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Abstract

Recent advancements in machine learning-based medical text multi-label clas-

sifications can be used to enhance the understanding of the human body and

aid the need for patient care. This research considers predicting medical codes

from electronic health records (EHRs) as multi-label problems, where the num-

ber of labels ranged from 15 to 923. It is motivated by the advancements in

domain-specific language models to better understand and represent electronic

health records and improve the predictive accuracy of medical codes.

The thesis presents an extensive empirical study of language models for

binary and multi-label medical text classifications. Domain-specific multi-

sourced fastText pre-trained embeddings are introduced. Experimental results

show considerable improvements to predictive accuracy when such embeddings

are used to represent medical text. It is shown that using domain-specific

transformer models outperforms results for multi-label problems with fixed

sequence length. If processing time is not an issue for a long medical text,

then TransformerXL will be the best model to use. Experimental results show

significant improvements over other models, including state-of-the-art results,

when TransformerXL is used for down-streaming tasks such as predicting med-

ical codes.

The thesis considers concatenated language models to handle long medi-

cal documents and text data from multiple sources of EHRs. Experimental

results show improvements in overall micro and macro F1 scores, and such

improvements are achieved with fewer resources. In addition, it is shown that

concatenated domain-specific transformers improve F1 scores of infrequent la-

bels across several multi-label problems, especially with long-tail labels.
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Chapter 1

Introduction

Recent years have seen an increase in the use of big data analytics to un-

derstand health care better and potentially improve patient care [5, 6, 7, 8].

Applying machine learning to health care can be categorised into three main

groups: risk prediction, medical diagnosis and clinical decision support. Pre-

dicting treatable risk factors can improve life expectancy and quality of life, for

example predicting cardiovascular events such as abdominal aortic aneurysms.

This research focuses on predictions, more specifically predicting medical

codes from free-from medical text using machine learning techniques. ICD

(standards for international Statistical Classification of Diseases and Related

Health Problems) codes are used to classify diseases, symptoms, signs, causes

of diseases, treatments and procedures. Almost all health conditions can be

assigned a unique code. The Health Insurance Portability and Accountability

Act (HIPAA) requires the use of ICD codes to be used by hospitals and medical

facilities [9]. ICD codes facilitate billing activities, epidemiological studies and

enable monitoring of health statistics and trends. However, to code electronic

health records (EHR), the medical coder requires a thorough knowledge of the

ICD coding systems, and it is significantly time-consuming. Thus, the ability

to predict and automate medical coding is vital.

This research also considers applications where medical codes related to

specific diseases or conditions are predicted from EHRs. These applications
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include predicting the most common medical codes for cardiovascular disease,

COVID-19 patient shielding and systemic fungal or bacterial infections are

considered separate case studies.

Predicting medical codes is treated as a multi-label classification problem.

Multi-label classification assigns a set of labels to an instance. For example,

for predicting medical codes, each medical code is a label and each patient

admitted to the hospital with available EHRs is an instance. From a collection

of labels, each record will be assigned relevant medical codes/labels. Each label

in multi-label classification is ∈ {Yes, No}.

1.1 Aim

This thesis sets out to improve upon the state-of-the-art (SOTA) for predicting

medical codes from EHRs as multi-label classification problems. Research also

focuses on improving the accuracy of predictions of infrequent labels from

long medical documents. In order to achieve these goals, the following three

research directors were formulated.

The main research directions were:

• Extensive evaluations of various multi-label problems such as predicting

medical codes of the ICD-9 codes for different levels of ICD-9 hierar-

chy, medical codes related to several case studies: cardiovascular disease,

COVID-19 patient shielding and systemic fungal or bacterial infections.

Experiments were designed and modified based on the knowledge and

understanding of the problems and the results obtained from various

machine learning-based techniques.

• Use of domain-specific language models for improving predictive accu-

racy of multi-label classifiers.

• Exploration of options and new avenues for efficiently and effectively

handling long EHRs and infrequent labels.
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The rest of this chapter discusses the main challenges relating to the re-

search, summarises the contributions of this thesis, and provides an overview

of the thesis structure.

1.2 Challenges

Multi-label classification of a medical text presents various challenges. This

section provides an outline of these challenges. Throughout this thesis, details

are provided on how they are addressed.

1.2.1 Electronic Health Records Challenges

EHRs presented as free-form medical text pose many challenges due to the

complexity and variations presented in the data and the legal and ethical

aspects associated with the use of this data. This research defines “free-form

medical text or clinical text” as text written by clinicians or other medical

professionals in a clinical setting, such as hospitals. These include a personal

and physiological description of patients, patient pathology, laboratory results,

personal, social and medical histories, patient interviews, and diagnoses and

procedure notes. These clinical notes can be a few sentences long or, in some

cases, a few pages long. In many cases, these are longitudinal data where given

patient clinical notes are collected over several days or even several years.

EHRs are created and utilised by different groups of people, for example,

clinicians, nurses, insurance companies and researchers. EHRs are found in

different forms such as structured data, free-text data, laboratory reports and

images. Although data are available in abundance, the complexity and vari-

ations in the data forms create challenges associated with extracting relevant

information. Depending on the person who created the data, variations in the

terminology and abbreviations used will also occur. For example, the dosing

instruction “QD” can be interpreted as either “once a day” or “four times a

day” [10].
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One of the main issues with the clinical notes is that they are sometimes un-

grammatical, contain spelling errors, abbreviations and acronyms where they

do not necessarily follow a particular style. The purpose of the notes also

determines the language and structure used.

Another major issue with patient data is the privacy and ethical concerns

associated with the datasets. Each country provides legal protections for the

privacy of the patient, and ethical analysis relies on de-identified datasets

which cannot be used to re-establish patient identity [11, 12, 13, 14].

These challenges with EHRs require a more careful handling and a better

understanding of the data. For example, while pre-processing and tokenising

EHRs, the understanding of the data, it’s structure and the above mentioned

challenges will help decide the selection of natural language processiong (NLP)

techniques. Random selection of the most commonly used practises for other

text data, such as legal data or movie reviews, may not be the best choice

for EHRs. Moreover, the meaning of a token can vary depending on the

vocabulary of the language models. For example, “ED” in health related data

will most probably refer to emergency department, while in general text such

as tweets this could mean several other words including “ED Sheeran”. This

thesis provides details of the data used for the research and the measures

taken towards pre-processing data and ensuring the meaning of the data is not

compromised. This research only uses publicly available data, where patient

privacy’s legal and ethical standards are protected by de-identification of the

data.

1.2.2 Multi-Label Classifications of EHRs and label dis-

tributions

This research treats predicting medical codes as a multi-label problem. The

underlying assumption is that each patient will be associated with more than

one code. However, the multi-label classification of EHRs presents many chal-

lenges. Depending on the department or ward, some medical codes will occur
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more frequently than others. Also, some chronic conditions are more com-

mon than others. For example, according to WHO, about 422 million people

worldwide have diabetics, and around 32% of global death in 2019 occurred

due to cardiovascular disease. These factors influence the frequency and label

space of medical codes. There are thousands of ICD codes. Hence the label

space is ample, but label distributions are highly unbalanced. Label space

and distribution of labels present challenges in predicting infrequent labels.

However, infrequent labels might be as important as frequent labels depend-

ing on each patient’s conditions. For example, a person who is a few weeks

pregnant with a heart condition will be associated with labels relating to her

heart condition and pregnancy-related medical codes. Label distribution of

medical codes related to heart condition and pregnancy will not be the same.

However, knowing she is pregnant will influence the treatment plan. Hence,

the prediction of infrequent labels is equally crucial to frequent labels.

Most studies only focus on improving predictions of frequent labels [15,

16, 17]. However, in general, many patients present with many codes. Hence

predicting the most frequent codes is not sufficient. There is a need for better

multi-label techniques where the focus is also on infrequent labels, not only

frequent ones.

1.2.3 Adaptation of NLP techniques in Healthcare

Developments in machine learning, especially deep-learning, have influenced

advancements in many fields, including health applications. The rapid growth

in computational power and the availability of EHRs are the main reasons

for such changes. Rule-based systems have been the most popular option by

health professionals, with systems such as cTAKES and MetaMap considered

the leading information extraction tools [18, 19, 20, 21, 22]. However, recently

there is a shift towards favouring machine learning, more specifically deep

learning-based models [23, 24, 25, 25, 26, 27].

One of the main challenges in adapting the new NLP techniques, such
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as transformer models, in healthcare is that EHRs can be very long. Many

transformer models are restricted by a maximum sequence length that they can

encode. This presents limitations, especially for predicting infrequent labels

from long documents. Hence, there is a need to acknowledge limitations such

as sequence length and develop methods to incorporate NLP advancements for

handling long documents.

This thesis focuses on improving the accuracy of predicting medical codes

and presents options for overcoming limitations such as dealing with long doc-

uments and adapting new NLP techniques.

1.3 Contributions

The major contributions from this research are:

• Domain-specific fastText pre-trained word embeddings for various di-

mensionalities are presented. These embeddings are used to demonstrate

that word embeddings trained on health-related corpora provide an in-

crease in accuracy compared to embeddings trained on general text for

both binary and multi-label classification. Moreover, it is also shown

that health-related data from multiple sources provides an additional

benefit in increasing accuracy (Yogarajan et al., (2020a) [28], Yogarajan

et al., (2020b) [29]).

