packing
heuristics in terms of runtime and impact on efficiency for GPU kernels in “Evaluating Bin
Packing Performance”.

The GPU kernel for computing SHAP values
Given a unique decision tree path extracted from a decision tree in an ensemble predictor,
with duplicates removed, we allocate one path element per GPU thread and cooperatively
evaluate SHAP values for each row in a test dataset X. The dataset X is assumed to be
queryable from the device. Listing 2 provides a simplified overview of the GPU kernel that
is the basis of GPUTreeShap, further details can be found at https://github.com/rapidsai/
gputreeshap. A single kernel is launched, parallelising computation of Shapley values
across GPU threads in three dimensions:

1. Dataset rows.

2. Unique paths in tree model from root to leaf.

3. Elements in each unique path.

GPU threads are launched according to the solution of the bin-packing problem
described in “Bin Packing For Work Allocation”, which allocates threads efficiently to this
unevenly sized, three-dimensional problem space. A contiguous thread group of size ≤ 32
is launched and assigned to each dataset row and model path sub-problem.

To enable non-recursive GPU-based implementation of Algorithm 1, it remains to
describe how to compute permutation weights for each possible feature subset with the
EXTEND function (Line 4), as well as how to UNWIND each feature in the path and
calculate the sum of permutation weights (Line 7). The EXTEND function represents a
single step in a dynamic programming problem. In the GPU version of the algorithm, it
processes a single path in a decision tree, represented as a list of path elements. As
discussed above, all threads processing the same path are assigned to the same warp to
enable efficient processing. Data dependencies between threads occur when each thread
processes a single path element. Figure 3 shows the data dependency of each call to
EXTEND on previous iterations when using GPU threads for the implementation. Each
thread depends on its own previous result and the previous result of the thread to its “left”.
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Listing 2 GPU kernel overview—threads are mapped to elements of a path sub-problem, then groups
of threads are formed. These small thread groups cooperatively solve dynamic programming problems,
accumulating the final SHAP values using global atomics.

__device__ float GetOneFraction(

const PathElement& e, DatasetT X, size_t row_idx) {

// First element in path (bias term) is always zero

if (e.feature_idx == −1) return 0.0;

// Test the split

// Does the training instance continue down this

// path if the feature is present?

float val = X.GetElement(row_idx, e.feature_idx);

return val >= e.feature_lower_bound &&

val < e.feature_upper_bound;

}

template <typename DatasetT>

__device__ float ComputePhi(

const PathElement& e, size_t row_idx,

const DatasetT& X,

const ContiguousGroup& group,

float zero_fraction) {

float one_fraction = GetOneFraction(e, X, row_idx);

GroupPath path(group, zero_fraction, one_fraction);

size_t unique_path_length = group.size();

// Extend the path

for (auto unique_depth = 1ull;

unique_depth < unique_path_length;

unique_depth++) {

path.Extend();

}

float sum = path.UnwoundPathSum();

return sum * (one_fraction - zero_fraction) * e.v;

}

template <typename DatasetT, size_t kBlockSize,

size_t kRowsPerWarp>

__global__ void ShapKernel(

DatasetT X, size_t bins_per_row,

const PathElement* path_elements,

const size_t* bin_segments, size_t num_groups,

float* phis) {
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This dependency pattern leads to a natural implementation using warp shuffle
instructions, where threads directly access registers of other threads in the warp at
considerably lower cost than shared or global memory. Algorithm 2 shows pseudo-code
for a single step of a parallel EXTEND function on the device. In pseudocode, we define a
shuffle function analogous to the corresponding function in NVIDIA’s CUDA
language, where the first argument is the register to be communicated, and the second
argument is the thread to fetch the register from—if this thread does not exist, the function
returns 0, else it returns the register value at the specified thread index. In Algorithm 2,

Listing 2 (continued)

__shared__ PathElement s_elements[kBlockSize];

PathElement& e = s_elements[threadIdx.x];

// Allocate some portion of rows to this warp

// Fetch the path element assigned to this

// thread

size_t start_row, end_row;

bool thread_active;

ConfigureThread<DatasetT, kBlockSize, kRowsPerWarp>(

X, bins_per_row, path_elements,

bin_segments, &start_row, &end_row, &e,

&thread_active);

if (!thread_active) return;

float zero_fraction = e.zero_fraction;

auto labelled_group =

active_labeled_partition(e.path_idx);

for (int64_t row_idx = start_row;

row_idx < end_row; row_idx++) {

float phi =

ComputePhi(e, row_idx, X, labelled_group,

zero_fraction);

// Write results

if (!e.IsRoot()) {

atomicAdd(&phis[IndexPhi(

row_idx, num_groups, e.group,

X.NumCols(), e.feature_idx)],

phi);

}

}

}
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the shuffle function is used to fetch the element mi.w from the current thread’s left
neighbour if this neighbour exists, and otherwise returns 0.