• An extensive empirical study of multi-label classifications of medical text,

where several language models are considered. Traditional classifiers,

embeddings-based neural networks and transformer variations are used

for classifications. Changes to language models, input text, pre-training

embeddings, and transfer learning are considered to improve the over-

all performances of multi-label classifiers. For some multi-label prob-

lems, new state-of-the-art results are also presented (Yogarajan et al.,

(2020b) [29], Yogarajan et. al., (2021a) [30], Yogarajan et. al., (2022)).
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• Concatenated language models are considered to handle long text doc-

uments and text data from various clinical departments or procedural

summaries, and improvements in overall micro and macro F1 scores are

achieved with fewer resources. In addition, concatenated multi-BioMed-

Transformers improve F1 scores of infrequent labels across several multi-

label problems, especially for long-tail labels (Yogarajan et al., (2021b)).

The details of the publications are provided in Section 1.4.

1.4 List of Publications

During the course of this research, the following papers have been published

in peer-reviewed conference proceedings:

[Yogarajan et. al., (2022)] Yogarajan, V., Montiel, J., Smith, T., &

Pfahringer, B. (2022). Predicting COVID-19 Patient Shielding: A Com-

prehensive Study.In Proc 34th Australasian Joint Conference on Artifi-

cial Intelligence, Sydney, Australia. Springer.

[Yogarajan et al., (2021a)] Yogarajan, V., Montiel J., Smith T., &

Pfahringer B. (2021) Transformers for Multi-label Classification of Medi-

cal Text: An Empirical Comparison. In: Tucker A., Henriques Abreu P.,

Cardoso J., Pereira Rodrigues P., Riaño D. (eds) Artificial Intelligence in

Medicine. AIME 2021. Lecture Notes in Computer Science, vol 12721.

Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6 12

[Yogarajan et al., (2020a)] Yogarajan, V., Gouk, H., Smith, T., Mayo,

M., & Pfahringer, B. (2020). Comparing High Dimensional Word Em-

beddings Trained on Medical Text to Bag-of-Words for Predicting Medi-

cal Codes. In Asian Conference on Intelligent Information and Database

Systems. Springer, Cham, pp. 97-108.

In addition, the following manuscripts are in submission:
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[Yogarajan et al., (2020b)] Yogarajan, V., Montiel, J., Smith, T., &

Pfahringer, B. (2020). Seeing The Whole Patient: Using Multi-Label

Medical Text Classification Techniques to Enhance Predictions of Med-

ical Codes. arXiv preprint arXiv:2004.00430.

[Yogarajan et. al., (2021b)] Yogarajan, V., Montiel, J., Smith, T.,

& Pfahringer, B. (2021). Concatenated BioMed-Transformers for Multi-

label Classification of Medical Text.

1.5 Organisation of the Thesis

The chapters in this thesis are organised as follows:

Chapter 2 presents an overview and statistics of binary and multi-label

classification problems that are addressed in this thesis. It also presents details

of data used for pre-training embeddings and experimental evaluations. Details

and summary statistics of the labels are presented. A summary of the details

on pre-processing text is also provided.

Chapter 3 presents the background of language models, neural networks

and other classifiers for binary and multi-label classification problems. It also

presents details on transformer models used in this research. Experimental

methodology and evaluation measures used for this research are also described.

It reviews the literature relating to domain-specific language models used for

the classification of medical text. It also reviews multi-label techniques and

biomedical natural language processing techniques used for predicting medical

codes.

Chapter 4 presents a study of predicting medical codes as a binary clas-

sification problem. New pre-trained embeddings, trained for this research, are

presented. These embeddings are used for experiments where the F1 scores of

18 binary classification problems are compared. Language models where med-

ical text is represented as bag-of-words and word embeddings are compared.

Transformer models are also used for binary classification of medical codes.
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Chapter 5 focuses on understanding and experimenting with language

models which represent medical text using fastText pre-trained embeddings

and presents results for predicting medical codes as multi-label classification.

This chapter provides a comparison of popular machine learning classifiers

used in multi-label medical text classification.

Chapter 6 presents a study of using transformer models for predicting

medical codes as multi-label problems. This chapter considers the effectiveness

and limitations of transformers. State-of-the-art results are presented and are

directly compared with the embeddings-based neural networks presented in

Chapter 6.

Chapter 7 considers the option of using multiple variations of concate-

nated language models for multi-label classification with long text and multi-

sources of texts while using fewer resources in comparison to transformer

models such as TransformerXL and Longformer. This chapter also considers

the predictive performance of classifiers for tail-end labels. Results show im-

provements in overall micro and macro F1 scores when concatenated BioMed-

Transformer models are considered. In addition, there is evidence of improve-

ments in F1 scores for tail-end labels.

Chapter 8 provides a summary of the experimental findings and contribu-

tions in this thesis. It also presents some future research directions that follow

from the work that has been undertaken in this thesis.



Chapter 2

Data and Labels

This chapter presents details of the data used for pre-training language models

and in experiments for analysis. It also introduces details of various binary

and multi-label classification problems used throughout the thesis. Overall

summary statistics of the data and labels are also presented. Moreover, this

chapter summarises the pre-processing options considered for the electronic

health records (EHRs) used in this research.

2.1 MIMIC-III

Medical Information Mart for Intensive Care (MIMIC) is one of the most

extensive publicly available medical databases [31, 32, 33]. It contains de-

identified health records of 49,785 adult patient admissions and 7,870 neonates

admissions in critical care units at the Beth Israel Deaconess Medical Center

between 2001 and 2012. The median age of the adult patient is 65.8 years,

with more male patients (55.9%) than females [31, 32, 33]. There are 26

separate tables in MIMIC-III (v1.4), including demographics, laboratory test

results, procedures, medications, and physician notes. The available data types

include billing, descriptive, dictionary, interventions, laboratory, medications,

notes, physiological information and reports.

MIMIC-III contains 15 categories of notes in free-form text. Table 2.1

outlines the available notes and percentage of occurrences for unique hospital
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Category % Category % Category %

Discharge Summary 90.34 Nursing 15.54 Rehab services 3.85

Radiology 78.0 Physician 15.4 Social work 2.39

ECG 75.71 Respiratory 6.83 Case Management 1.06

Nursing/other 59.78 General 5.43 Pharmacy 0.12

Echo 40.41 Nutrition 5.43 Consult 0.09

Table 2.1: Categories and % frequency of free-form text with unique hospital

admission counts for MIMIC-III. The total unique hospital admission count is

58,361.

patient admission. More than 90% of the unique hospital admissions contains

at least one discharge summary. The research presented in this thesis primarily

uses discharge summaries for experiments. Text summaries of categories ECG

and Radiology are used as an additional medical text in case studies (see

Chapter 7).

The main issues with clinical notes are that they are ungrammatical, con-

tain spelling errors, and are shortened with abbreviations and acronyms. Ab-

breviations and acronyms do not necessarily follow a particular rule. The

purpose of the notes also determines the language and structure used. For

example, documentation purpose reports such as patient progress reports are

written differently to discharge summaries, where they are deliberately written

in shorthand with codes and abbreviations. These features are also evident in

Figure 2.1.

2.2 eICU

The electronic Intensive Care Unit (eICU) is a database formed from the

Philips eICU program, which is a telehealth program delivering information

to caregivers and, as a result, enhancing patient care [32, 34]. It contains

de-identified data for more than 200,000 patient admitted to ICUs in 2014
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MIMIC-III - Discharge Summary (sample text)

Admission Date: [**2122-7-21**] Discharge Date: [**2122-7-

28**]

Date of Birth: [**2040-02-27**] Sex: M

Service: Medicine

Chief Complaint:

COPD exacerbation/Shortness of Breath

History of Present Illness:

82 yo M with h/o CHF, COPD on 5 L oxygen at baseline, tracheobron-

chomalacia s/p stent, preseents with acute dyspnea over several days, and

lethargy. This morning patient developed an acute worsening in dyspnea,

and called EMS. EMS found patient tachypnic at saturating 90% on 5L.

Patient was noted to be tripoding. He was given a nebulizer and brought

to the ER.

eICU - Drop down menu (sample text)

Admission Diagnosis |All Diagnosis | Non-operative |Diagnosis

|Cardiovascular |Sepsis, pulmonary |Non-operative Organ Systems

|Organ System |Cardiovascular |Was the patient admitted from the O.R.

or went to the O.R. within 4 hours of admission? |No

Figure 2.1: Sample data of MIMIC-III (top) and eICU (bottom) obtained from

the database. It includes acronyms and typos that are present in the data.
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and 2015 and monitored by programs across the United States. The dataset

includes vital sign measurements, documentation of care plan, the severity

of illness measures, and diagnosis and treatment information. The structured

data in eICU are generated through drop-down menus. The unstructured notes

were removed as part of the de-identification process. However, the structured

data presented in these drop-down menus contains a considerable amount of

text and can be concatenated to form pre-processed medical text. Each unique

patient’s eICU data has text input in tables, including treatment, admissions,

plans and goals for care, and patient’s history. These text data are concate-

nated into one string. Figure 2.1 provides an example of concatenated eICU

texts. See Appendix Figure A.1 for sample data generated through drop-down

menu before concatenated.

2.3 TREC 2017

The TREC precision medicine/clinical decision support track 2017 (TREC

2017) [35] provides a considerable corpus of health-related free-form text.

This includes 26.8 million published abstracts of medical literature listed on

PubMed Central, 241,006 clinical trials documents, and 70,025 abstracts from

recent proceedings focused on cancer therapy from American Association for

Cancer Research (AACR) and American Society of Clinical Oncology (ASCO).

The dataset from the TREC 2017 competition is used here for pre-training lan-

guage models.

2.4 Medical Text Document Length

Figure 2.2 presents word frequencies for MIMIC-III and eICU. The length of

discharge summary in MIMIC-III varies between 60 and 9,500 tokens with an

average of 1,513 tokens. In general, radiology reports contain longer docu-

ments, while ECG summaries are shorter in comparison. The longest docu-

ment in radiology is 44,613 tokens long, with the average document containing
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Figure 2.2: Number of tokens (or words as indicated in the figures) in MIMIC-

III: discharge summary (top left, blue), radiology summary (top right, blue),

ecg summary (bottom left, blue), and eICU (bottom right, green).

2,500 tokens. The maximum length of an ECG document is 1,505, and the

average is 84 tokens. The word frequency in eICU data is presented in green,

where the length of text input ranges from 10 to 1,374 tokens, with an aver-

age of 118 tokens. It is important to point out, the term ‘words’ used in this

section refers to ‘tokens’ of a sequence.

2.5 Pre-processing Text

One of the significant issues of data mining medical text in free-form is acronyms

and abbreviations. Simple changes, such as converting uppercase letters to

lowercase or omitting full stops, can result in different meaning. For example,

“Ab” refers to an antibody, while “AB” refers to abortion. Ideally, to max-

imize the use of free-form medical text “as is,” pre-processing of text should

be minimized. However, for methods such as Transformers (see Chapter 3 for

more details), where the maximum length of the input is usually limited to

512 tokens, an argument can be made favouring some pre-processing on the
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“free-form” text.

Options Pre-processing Options

Baseline Text ‘as is’

Option 1 Remove newline characters, extra spaces, tabs and carriage returns

Option 2 Downcase

Option 3 Numbers:

3a Remove token that contain no alphabetic characters

3b Remove numbers and tokens that contain numbers

Option 4 Stop tokens: nltk English stopwords

Option 5 Removing punctuation

Option 6 Lemmatize

Option 7 Truncate to a maximum length

Option 8 Remove de-identified brackets. Example:

FROM: Please call Dr.[**Last Name (STitle) 805**] office to schedule

a follow-up appointment within 7-10 days of discharge.

Her office number is [**Telephone/Fax (1) 85219**].

TO: Please call doctor office schedule follow-up appointment

within 7-10 day discharge Her office number

Option 9 Remove unique words/tokens with frequency less that 3.

Table 2.2: Some variations of pre-processing options.

Table 2.2 presents details of options for pre-processing text that were con-

sidered for experiments. For this research baseline option, and options 1, 3,

7, 8, and 9 were used. Combining various options presented in Table 2.2, the

impact of pre-processing on the overall accuracy was explored. This thesis uses

discharge summaries obtained from MIMIC-III “as is” (baseline option) for tra-

ditional classifiers such as logistic regression presented in the experiments for

binary classifications. For other experiments, including transformers, MIMIC-

III text was pre-processed by removing tokens that contain non-alphabetic

characters, including all special characters and tokens that appear in fewer

than three training documents (options 1, 3, 7, 8, and 9). As eICU is already

pre-processed extensively, no additional pre-processing was done for this re-
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Level 1

Level 2

Level 3

MIMIC-III and eICU: 18 labels

MIMIC-III: 158, eICU: 93 labels

MIMIC-III: 923, eICU: 316 labels

ICD-9

001-139 (inf)

001-009 (inf1)

001

001.0 001.1 001.9

... 009

... 137-139 (inf16)

140-239 ...

Figure 2.3: ICD-9 Hierarchy with MIMIC-III and eICU label details. All codes

that occur in less than 10 unique instances are removed.

search.

2.6 Overview: Medical Codes

Medical codes, such as the International Classification of Diseases (ICD) codes,

are widely used to describe diagnoses of patients [36]. Most hospitals manually

assign the correct codes to patient records based on doctors’ clinical diagnosis

notes. Hence, using machine learning techniques to predict ICD codes from

free-form medical text and automate the medical coding process has become

an important research avenue.

This research uses ICD-9 codes even though most countries have now

adopted ICD-10 codes. This is primarily because MIMIC-III contains ICD-9

annotations to indicate the diagnoses and diseases of admitted patients. How-

ever, there is a clear mapping of ICD-9 codes to ICD-10 codes provided by

the WHO, hence the outcome of this research can be easily adopted to other

representations of medical codes, including ICD-10 codes. There are roughly

13,000 ICD-9 codes defined, with these codes following a hierarchical struc-

ture. Figure 2.3 outlines the tree structure of ICD-9. ICD-9 codes can be

grouped into 18 main categories at the top level, divided into 167 sub-groups

and finishing with roughly 13,000 unique codes.



17

0 200 400 600 800
0

10

20

30

40

ICD-9 codes

%
of

O
cc

u
rr

en
ce

MIMIC III data

0 200 400 600 800
0

5

10

15

20

ICD-9 codes

%
of

O
cc

u
rr

en
ce

eICU data

Figure 2.4: ICD-9 code frequency. Most frequent 800 ICD-9 codes: MIMIC

III (left) and eICU (right).

2.7 Predicting ICD-9 codes

The research focuses on EHRs from two distinctly different large publicly avail-

able medical databases: MIMIC-III contains huge documents in a free-form

medical text; eICU has concise, compressed medical data presented in a semi-

structured form. Automatically predicting medical codes is the main focus of

this research, due to the availability of labels in the dataset. Medical codes,

such as ICD-9, are used to classify diseases, symptoms, signs, treatments, pro-

cedures and causes of diseases. Almost every health condition can be assigned

a unique code1.

There are 6,984 specific diagnosis ICD-9 codes and 2,032 specific procedure

ICD-9 codes reported in MIMIC-III, among the more than 50,000 patient ad-

mission records found in this database. Patient records in MIMIC-III typically

have more than one code assigned. Figure 2.4 provides an overview of the num-

ber of unique ICD-9 codes and the frequency of occurrences. It shows many

ICD-9 codes occur infrequently. Recent studies which uses MIMIC-III data

concentrate mainly on the top 25 or 50 most occurring ICD-9 codes [2, 37].

There are 152,614 unique patients with 914 unique individual ICD-9 codes

assigned with recorded text data in eICU. As observed in MIMIC-III data,

1https://www.who.int/standards/classifications/classification-of-diseases
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Figure 2.5: Percentage of occurrence of ICD-9 codes in unique hospital ad-

missions in MIMIC-III: level 1 (top), level 2 (middle) and level 3 (bottom).

The total number of hospital admissions with a recorded discharge summary

is 52,710 for MIMIC-III.

eICU data also contain a large proportion of infrequent medical codes.

Both MIMIC-III and eICU data are obtained from patients admitted to

critical care units. In general, patients are admitted to critical care units

for various health complications. This results in the use of a range of medical

codes, where many of the codes are infrequent. For the purpose of this research,

all codes in MIMIC-III and eICU that occur in fewer than ten unique hospital

admissions are removed. Consequently, as shown in Figure 2.3, MIMIC-III

and eICU datasets contain 18 labels at level 1, 158 and 93 labels respectively

at level 2, and 923 and 316 labels respectively at level 3. Table 2.3 provides

the details of level 1 ICD-9 groups and abbreviations used in this thesis.
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Figure 2.6: Percentage of occurrence of ICD-9 codes in unique patient stay in

eICU: level 1 (top), level 2 (middle) and level 3 (bottom). The total number

of unique patient stays with recorded text data is 154,882.

Figures 2.5 and 2.6 present the percentage of occurrences of level 1, 2, and 3

of ICD-9 codes for MIMIC-III and eICU respectively. Each level is considered

as a flat multi-label problem and, as seen in Figures 2.5 and 2.6, at each level

the labels are imbalanced. For simplicity, in this thesis the 18 categories of level

1 medical codes are initially considered separate binary classification problems.

That is, each of ICD-9 codes from the MIMIC-III discharge summaries or eICU

with medical text is predicted in isolation.
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ICD-9 Level 1 Grouping

001-139 infectious and parasitic diseases inf

140-239 neoplasms neop

240-279 endocrine, nutritional and metabolic diseases, and immunity disorders endo

280-289 diseases of the blood and blood-forming organs bld

290-319 mental disorders ment

320-389 diseases of the nervous system and sense organs nerv

390-459 diseases of the circulatory system circ

460-519 diseases of the respiratory system resp

520-579 diseases of the digestive system diges

580-629 diseases of the genitourinary system gen

630-679 complications of pregnancy, childbirth, and the puerperium preg

680-709 diseases of the skin and subcutaneous tissue skin

710-739 diseases of the musculoskeletal system and connective tissue musc

740-759 congenital anomalies cong

760-779 certain conditions originating in the perinatal period pren

780-799 symptoms, signs, and ill-defined conditions symp

800-999 injury and poisoning inj

E & V external causes of injury and supplemental classification e+v

Table 2.3: ICD-9 code level 1 groupings.