Given the permutation weights for the entire path, it is also necessary to establish how to
UNWIND the effect of each individual feature from the path to evaluate its relative
contribution (Algorithm 1, Line 7). We distribute this task among threads, with each
thread “unwinding” a unique feature. Pseudo-code for UNWOUNDSUM is given in
Algorithm 3, where each thread i is effectively undoing the EXTEND function for a
given feature and returning the sum along the path. Shuffle instructions are used to fetch
weights wj from other threads in the group. The result of UNWOUNDSUM is used to
compute the final SHAP value as per Algorithm 1, Line 8.

Computing SHAP interaction values
Computation of SHAP interaction values makes use of the same preprocessing steps as
above, and the same basic kernel building blocks, except that the thread group associated
with each row/path pair evaluates SHAP values multiple times, iterating over each unique

Algorithm 2 Parallel EXTEND.

1: function PARALLEL_EXTEND(m, pz, po, pi)

2: l = len(m)

3: ml+1.(d, z, o, w) = (pi, pz, po, l = 0 ? 1 : 0)

4: for i 2 to l + 1 in parallel, do

5: left_w = shuffle(mi.w, i − 1)

6: mi.w = mi.w ⋅ pz ⋅ (l + 1 − i)/(l + 1)

7: mi.w = mi.w + po ⋅ left_w ⋅ i/(l + 1)

8: return m

Algorithm 3 Parallel UNWOUNDSUM.

1: function PARALLEL_UNWOUNDSUM(m, pz, po, pi)

2: l = len(m)

3: sum = [] array of l zeroes

4: for i 1 to l + 1 in parallel, do

5: next = shuffle(mi.w, l)

6: for j l to 1 do

7: wj = shuffle(mi.w, j)

8: tmp = (next ⋅ (l − 1) + 1)/j

9: sumi = sumi + tmp ⋅ po

10: next = wj − tmp ⋅ (l − j) ⋅ pz/l

11: sumi = sumi + (1 − po) ⋅ wj ⋅ l/((l − j) ⋅ pz)

12: return sum
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feature and conditioning on that feature being fixed to present or not present respectively.
There are some difficulties in conditioning on features with our algorithm formulation so
far—conditioning on a feature j requires ignoring it and not adding it to the active
path. This introduces complexity when neighbouring threads are communicating via
shuffle instructions (see Fig. 3). Each thread must adjust its indexing to skip over a path
element being conditioned on. We found a more elegant solution is to swap a path element
used for conditioning to the end of the path, then simply stop before adding it to the
path (taking advantage of the fact that the ordering of path elements is irrelevant). Thus, to
evaluate SHAP interaction values, we use a GPU kernel similar to the one used for
computing per-feature SHAP values, except that we loop over each unique feature,
conditioning on that feature as on or off.

One major difference that arises between our GPU algorithm and the CPU algorithm of
Lundberg et al. (2020), is that we can easily avoid conditioning on features that are not
present in a given path. It is clear from Eq. (5) that fS∪{i, j}(x) = fS∪{i}(x), fS∪{j}(x) = fS(x) and
∇ij(S) = 0 if we condition on feature j that is not present in the path. Therefore, our
approach has runtime proportional to O(TLD3) instead of O(TLD2M) by exploiting the
limited subset of possible feature interactions in a tree branch. This modification has a
significant impact on runtime in practice (because, normally, M ≫ D).

EVALUATION
We train a range of decision tree ensembles using the XGBoost algorithm on the datasets
listed in Table 2. Our goal is to evaluate a wide range of models representative of different
real-world settings, from simple exploratory models to large ensembles of thousands of
trees. For each dataset, we train a small, medium, and large variant by adjusting the
number of boosting rounds (10, 100, 1,000) and maximum tree depth (3, 8, 16). The

Figure 3 Data dependencies of EXTEND—5 GPU threads communicate using warp shuffle intrinsics
to solve a dynamic programming problem instance. Full-size DOI: 10.7717/peerj-cs.880/fig-3
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learning rate is set to 0.01 to prevent XGBoost learning the model in the first few trees and
producing only stumps in subsequent iterations. Using a low learning rate is also common
in practice to minimise generalisation error. Other hyperparameters are left as default.
Summary statistics for each model variant are listed in Table 3, and our testing hardware is
listed in Table 4.