2.8 Overview Case studies

In addition to predicting medical codes, this research considers multi-label

classification of three case studies where commonly used medical codes are

used as labels. This section presents an overview of these three case studies.

Percentage frequency of labels for MIMIC-III and eICU for these three case

studies are presented in Figures 2.7 and 2.8 respectively.

2.8.1 Cardiovascular Disease

Cardiovascular diseases are the leading cause of deaths globally and were re-

sponsible for 32% of all global deaths in 2019, i.e., 17.9 million deaths [38].
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Figure 2.7: Percentage frequency of case studies cardiovascular disease (top),

COVID-19 patient shielding (middle) and systemic fungal or bacterial infection

(bottom) for MIMIC-III data.

American Medical Association (AMA) provides guidelines on the most com-

monly used medical codes associated with cardiovascular disease. Figure 2.9

presents an overview of the most common medical codes, based on AMA guide-

lines, associated with cardiovascular disease that are recorded for unique hos-

pital admission with free-form medical text in MIMIC-III. Figure 2.9 also

includes the level 1 ICD-9 groups associated with the codes to provide an

understanding of the hierarchical grouping of the specific labels.

3https://digital.nhs.uk/coronavirus/shielded-patient-list/methodology/annexes
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Figure 2.8: Percentage frequency of case studies cardiovascular disease (top),

COVID-19 patient shielding (middle) and systemic fungal or bacterial infection

(bottom) for eICU data.

2.8.2 COVID-19 patient shielding

The Coronavirus disease 2019 (COVID-19) pandemic has presented a con-

siderable challenge to the world health care system, and the management of

COVID-19 is an ongoing struggle. The ability to identify and protect high-risk

groups is debated by the scientific community [39, 40]. The United Kingdom

NHS Digital4 published a system to identify patients who meet high-risk cri-

teria of COVID-19 and a framework to approach risk assessments [40].

This research uses such publicly published information and predicts med-

ical codes that are listed as criteria for identifying high-risk categories from

4https://digital.nhs.uk/coronavirus/shielded-patient-list/methodology/
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Figure 2.9: Medical codes – 30 ICD-9 codes – for cardiovascular disease (CVD)

recorded for unique hospital admission with medical text in MIMIC-III.

Figure 2.10: Medical codes –42 ICD-9 category codes– for COVID-19 patient

shielding3 recorded for unique hospital admission with medical text in MIMIC-

III.

EHRs. Due to privacy and legal issues, obtaining current patient records from

hospitals is not possible. However, EHRs from MIMIC-III and eICU are used

for this research. Figure 2.10 presents ICD-9 codes associated with COVID-19

patient shielding for MIMIC-III data with recorded discharge summary. Fig-

ure 2.10 also includes the level 1 ICD-9 groups associated with the codes to

provide an understanding of the hierarchical grouping of the specific labels.
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Figure 2.11: Medical codes –73 ICD-9 category codes– for systemic fungal or

bacterial infection recorded for unique hospital admission with medical text in

MIMIC-III.

2.8.3 Systemic Fungal or Bacterial Infection

Effectively identifying infected patients with poor hospital outcomes, such as

in-hospital mortality, and managing patient care are essential aspects of health-

care systems [41]. Despite the advancements in healthcare, infections play a

significant role in morbidity and mortality [42], both in adults and infants

born with low weight [43]. One of the causes for difficulties with infectious

treatments is drug abuse. It is difficult to diagnose the fungal infections in

patients whose immune systems are compromised due to drug abuse and this,

in turn, leads to death [44].

This research uses the AMA guidelines to identify the most common med-

ical codes associated with systemic fungal or bacterial infections. Figure 2.11

presents the most common ICD-9 codes for infections for unique patient hos-

pital admission with free-form medical text in MIMIC-III. Figure 2.11 also

includes the level 1 ICD-9 groups associated with the codes to provide an

understanding of the hierarchical grouping of the specific labels.
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2.9 Statistics: Multi-label Problems

As mentioned in this chapter, several multi-label problems are considered in

this thesis. These multi-label problems are better described through informa-

tion such as number of labels, number of instances, label cardinality (LCard)

and label density (LDens). Table 2.4 presents a summary of the multi-label

problems that are considered in this research.

For multi-label problems, the notations as per Tsoumakas et al., (2009) [45]

are used:

• L = {λj : j = 1...q} refers to the finite set of labels

• D = {(xi, Yi), i = 1...m} refers to set of multi-label training examples

where xi is the feature vector and Yi ⊆ L is the set of labels of the i-th example.

Classification Problem q m LCard LDens

MIMIC-III: Level 1 18 52,722 7.06 0.59

MIMIC-III: Level 2 158 52,722 11.61 0.07

MIMIC-III: Level 3 923 52,722 14.43 0.02

MIMIC-III: Cardiovascular 30 28,154 2.51 0.08

MIMIC-III: COVID-19 42 35,458 1.84 0.04

MIMIC-III: Fungal or bacterial 73 30,814 2.06 0.03

eICU: Level 1 18 154,808 2.60 0.14

eICU: Level 2 93 154,808 3.04 0.03

eICU: Level 3 316 154,808 3.37 0.01

eICU: Cardiovascular 15 53,477 1.40 0.09

eICU: COVID-19 25 34,387 1.30 0.05

eICU: Fungal or bacterial 42 54,193 1.42 0.03

Table 2.4: Statistics of multi-label classification problems.
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Label cardinality (LCard) is the average number of labels of the examples in

a dataset:

Label cardinality =
1

m

m∑
i=1

| Yi | (2.1)

Label Density (LDens) is:

LDens =
LCard

q
(2.2)

For single-label classification LCard will always be 1 and for multi-label

problems LCard is > 1. For this research, the datasets used for experiments

has LCard varying from 1.30 to 14.43. LCard of 3.04 indicates each sample

has an average of slightly more than 3 labels associated with it.



Chapter 3

Background and Related Work

Single-label classification is learning from a set of examples associated with a

single class label λ from known class labels L, where |L| > 1. In the case of

binary classification, the class labels are |L| = 2. In a multi-label classification

problem, the examples are associated with a set of labels Y ⊆ L [46, 45]. The

difference between single-label and multi-label problems is shown below.

Table 3.1: Example of single-label classification is presented on the left where

Y ∈ {0, 1}. For multi-label example (right) Yi ⊆ L, where each Yi ∈ {0, 1}.

X1 X2 X3 X4 Y

1 0.1 0 0 1

0 0.2 1 1 0

1 0.5 2 1 1

0 0.0 2 1 0

0 0.8 3 0 1

1 0.0 0 0 1

Single-label

X1 X2 X3 X4 Y1 Y2 Y3

1 0.1 4 0 1 0 0

0 0.2 1 1 0 1 1

1 0.5 2 1 1 0 0

0 0.0 2 1 0 1 0

0 0.8 3 0 1 1 1

1 0.0 4 0 1 0 1

Multi-label

For example, patient admitted to a hospital can be associated with mul-

tiple diagnoses simultaneously. In multi-label classification, the labels can in-

clude diagnoses such as “chest pain”, “cough”, “cholesterol”, “blood pressure”,

“fever”, where each label will be ∈ {Yes, No}.
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Figure 3.1: Visual representation of word embeddings, where each word is

mapped to a vector. For simplicity, in this example, only a 2-D representation

is used for embeddings.

This research focuses on flat multi-label classification where each level in

Figure 2.3 is considered as a separate flat multi-label problem.

3.1 Text representations

An overview of bag-of-words and word embeddings is presented in this section.

3.1.1 Bag-of-Words

The bag of words (BOW) approach is a simple method for representing text

and does not consider the order of words in a document. A document is

represented as a sparse vector. Each element stores either the number of

occurrences of a word or a binary value indicating that the word is present

in the document. BOW is considered to be a relatively simple yet effective

method [47, 48]. Depending on the size of the document and vocabulary

selection, the resulting vector can be very sparse, making it challenging to

model and extract information from the text document.
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3.1.2 Word Embeddings

Embedding words in vector spaces that encode semantics has become popular

in recent years [47, 49]. In general, for many NLP tasks, continuous word

representations trained on large unlabelled datasets have been shown to im-

prove performance relative to other representations [50, 51, 48]. Figure 3.1

provides a pictorial example of how these vector spaces may be organised.

Word embeddings are motivated by the distributional hypothesis [52], which

states there is a higher chance that words with similar meaning will occur in

similar contexts. By examining a large corpus, it is possible to learn embed-

dings that capture the semantic similarity between words, as inferred by the

contexts they are seen in. Word embeddings provide a means for effective

representation learning without the complexity of deep neural networks, and

can be trained efficiently on large datasets [53].

The Word2vec model uses a distributed representation of a word. There

are two types of Word2vec: continuous bag-of-words (CBOW) and skip-grams

[54]. The CBOW model predicts the specific word from the source context,

and skip-gram does the inverse, predicting the source context from the specific

word. For example, in Figure 3.2, a CBOW model would predict the word

‘dizzy’ from the words ‘woman’, ‘with’, ‘patches’, ‘visited’, while skip-gram

would learn by attempting to predict the words ‘woman’, ‘with’, ‘patches’,

‘visited’ from the word ‘dizzy’. Both CBOW and skip-gram are based on feed-

forward neural network architecture.

Figure 3.2: An example of context window for the word ‘dizzy’.

Formally, for a sequence of words w1, w2, ..., wT with number of token T ,
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context words of window c left and right of the target word, CBOW maximises:

1

T

T∑
t=1

log p(wt|
∑

−c≤j≤c,j 6=0

wt+j), (3.1)

and skip-gram maximises:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt). (3.2)

For target embeddings uw and context embeddings vw the probability is defined

as a Softmax. For example, skip-gram will use:

p(wc|wt) =
exp(vTwc

uwt)∑W
w=1 exp(vTwuwt)

. (3.3)

However, as mentioned in Mikolov et al. (2013) [55], Softmax is computa-

tionally expensive, as the complexity of the gradient is proportional to the

vocabulary size of W . Solutions to this issue include Hierarchical Softmax

and the more popular negative sampling loss function [55]. Hierarchical Soft-

max improves the computational complexity from O(W ) to O(log2W ), hence

reduces the number of operations needed for the algorithm. The negative sam-

ples are pulled from the distribution of Pn(w), and as proven by Mikolov, et al.,

(2013) [55], a transformed uni-gram distribution U(w)3/4/Z performs better

than unigram and uniform distributions on several tasks including language

modeling.

FastText [50] supports both the skip-gram and CBOW methods for train-

ing word embeddings. In contrast to Word2Vec, where distinct word embed-

dings are learnt directly from words, fastText represents each word as a bag

of character n-grams, and word embeddings are obtained by summing these

character n-gram representations. For example, the tri-grams for the word

“apple” are “app”, “ppl”, and “ple”. The resulting word embedding vector for

“apple” will be the sum of the vectors of each of these three tri-grams. This

modelling choice enables fastText to produce vectors even for novel words,

out-of-vocabulary words, that were not present in the training data, as long

as at least some of the n-grams have been seen before. The skip-gram loss
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function used in fastText is given by:
T∑
t=1

[
∑
c∈Ct

l(s(wt, wc)) +
∑

n∈Nt,c

l(−s(wt, n))] (3.4)

where the logistic loss function is l : x 7→ log(1+e−x), and the model is trained

using a corpus T , Ct is the set of word indices surrounding a target word wt,

and Nt,c refers to the random set of words selected from the vocabulary for

each window for negative sampling. Similarity measures between two words

are indicated by s(wt, wc), where for vanilla skip-gram this will be uTwt
vwc .

The classification problems encountered in natural language processing typ-

ically involve predicting labels for entire documents rather than individual

words. One must define a representation for documents that can be easily

constructed using the embeddings learned for words. Document embeddings

is obtained by computing the vector sum of the embeddings for each word

in the document. This vector sum is then normalised to have length one,

to ensure that documents of different lengths have representations of similar

magnitudes.

3.2 Classifiers

This section presents details of the classifiers used in this research. In order to

differentiate and group the classifiers, this thesis refers to logistic regression,

random forest, multinomial Naive Bayes, binary relevance, classifier chains and

k-nearest neighbor classifier as ‘traditional’ classifiers. Transformers play a big

part throughout the thesis, and hence, are grouped and presented separately.

This thesis only considers text data, hence only presents word embeddings-

based neural networks. Table 3.2 presents a summary of classifier groups used

in this thesis.

3.2.1 Traditional Classifiers

Logistic regression is a popular statistical model developed by David Cox in

1958 [56]. It is used to analyse datasets where one or more independent vari-
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Grouping Classifiers

‘Traditional’ classifiers - Logistic Regression (LR)

- Random Forest (RF)

- Multinomial Naive Bayes

- Binary Relevance (BR)

- Classifier Chains (CC)

- Multi-label k-nearest neighbor classifier (MLkNN)

Word embeddings-based - Long Short Term Memory networks (LSTM)

Neural Networks - Gated Recurrent Units (GRU)

- CNNText

- Convolutional Attention for Multi-Label classification (CAML)

- DR-CAML

- Hierarchical attention networks (HAN)

Transformers - BERT

- ClinicalBERT

- PubMedBERT

- RoBERTa

- BioMed-RoBERTa-base

- MeDAL-electra

- Longformer

- TransformerXL

Table 3.2: Classifiers used in this research. For the purpose of this thesis,

classifiers are grouped together in three main groups.

ables determine a binary outcome. A standard logistic function is a sigmoid

function where the outcome is between 0 and 1. This study uses logistic regres-

sion based on Le Cessie and Van Houwelingen (1992) [57], where the statistical

model is combined with a ridge estimator. This enables the possibility of han-

dling situations where covariates are highly correlated.

Random forest [58] creates an ensemble of multiple random decision trees

that are used for prediction. Unlike decision trees, random forests are less

susceptible to over-fitting as the number of trees increases. The ensemble

produces predictions by aggregating the predictions of the internal members,

for example, using majority vote for classification. The number of trees can
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be customised.

Naive Bayes [59] is an easy to build supervised learning algorithm. It ap-

plies Bayes’ theorem with the “naive” assumption of independence, i.e. strong

independence assumptions between every pair of features. One of the main ad-

vantages of the Naive Bayes algorithm is that it only requires a small amount

of training data for classification. For features f1 to fn, multinomial Naive

Bayes assumes that each p(fi|c) is a multinomial distribution. Multinomial

Naive Bayes works well for data that can be turned into counts, such as word

counts in a document.

The first and simplest multi-label classification algorithm is called binary

relevance (BR) [60, 46]. A separate binary classification model is created for

each label, such that any text with that label is a positive instance, i.e. one

versus all. To predict the labels for a new text, each classifier decides if the

text is in or out of the class it has been trained to recognise. The overall

output for the new text is the set of all positive labels. It is essential to point

out that binary relevance ignores any potential relationships between labels.

BR models make their predictions independently. However, for multi-label

problems where there is a strong correlation between labels, a model could

benefit from the result for another label when making its predictions. Classifier

chains are constructed by training a sequence of binary classifiers—one for each

label in the multi-label classification problem being considered. BR models can

be ‘chained’ together into a sequence such that the predictions made by earlier

classifiers are made available as additional features for the next classifier. Such

a configuration is called a classifier chain (CC) [61, 62].

Denote by hj : X × {0, 1}j−1 → {0, 1} the classifier corresponding to label

j, where X is the feature space. Each classifier in the chain is applied to

produce a prediction,

y
(i)
j = hj(~x

(i)
j ), (3.5)

where ~x
(i)
1 is a feature vector, and ~x

(i)
j = [~x

(i)
j−1, y

(i)
j−1] when j > 1. The square

brackets represent concatenation.
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The effectiveness of CC is influenced by the chaining order over the class

labels. Ensembles of classifier chains built with diverse random chaining orders

can help account for the effect of chaining order.

Multi-label k-nearest neighbor classifier (MLKNN) [63] is a multi-label vari-

ant of the standard k-Nearest Neighbor (kNN) algorithm that predicts the set

of the most common labels among the k-nearest neighbours. In order to avoid

any anomalies inside the neighbourhood, a Bayesian calibration step refines

the raw predictions. An essential characteristic of this approach is its excellent

scalability with respect to the number of labels: the set of nearest neighbours

needs to be calculated only once for a given query text.

3.2.2 Word Embeddings-based Neural Networks

Although the basic concepts of neural networks have been around since the

1940s, the development of technologies and hardware have enabled the possi-

bilities of building deeper and more efficient architectures [64, 47, 49]. A simple

neural network consists of an input layer, hidden layer and output layer, where

the values of hidden layers are inputs for the output layer. For an input of

x = [x1, x2, ..., xn] and weight vector W = [w1, w2, ..., wn], with a bias b and

the activation function g, the resulting neuron is:

y = g(
∑

xi · wi + b) (3.6)

The most common activation functions include

sigmoid function: σ(x) =
1

1 + e−x

rectified linear unit (ReLU): ReLU(x) = max(x, 0)

hyperbolic tangent: tanh(x) =
ex − e−x

ex + e−x

The weight W and bias b are learnt while training a network, and loss

functions are used to minimise the error and optimise, and are generally solved

via gradient-based methods. Overfitting problems are minimised by using
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techniques such as Early Stopping [65], regularisation or dropout [66] and

data augmentation.

Recurrent Neural Networks (RNN) [67, 49] are a group of neural networks

that are designed to handle sequential data, such as text, where the data

contains complex temporal dependencies and hidden information. In contrast

to feed-forward networks where information only flows in one direction, RNNs

have loops that allow information from the past to be used in the future. This

enables the possibility of differentiating between “patient was admitted” and

“admitted to his crimes”. One significant issue with RNNs is the vanishing

gradient problem. When the operation of backpropagation through time is

done, the weights are multiplied many times, resulting in a small (vanishing)

or big (exploding) value.

The solution to this issue with RNNs is a variant of RNNs called Long Short

Term Memory networks (LSTM) [68]. LSTM consists of an innovative gating

mechanism, input gate, forget gate, and output gate, ensuring a constant error

flow and avoiding long-term dependency problems. The memory in LSTM is

stored in an internal state, and the three gates play a vital role in deciding

which information be included, added or removed from the memory. Over time,

the memory cells learn which information is essential based on the weights.