Evaluating bin packing performance
We first evaluate the performance of the NF, FFD, and BFD bin packing algorithms from
“Bin Packing For Work Allocation”. We also include “none” as a baseline, where no
packing occurs and each unique path is allocated to a single warp. All bin packing
heuristics are single-threaded and run on the CPU. We report the execution time (in

seconds), utilisation, and number of bins used (K). Utilisation is defined as

P
i2I sðiÞ
32K

, the

Table 4 Details of Nvidia DGX-1 used for benchmarking.

Processor Details

CPU 2 � 20-Core Xeon E5-2698 v4 2.2 GHz

GPU 8 � Tesla V100-32

Table 2 Datasets used to train XGBoost models for Shapley value evaluation. Rows refers to training
rows, cols refers to number of features (excluding label).

Name Rows Cols Task Classes References

Covtype 581,012 54 Class 8 Blackard (1998)

Cal_housing 20,640 8 Regr – Pace & Barry (1997)

Fashion_mnist 70,000 784 Class 10 Xiao, Rasul & Vollgraf (2017)

Adult 48,842 14 Class 2 Kohavi (1996)

Table 3 XGBoost models used for evaluation. Small, medium and large variants are created for each
dataset.

Model Trees Leaves Max_depth

Covtype-small 80 560 3

Covtype-med 800 113,888 8

Covtype-large 8,000 6,636,440 16

Cal_housing-small 10 80 3

Cal_housing-med 100 21,643 8

Cal_housing-large 1,000 3,317,209 16

Fashion_mnist-small 100 800 3

Fashion_mnist-med 1,000 144,154 8

Fashion_mnist-large 10,000 2,929,521 16

Adult-small 10 80 3

Adult-med 100 13,074 8

Adult-large 1,000 642,035 16
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total weight of all items divided by the bin space allocated, or for our purposes, the fraction
of GPU threads that are active for a given bin packing. Poor bin packings waste space on
each warp and underutilise the GPU.

Results are summarised in Table 5. “None” is clearly a poor choice, with utilisation
between 0.1 and 0.3, with worse utilisation for smaller tree depths—for example, small
models with maximum depth three allocate items of size three to warps of size 32. The
simple NF algorithm often provides competitive results with fast runtimes, but it can lag
behind FFD and BFD when item sizes are larger, exhibiting utilisation as low as 0.79
for fashion_mnist-large. FFD and BFD achieve better utilisation than NF in all cases,
reflecting their superior approximation guarantees. Interestingly, FFD and BFD achieve
the same efficiency on every example tested. We have verified that they can produce
different packings on contrived examples, but there is no discernible difference for our
application. FFD and BFD have longer runtimes than NF due to their Oðn log nÞ time
complexity. FFD is slightly faster than BFD because it uses a binary tree packed into an
array, yielding greater cache efficiency, but its implementation is more complicated. In
contrast, BFD is implemented easily using std::set.

Based on these results, we recommend BFD for its strong approximation guarantee,
simple implementation, and acceptable runtime when packing jobs into batches for
GPU execution. Its runtime is at most 1.6 s in our experiments, for our largest model
(covtype-large) with 6.7 M items, and is constant with respect to the number of test rows
because the bin packing occurs once per ensemble and is reused for each additional data
point, allowing us to amortise its cost over improvements in end-to-end runtime from
improved kernel efficiency. The gains in GPU thread utilisation from using BFD over
NF directly translate into performance improvements, as fewer bins used means fewer
GPU warps are launched. On our large size models, we see improvements in utilisation of
10.1%, 3.2%, 16.7% and 9.6% from BFD over NF. We use BFD in all subsequent
experiments.

Evaluating SHAP value throughput
We evaluate the performance of GPUTreeShap as a backend to the XGBoost library
(Chen & Guestrin, 2016), comparing its execution time against the existing CPU
implementation of Algorithm 12. The baseline CPU algorithm is efficiently multithreaded
using OpenMP, with a parallel for loop over all test instances. See https://github.com/
dmlc/xgboost for exact implementation details for the baseline and https://github.com/
rapidsai/gputreeshap for GPUTreeShap implementation details.

Table 6 reports the runtime of GPUTreeShap on a single V100 GPU compared to
TreeShap on 40 CPU cores. Results are averaged over five runs and standard deviations are
also shown. We observe speedups between 13 and 19× for medium and large models
evaluated on 10,000 test rows. We observe little to no speedup for the small models as
insufficient computation is performed to offset the latency of launching GPU kernels.