Gated Recurrent Units (GRU) [69] are a more simple variant of LSTM.

Gated Recurrent Units (GRU) [69] are a type of recurrent neural network.

GRU networks do not include separate memory cells and have fewer parameters

than LSTM networks. GRU features the additive component, allowing each

unit to remember a feature in input for a more extended series of steps.

For an input vector xt, at time t, vectors for update gate (zt), reset gate

(rt) and output (ht) can be calculated as follows:

zt = σ(Wz · [ht−1, xt] + bz)

rt = σ(Wr · [ht−1, xt] + br)

h∗t = tanh(Wh · [rt × ht−1, xt] + bh)

ht = (1− zt)× ht−1 + zt × h∗t

(3.7)
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Figure 3.3: Gated Recurrent Unit (GRU) architecture.

where Wz, Wr, and Wh are weight matrices to train; bz, br and bh are biases and

σ is the sigmoid activation function. Like LSTM, GRU units are also designed

to handle vanishing gradients better. Bidirectional GRU (Bi-GRU) considers

sequences from right to left and the reverse order. A simple architecture of

GRU is presented in Figure 3.3. Here update gate helps model determine how

much of the information passed from previous steps to future. Reset gate is

used to determine how much of the past information will be forgotten. The

ability to store and filter information through update and reset gates helps

eliminate vanishing gradient problem.

CNNText [1] combines one-dimensional convolutions with a max-over-time

pooling layer and a fully connected layer. If xi:i+j is a concatenation of words

from a sentence, each word, xi, xi+1, ... is mapped to its k-dimensional embed-

dings using the lookup table of word embeddings. A new feature is produced

using convolution operation, where a filter w ∈ Rhk is applied to a window of

h words. Max-over-time pooling is applied over the feature map to capture

the most important feature value. In general, multiple filters are used with

varying window sizes. The final prediction is made by computing a weighted

combination of the pooled values and applying a sigmoid function. A simple

architecture of CNNText is presented in Figure 3.4.
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Figure 3.4: CNNText [1] architecture.

Mullenbach et al. (2018) [2] present Convolutional Attention for Multi-

Label classification (CAML), which achieved SOTA results among the embeddings-

based neural networks for predicting ICD-9 codes from MIMIC III data [70].

CAML combines convolution networks with an attention mechanism. Simul-

taneously, a second module is used to learn embeddings of the descriptions

of ICD-9 codes to improve predictions of less frequent labels and target reg-

ularisation. For each word in a given document, word embeddings are con-

catenated into a matrix, and a one-dimensional convolution layer is used to

combine these adjacent embeddings. The document is represented by matrix

H ∈ Rdc×N where dc is the size of convolutional filter and N is the length

of the document. A per-label attention mechanism is applied, where HTul is

computed for a given label l and a vector parameter ul ∈ Rdc . The resulting

vector is passed through a softmax operation with an output αl. The vector

representation for each label is calculated using:

vl =
N∑

n=1

αl,nhn (3.8)

The probability for l is calculated using another linear layer and a sigmoid

transformation:

ŷl = σ(βT
l vl + bl), (3.9)

for a vector of prediction weights βl ∈ Rdc and scalar offset bl. Binary cross-

entropy loss and the l2-norm of the model weights are minimized using the
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Figure 3.5: CAML [2] architecture.

Adam [71] optimizer. Figure 3.5 presents an overview of the CAML archi-

tecture. A regularising objective with a trade-off hyperparameter was added

to the loss function of CAML. This variant is called Description Regularized-

CAML (DR-CAML) [2].

Hierarchical Attention Networks (HAN) [3] is one of the first networks to

considers the hierarchical structure of documents and mirror the structure by

breaking the documents into sentences and then each sentence into words. As

shown in Figure 3.6, words of each sentence are encoded, and an attention

mechanism is applied, which results in a sentence vector. The same process

is repeated for sentences to build the document representations, where the

input is the sentence vector. The general idea of the attention mechanism is

that not every word in a sentence and every sentence in a document is equally

important to understand the main message. HAN incorporates two BiGRU

layers with individual attention, where the first layer operates at word-level

and receives word embeddings for every word in a sentence. Bahdanau-style

attention [72] is used in HAN, where tanh is used as activation function:

ât = a(ht) = tanh(Waht) (3.10)

This is followed by a softmax function, where α = softmax(â). Finally, the

weights are multiplied with their corresponding hidden states and the products

are summed up to obtain adjusted hidden state. For example, a sentence vector
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Figure 3.6: HAN [3] architecture.

in HAN is:

si =
∑
t

αithit (3.11)

The second BiGRU layer performs similar calculations using the sentence vec-

tor to obtain the document vector. For this research, the option of using

Bidirectional LSTM instead of BiGRU as the two layers is also explored.

3.2.3 Transformers

Transformers [4] are one of the main recent developments in NLP which have

achieved state-of-the-art (SOTA) results in many language tasks [73, 74, 75].

Transformers are feed-forward models based on the self-attention mechanism

with no recurrence. Self-attention is a method for considering the context

of a word while processing it. Similar to the sequence-to-sequence attention

mechanism, self-attention is considered a soft measure where multiple words

are considered. Transformers models take all the tokens in the sequence at

once in parallel, enabling the capture of long-distance dependencies.
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Equation 3.12 presents the definition of self-attention, where the input em-

beddings of sequence x1, x2, ..., xn is mapped to an adapted sequence z1, z2, ..., zn.

For every input xi three vectors, query qi, key ki and value vi, are calculated.

Attention function are computed for a set of queries simultaneously and are

packed together into a matrixQ. Similarly, keys and values are packed together

into matrices K and V . Weights of the matrices are learnt during training,

which are used to calculated these three vectors mentioned. Self-attention is

also known as the scaled dot-product attention. For the linear projections Q,

K, V , self-attention is [4]:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.12)

where the input queries and keys are of dimension dk, and values of dimension

dv. Multiple weight matrices produce different query, key and value vectors

for the same word, allowing the model to have multiple representations, i.e.

the transformer model uses multiple attention heads [76]. Figure 3.7 presents

the architecture of BERT-base where the encoder portion of the transformer

is shown. Vaswani et al. (2017) [4] presents more details on transformer

architecture.

Masked language modelling (MLM) and next sentence prediction (NSP)

are the two most common methods used during training. MLM randomly

omits words from a sentence and trains the model to predict the missing or

full words based on context. NSP trains sentence pairs together, where two

sentences are used as inputs. NSP then trains the model to discern whether

or not the second sentence is a valid continuation of the first. Whole-word

masking (WWM) is a modification of the MLM idea; however, with WWM,

if a subword is chosen, then the whole word must be masked, forcing the lan-

guage models to capture more contextual semantic dependencies. Electra [77]

is a sample-efficient alternative to MLM, which corrupts the input by replac-

ing some tokens with plausible alternatives sampled from a small generator

network, instead of masking the input, as done in MLM.

After pre-training the model, the BERT variations are fine-tuned on domain-



41

Figure 3.7: BERT-base [4] Architecture. Details of a single encoder is shown

on the right hand side of the figure.

Figure 3.8: Example of BERT-base model for multi-label classification.
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specific data. All the parameters are fine-tuned end-to-end. Pre-trained trans-

former models learn good, context-dependent ways of representing text se-

quences used on a specific downstream task. The models only need to fine-

tune their representations to perform a particular task. When compared to

pre-training transformers, fine-tuning is relatively inexpensive. Continuous

training approach would initialize with the standard BERT model, pre-trained

using Wikipedia and BookCorpus. It then continues the pre-training process

with masked language modelling and next sentence prediction using domain-

specific data. In the case of continuous training, the vocabulary is the same

as the original BERT model, which is considered a disadvantage for domain-

specific task [74]. For this research, PubMedBERT [74], a domain-specific

BERT based model trained from scratch using biomedical related text, is used.

A major advantage of using PubMedBERT is it trained on only in-domain vo-

cabulary. A summary of Transformer models used in this thesis is presented

in Table 3.3, and each is further described in the following sections.

BERT (Bidirectional Encoder Representations from Transformers) [75] is a

deep neural network model that applies bidirectional training of a transformer

encoder architecture [4] to language modelling. The BERT model relies on

two pre-training tasks: masked language modelling and next sentence pre-

diction. Transformer models such as BERT use WordPiece tokenization [83]

to generate its vocabulary, where the tokens consist of words, subwords, and

characters. This allows better handling of out-of-vocabulary (OOV) words, as

OOV terms can be identified by combining WordPiece tokens.The BERT-base

model is made up of 12 layers, 768 hidden units or feature numbers and 12

self-attention heads. BERT-base is neural network architecture which contains

110M parameters and is pre-trained on English Wikipedia and BookCorpus.

The ClinicalBERT [78] model follows the same model architecture as the

BERT-base model [75] and was further pre-trained on all notes from MIMIC-

III. Figure 3.7 presents the BERT-base architecture where 12 encoders are

1MeDAL dataset is created from clinical abbreviations obtained from PubMed abstracts.
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Transformers Training Data Training Details

BERT [75] Books + Wiki (16GB) MLM and NSP

ClinicalBERT [78] MIMIC-III (3.7GB) continual pre-training

PubMedBERT [74] PubMed (21GB) WWM, from scratch

RoBERTa [79] Web crawl (160GB) MLM

BioMed-RoBERTa-base [80] Scientific papers continual pre-training

MeDAL-electra [81] MeDAL dataset1 Electra, continual pre-training

Longformer [82] Can handle long documents.

Provides computational and memory efficiency.

Training Data: Books + Wiki + Realnews + Stories

TransformerXL [73] Can handle long documents.

Models longer-term dependency by combining

recurrence and relative positional encoding.

Training Data: general text including Wiki

Table 3.3: Summary of Transformer Models. Except for Longformer and

TransformerXL, all other models included in this research can only handle

a sequence length of up to 512 tokens.

sequentially stacked. Each encoder includes a transformer with its own at-

tention head, as shown in the figure. Figure 3.8 presents an example of a

BERT-base model used for a multi-label classification task.

PubMedBERT [74] used the same architecture as the BERT-base model.

However, unlike ClinicalBERT, where the general-domain pre-trained BERT

model was further pre-trained using domain-specific data, PubMedBERT is

domain-specifically pre-trained from scratch to better capture the biomedi-

cal language [74]. PubMedBERT is pre-trained from scratch using abstracts

from PubMed and full-text articles from PubMedCentral. This model achieves

state-of-the-art performance on many biomedical natural language processing

tasks and holds the top score on the Biomedical Language Understanding and

Reasoning Benchmark (BLURB) [74].

RoBERTa [79] is a robustly optimised BERT approach with improved train-

ing methodology and 160GB of general-domain training data, in comparison
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to the 16GB data used in BERT. RoBERTa uses dynamic masking while train-

ing, where masking patterns are generated each time a sequence is fed into the

model. Also, unlike BERT models, in RoBERTa models, next sentence pre-

diction (NSP) loss is removed, and full sentences from one or more documents

with the maximum length of 512 tokens are used. Liu et al. (2019) show

RoBERTa outperforming BERT models on all GLUE benchmark tasks [84].

BioMed-RoBERTa-base [80] is based on the RoBERTa-base [79] architecture.

RoBERTa-base was continuously pre-trained using 2.68 million scientific pa-

pers from the Semantic Scholar corpus. Gururangan et al. (2020) [80] show

that the domain-specifically pre-trained model BioMed-RoBERTa-base out-

performs RoBERTa-base on biomedical domain-specific tasks.

MeDAL-electra [81] is a continually pre-trained model from Electra-small

using the MeDAL dataset. The MeDAL dataset is a publically available

dataset created from abbreviations used in clinical/medical domains, obtained

from PubMed abstracts.

Longformer [82] is a transformer model designed to handle longer sequences

without the limitation of the maximum token size of 512, set by other trans-

formers such as the BERT model. Model was trained using Book corpus,

English Wikipedia, Realnews dataset and the Stories corpus. Longformer re-

duces the model complexity by reformulating the self-attention computation.

This modified self-attention operation scales linearly with sequence length,

instead of quadratically as in the original transformer models, making it pos-

sible to handle long documents. Longformer combines attention patterns such

as sliding window, dilated sliding window and global attention (see Beltagy

et al. (2020) [82] for more details). When compared to Equation 3.12, the

longformer uses two sets of projections, one to compute attention scores for

sliding window and another for global attention, providing the needed flexi-

bility for the best performance on downstream tasks [82]. When compared to

Transformer-XL [73], which can also handle long documents, the longformer

is not restricted to the left-to-right approach of processing the documents.
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TransformerXL [73] is an architecture that enables the representation of

language and learn dependency beyond a predefined context length, without

disrupting temporal coherence. In general, transformers are implemented with

fixed-length context. Hence, long documents are truncated to the fixed-length

segments and trained. The recurrence mechanism is introduced in Trans-

formerXL, where during training, a hidden state sequence for the previous

segment is reused [73]. This supports long-term dependency, and employs

relative positional encoding scheme to avoid temporal confusion.

3.3 Experimental Methodology

This thesis makes use of several open-source frameworks. Neural network mod-

els presented in this thesis are mostly implemented using PyTorch2, with some

in Keras/Tensorflow3. All evaluations were done using sklearn metrics4. Trans-

former implementations are based on the open-source PyTorch-transformer

repository.5

Transformer models were fine-tuned on all layers without freezing. Fast-

Text is used for training word embeddings and representing documents. Adam [71],

an adaptive learning rate optimisation algorithm, is used as the optimiser for

all neural networks presented in this thesis. A non-linear sigmoid function

f(z) = 1
1+e−z , with a range of 0 to 1 as shown in Figure 3.9, is used as the

activation function. Binary-cross-entrophy [85] loss, Equation 3.13, over each

label is used for multi-label classification.

LossBCE(X, y) = −
L∑
l=1

(yllog(ŷl) + (1− yl)log(1− ŷl)) (3.13)

For binary classification, the Waikato Environment for Knowledge Analysis

(WEKA) [86, 87] framework is used to train traditional classifiers on these

documents. For multi-label classification MEKA [88], an open-source Java

2https://github.com/pytorch/pytorch
3https://www.tensorflow.org/
4https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
5https://github.com/huggingface/transformers



46

Figure 3.9: Sigmoid Function

system specifically designed to support multi-label classification experiments,

is used for traditional classifiers.

All experiments using traditional classifiers are validated through 10-fold-

cross validation. Due to resource restrictions, all neural network results use

train test hold-out set validation where the results are averaged over three

runs. It is important to point out that averaging results over three runs is

not enough and 10-fold cross validation is definitely more reliable. However,

the variations of these three independent runs are usually within a range of

±0.015.

3.4 Evaluation Measures

Compared to single-label classification, multi-label classification requires dif-

ferent evaluation measures [46, 45, 89]. Example-based evaluation methods are

calculated based on the average differences of the actual and predicted sets of

labels over all test examples. Label-based evaluation methods calculate sepa-

rate evaluations for each label and then averages over all labels. This thesis

uses label-based classification metrics micro-F1 and macro-F1, and example-

based classification metrics Hamming loss, and example-based ranking metrics

ranking loss for evaluations. Label-based jaccard similarity scores are also cal-

culated. For binary classification problems considering the imbalanced nature

of the data, F1 scores are used as evaluation metrics. This section presents an
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overview of such evaluation measures.

For multi-label problems, the notations as per Tsoumakas et al. (2009) [45]

are used:

• L = {λj : j = 1...q} refers to the finite set of labels

• D = {(xi, Yi), i = 1...m} refers to sets of multi-label training examples

where xi is the feature vector and Yi ⊆ L is the set of labels of the i-th example.

3.4.1 F-measure

For binary classification or individual labels of multi-label classification, F-

measure or F1-score is used as the primary evaluation measure. F1-score is

calculated by,

P =
true positive rate

true positive rate+ false positive rate

R =
true positive rate

true positive rate+ false negative rate

F1 = 2× P ×R
P +R

(3.14)

where P is precision and R is recall.

For multi-label classification problems, label-wise macro and micro F1

scores are used. Macro-F1 is the mean of the label-wise F1 score. Micro-F1 is

the harmonic mean between the micro-recall and micro-precision.

3.4.2 Hamming Loss

Hamming loss [90] is defined as:

Hamming-Loss =
1

m

m∑
i=1

| Yi∆Zi |
| L |

, (3.15)

where Zi is the set of labels predicted and ∆ stands for the symmetric difference

of two sets, which is equivalent to the XOR operation in Boolean logic [45].
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3.4.3 Ranking Loss

Ranking Loss compares the relevant labels to irrelevant labels and calculates

the number of times that irrelevant labels are ranked lower than relevant la-

bels [45], given by

R-Loss =
1

m

m∑
i=1

1

| Yi || Yi |
| {(λa, λb) : ri(λa) > ri(λb), (λa, λb) ∈ Yi × Yi} |,

(3.16)

where Yi is the complementary set of Yi with respect to L.

3.4.4 Jaccard Similarity

Jaccard similarity index compares two sets of labels and compares the labels

that are shared and are distinct. It is calculated as follows:

J(A,B) =
| A ∩B |
| A ∪B |

=
| A ∩B |

| A | + | B | − | A ∩B |
(3.17)

3.4.5 Statistical assessment of differences

Non-parametric tests are used to verify statistically significant differences be-

tween algorithms, as described in [91, 92]. First, Davenport’s corrected Fried-

man test is used with α = 0.05 to check if the null hypothesis that all algo-

rithms perform the same can be rejected. If there are differences, then the

post-hoc Nemenyi test determines the critical difference (CD) to identify algo-

rithms with different performance. The critical difference plots are presented

in the results chapters.

3.5 Related Work

This section presents a review of the literature related to the research presented

in this thesis.
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3.5.1 Multi-label Learning

Traditionally, multi-label classification methods are grouped into two main

categories, “problem transformation” and “algorithm adaptation” methods.

The problem transformation approach is when a multi-label problem is con-

verted into multiple single-label classification problems [61, 62, 89]. Algorithm

adaptation is when a specific algorithm for single-label classification problem is

adapted to directly predict multi-labels [46, 93, 89, 94]. Development of multi-

label classifiers for dealing with class imbalance incorporated ideas such as

under/over-sampling, synthetic training sample generation and cost-sensitive

learning [95].