Figure 4 plots the time to evaluate varying numbers of test rows for the cal_housing-med
model. We plot the average of five runs; the shaded area indicates the 95% confidence
interval. This illustrates the throughput vs. latency trade-off for this particular model size.

2 We do not benchmark against TreeShap
implementations in the Python SHAP
package or LightGBM because they are
written by the same author, also in C++,
and are functionally equivalent to
XGBoost’s implementation.
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Table 5 Bin packing performance.

Model Alg Time (s) Utilisation Bins

Covtype-small None 0.0018 0.105246 560

Covtype-small NF 0.0041 0.982292 60

Covtype-small FFD 0.0064 0.998941 59

Covtype-small BFD 0.0086 0.998941 59

Covtype-med None 0.0450 0.211187 113,533

Covtype-med NF 0.0007 0.913539 26,246

Covtype-med FFD 0.0104 0.940338 25,498

Covtype-med BFD 0.0212 0.940338 25,498

Covtype-large None 0.0346 0.299913 6,702,132

Covtype-large NF 0.0413 0.851639 2,360,223

Covtype-large FFD 0.8105 0.952711 2,109,830

Covtype-large BFD 1.6702 0.952711 2,109,830

Cal_housing-small None 0.0015 0.085938 80

Cal_housing-small NF 0.0025 0.982143 7

Cal_housing-small FFD 0.0103 0.982143 7

Cal_housing-small BFD 0.0001 0.982143 7

Cal_housing-med None 0.0246 0.181457 21,641

Cal_housing-med NF 0.0126 0.931429 4,216

Cal_housing-med FFD 0.0016 0.941704 4,170

Cal_housing-med BFD 0.0031 0.941704 4170

Cal_housing-large None 0.0089 0.237979 3,370,373

Cal_housing-large NF 0.0225 0.901060 890,148

Cal_housing-large FFD 0.3534 0.933114 859,570

Cal_housing-large BFD 0.8760 0.933114 859570

Fashion_mnist-small None 0.0022 0.123906 800

Fashion_mnist-small NF 0.0082 0.991250 100

Fashion_mnist-small FFD 0.0116 0.991250 100

Fashion_mnist-small BFD 0.0139 0.991250 100

Fashion_mnist-med None 0.0439 0.264387 144,211

Fashion_mnist-med NF 0.0008 0.867580 43,947

Fashion_mnist-med FFD 0.0130 0.880279 43,313

Fashion_mnist-med BFD 0.0219 0.880279 43,313

Fashion_mnist-large None 0.0140 0.385001 2,929,303

Fashion_mnist-large NF 0.0132 0.791948 1,424,063

Fashion_mnist-large FFD 0.3633 0.958855 1,176,178

Fashion_mnist-large BFD 0.8518 0.958855 1,176,178

Adult-small None 0.0016 0.125000 80

Adult-small NF 0.0023 1.000000 10

Adult-small FFD 0.0061 1.000000 10

Adult-small BFD 0.0060 1.000000 10

Adult-med None 0.0050 0.229014 13,067
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Table 5 (continued)

Model Alg Time (s) Utilisation Bins

Adult-med NF 0.0066 0.913192 3,277

Adult-med FFD 0.0575 0.950010 3,150

Adult-med BFD 0.1169 0.950010 3,150

Adult-large None 0.0033 0.297131 642,883

Adult-large NF 0.0035 0.858728 222,446

Adult-large FFD 0.0684 0.954377 200,152

Adult-large BFD 0.0954 0.954377 200,152

Table 6 Speedups for V100 vs. 40 CPU cores on 10,000 test rows.

Model CPU (s) Std GPU (s) Std Speedup

Covtype-small 0.04 0.02 0.02 0.01 2.27

Covtype-med 8.25 0.07 0.45 0.03 18.23

Covtype-large 930.22 0.56 50.88 0.21 18.28

Cal_housing-small 0.01 0.01 0.01 0.01 0.96

Cal_housing-med 1.27 0.02 0.09 0.02 14.59

Cal_housing-large 315.21 0.30 16.91 0.34 18.64

Fashion_mnist-small 0.35 0.14 0.17 0.04 2.09

Fashion_mnist-med 15.10 0.07 1.13 0.08 13.36

Fashion_mnist-large 621.14 0.14 47.53 0.17 13.07

Adult-small 0.01 0.00 0.01 0.01 1.08

Adult-med 1.14 0.00 0.08 0.01 14.59

Adult-large 88.12 0.20 4.67 0.00 18.87

Figure 4 The crossover point where the V100 GPU outperforms 40 CPU cores occurs at around 200
test rows for the cal_housing-med model. Full-size DOI: 10.7717/peerj-cs.880/fig-4
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The CPU is more effective for <180 test rows due to lower latency, but the throughput of
the GPU is significantly higher at larger batch sizes.

SHAP value computation is embarrassingly parallel over dataset rows, so we expect to
see linear scaling of performance with respect to the number of GPUs or CPUs, given
sufficient data. We set the number of rows to 1 million and evaluate the effect of additional
processors for the cal_housing-med model, measuring throughput in rows per second.
Figure 5 reports throughput up to the eight GPUs available on the DGX-1 system, showing
the expected close to linear scaling and reaching a maximum throughput of 1.2 M rows
per second. Reported throughputs are from the average of five runs—error bars are too
small to see due to relatively low variance. Figure 6 shows linear scaling with respect to
CPU cores up to a maximum throughput of 7,000 rows per second. The shaded area
indicates the 95% confidence interval from 5 runs. We speculate that the dip at 40 cores is
due to contention with the operating system requiring threads for other system functions,
and so ignore it for this scaling analysis. We can reasonably approximate from Fig. 6,
using a throughput of 7,000 rows/s per 40 cores, that it would require 6850 Xeon E5-2698
v4 CPU cores, or 343 sockets, to achieve the same throughput as eight V100 GPUs for this
particular model.

SHAP interaction values
Table 7 compares single GPU vs. 40 core CPU runtime for SHAP interaction values. For
this experiment, we lower the number of test rows to 200 due to the significantly increased
computation time. Computing interaction values is challenging for datasets with
larger numbers of features, in particular for fashion_mnist (785 features). Our GPU
implementation achieves moderate speedups on cal_housing and adult due to the relatively
low number of features; these speedups are roughly comparable to those obtained for
standard SHAP values (Table 6). In contrast, for covtype-large and fashion_mnist-large, we

Figure 5 GPUTreeShap scales linearly with 8 V100 GPUs for the cal_housing-med model.
Full-size DOI: 10.7717/peerj-cs.880/fig-5
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see speedups of 114× and 340×, in the most extreme case reducing runtime from 6 h to 1
min. This speedup comes from both the increased throughput of the GPU over the CPU
and the improvements to algorithmic complexity due to omission of irrelevant features
described in “Computing SHAP Interaction Values”. Note that it may be possible to
reformulate the CPU algorithm to take advantage of the improved complexity with similar
preprocessing steps, but investigating this is beyond the scope of this paper.

CONCLUSION
SHAP values have proven to be a useful tool for interpreting the predictions of decision
tree ensembles. We have presented GPUTreeShap, an algorithm obtained by reformulating

Figure 6 TreeShap scales linearly with 40 CPU cores, but at significantly lower throughput than
GPUTreeShap. Full-size DOI: 10.7717/peerj-cs.880/fig-6

Table 7 Feature interactions—Speedups for V100 vs. 40 CPU cores on 200 test rows.

Model CPU (s) Std GPU (s) Std Speedup

Covtype-small 0.14 0.01 0.02 0.01 8.32

Covtype-med 21.50 0.32 0.19 0.02 114.41

Covtype-large 2,055.78 4.19 28.85 0.06 71.26

Cal_housing-small 0.01 0.00 0.01 0.00 1.44

Cal_housing-med 0.53 0.04 0.04 0.01 12.05

Cal_housing-large 93.67 0.28 8.55 0.04 10.96

Fashion_mnist-small 11.35 0.87 4.04 0.67 2.81

Fashion_mnist-med 578.90 1.23 4.91 0.71 117.97

Fashion_mnist-large 21,603.53 622.60 63.53 0.78 340.07

Adult-small 0.06 0.09 0.01 0.00 11.25

Adult-med 1.74 0.30 0.04 0.01 39.38

Adult-large 67.29 6.22 2.76 0.00 24.38
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the TreeShap algorithm to enable efficient computation on GPUs. We exploit warp-level
parallelism by cooperatively evaluating dynamic programming problems for each path
in a decision tree ensemble, thus providing massive parallelism for large ensemble
predictors. We have shown how standard bin packing heuristics can be used to effectively
schedule problems at the warp level, maximising GPU utilisation. Additionally, our
rearrangement leads to improvement in the algorithmic complexity when computing
SHAP interaction values, from O(TLD2M) to O(TLD3). Our library GPUTreeShap
provides significant improvement to SHAP value computation over currently available
software, allowing scaling onto one or more GPUs, and reducing runtime by one to two
orders of magnitude.
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