For large scale or “extreme” multi-label classification, where labels ranged

from a few hundred to a million labels, methods are categorised into embedding

and tree-based methods. This thesis considers multi-label problems with label

sizes in tens and hundreds, and hence the problems are not extreme. However,

if all available MIMIC-III labels were considered, this would be a possible

avenue to explore.

Hierarchical multi-label classification is a special case of multi-label classi-

fication that categorises a hierarchical relationship to form a structure like a

Tree or Directed Acyclic Graph [96, 97, 98]. For a tree hierarchy, such as that

of ICD-9 hierarchy, each class only has one parent class. This PhD research

restricts itself to flat multi-label problems. However, the hierarchical approach

is a promising avenue to consider in future.

There are many examples of advancements of deep-learning used in multi-

label text classification problems. See Sections 3.5.2 and 3.2.2 for examples

and details of such advancements.
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3.5.2 Natural Language Processing related to Health

care

This section presents a brief review of domain-specific NLP approaches used

in health care and some examples of existing systems. Medical text processing

and mining can incorporate rule-based algorithms, statistical and machine

learning-based algorithms and hybrid models (where rule-based and machine

learning-based are combined). Early approaches of clinical text mining using

NLP are primarily rule-based. Recently, there is a shift in favouring machine

learning or, more specifically, deep learning-based models. Hybrid models are

popular where the availability of labelled data is limited, and the use of expert

knowledge is a possibility [99, 100].

Rule-based techniques use dictionaries and hand-coded rules and rely on

patterns expressed as regular expressions that are defined and tuned by humans

[10, 101, 102, 100]. Rule-based systems also require an expert to provide

knowledge of these rules. They do not need significant training data and are

easily modifiable. However, rule-based methods have limitations, as they do

require additional data curation or annotation by domain experts [102, 103].

Also, with rule-based systems, the rules in one system are not easily adopted

by another system [104].

Machine learning approaches, alternatively, can be trained to recognise pat-

terns and predict and extract information automatically. However, the main

downside to machine learning techniques is that they require significantly large

labelled datasets, as well as feature engineering [10, 103]. Machine learning

systems perform worse than rule-based systems on rarely occurring labels due

to a dearth of training data.

Over the years, rule-based and machine learning-based tools have been

developed to aid information extraction from free-form medical text. Some

examples of such early developments of information extraction (IE) systems

using medical text data include MedLEE (Medical Language Extraction and
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Encoding System) [105], SPRUS (Special Purpose Radiology Understanding

System) [106], SymText (Symbolic Text processor) [107], Medtex [108], SPE-

CIALIST system and MetaMap [109]. Apache cTAKES (clinical Text Analysis

and Knowledge Extraction System), arguably the most popular open-source

NLP based information extraction tool, uses techniques from both rule-based

systems and machine learning for EHR in free-form text [18, 19, 20, 21, 22].

Limitations to the systems mentioned above include: increase in processing

time based on the complexity of the text; reduced accuracy in the presence of

ambiguity [18, 110]; the need to maintain a lexically variant-rich dictionary;

and failing to recognise complex levels of synonymy [111].

The last decade has seen several examples of deep learning techniques ap-

plied to clinical data. For example, a study of early detection of heart failure

on longitudinal EHR data used an RNN with word embeddings to train vec-

tor representations of diagnosis codes, medications codes and procedure codes

[26]. Che et al. (2015) [112] use deep learning algorithms to predict physiologic

patterns associated with known clinical phenotypes. There are several other

examples of systems using RNNs with embeddings layers or conditional ran-

dom field (CRF) on prediction based research, and information extraction of

unstructured text EHR data [23, 24, 25, 25]. Examples of using deep learning

models to achieve state-of-the-art (SOTA) performance in health data analysis

include ICU mortality prediction [27], phenotype discovery [113] and disease

prediction [114]. Purushotham et al., (2017) [115] use MIMIC-III to present

benchmark models on clinical prediction tasks such as mortality prediction,

forecasting length of stay, and ICD-9 code group prediction. Since 2019, there

exists examples of systems where BERT-base models are used in clinical ap-

plications [116, 117].

Many NLP tasks, health-related or otherwise, use word embeddings to

represent text data, due to their ability to encode semantic similarity between

words. Word embeddings represent a single word or sub-word as vectors. Ex-

amples of the use of word embeddings for health applications include: learning
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medical concepts such as diagnosis codes, medication codes, procedure codes

[118], early detection of heart failure [26], and medical event detection [23].

Many previous techniques have used the word2vec [53, 55] or GloVe [119]

packages for training embeddings. One issue with the methods employed by

word2vec and GloVe is that they cannot produce embeddings for words that

were not seen during training. In contrast, fastText [50, 51, 48] makes use of

character-level n-grams, which enables one to generate embeddings for words

that do not appear in the training vocabulary. The use of character-level n-

grams is of particular importance in the medical domain, where a significant

number of compound words are used [37, 120, 121].

Applications in healthcare use standard Wikipedia or common-crawl text

to train word embeddings. In cases where the health-related text is used to

train word embeddings, most published models only use between 200 and 400

dimensions [122, 123]. Studies show that the use of large corpora from more

than one source can improve the performance of embeddings [124, 125]. Chen

et al., (2019) [120] and Zhang et al., (2019) [121] provide embeddings on health-

related texts, with word embeddings of 700- and 200- dimensional embeddings

respectively. Zhang et al., (2019) [121] make use of the sub-word information

during the training of word embeddings. This thesis also makes use of sub-word

information during the training of word embeddings. Embeddings presented

in this thesis make use of large corpora of health-related text from multiple

sources (see Chapter 2 and Chapter 4 for details).

Word embeddings pre-trained on health-related text have shown to perform

better on health-related tasks than those trained on general text. Examples

of such publicly available embeddings trained on health-related text include

BioSentVec [120] pre-trained on PubMed and MIMIC-III data using fastText,

and BioWordVec [121] pre-trained on PubMed and MeSH data using sent2vec.

Before 2018, RNNs with word embeddings were the main systems used for

NLP tasks. However, in the last two to three years, there have been con-

siderable advancements in transformer models, which have shown substantial
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improvements in many NLP tasks, including BioNLP tasks. With minimum

effort, transfer learning of pre-trained models by fine-tuning on downstream

supervised tasks achieves very good results [16, 126]. For example, PubMed-

BERT [74] achieves SOTA performance on many biomedical natural language

processing tasks such as named entity recognition, question answering and

relation extraction and holds the top score on the Biomedical Language Un-

derstanding and Reasoning Benchmark (BLURB) [74]. Yang et al. (2020) [127]

showed the RoBERTa-MIMIC model outperforming SOTA methods for clini-

cal concept extraction tasks.

The main observation with the clinical tasks that use transformer mod-

els is that the input text sequence cannot exceed 512 tokens [128]. Gao et

al. (2021) [128] presents evidence to show that BERT-based models under-

perform in clinical text classification tasks when long data such as MIMIC-III

is used, when compared to the baseline embeddings based neural networks

such as CNN. Si and Roberts (2021) [129] presents an alternative system to

overcome the issue with long documents by taking a similar approach to HAN

and implementing a hierarchical transformer network. Transformer-based en-

coders are used to learn from words to sentences, sentences to notes and notes

to patients progressively (see Section 3.2.2 for details on HAN). The trans-

former based HAN system presents SOTA methods for in-hospital mortality

prediction and phenotype predictions using MIMIC-III. However, it requires

considerable computational resources [129].

As with word embeddings, there are also many publicly available domain-

specific transformer models, such as ClinicalBERT [130], PubMedBERT [74],

BioMed-RoBERTa-base [80] and MeDAL-electra [81]. For both word embed-

dings based networks and transformers, there is evidence to show domain-

specific pre-trained models outperform general text pre-trained models [80,

74, 28]. This research uses word embeddings pre-trained on health-related text

and transformers pre-trained on general and health-related data [28, 29, 30].
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3.5.3 Predicting Medical Codes

Automatically predicting medical codes from EHRs has been studied over the

years, where rule-based, machine learning-based and deep learning approaches

have been proposed. Since 1990s, there are many examples of attempts to au-

tomate extraction of medical codes such as ICD from clinical notes. Examples

include a Bayesian network approach by Gundersen et al. (1996) [131] and a

hierarchical approach by Lima et al. (1998) [132]. Perotte et al (2013) [133]

developed a hierarchical support vector machine approach to predict medical

codes. Techniques including CNNs, RNNs and Hierarchical Attention Net-

works are some examples of deep learning approaches [70, 126]. Moons et al.

(2020) [70] presents a survey of deep learning methods for ICD coding of medi-

cal documents and indicates CAML [2] as the SOTA method for automatically

predicting medical codes from EHRs.

Table 3.4 presents examples of embeddings based neural networks in pre-

dicting medical codes. The number of ICD-9 codes, i.e., the number of labels

used, varies across systems. The number of labels and the frequency of the

chosen labels influence the F1 score, with the top 50 ICD-9 codes generally

leading to a higher F-measure. MIMIC-III is the biggest publicly accessible

de-identified dataset. It is the most popular free-form medical text used in

many applications, including predicting medical codes [115, 27, 32, 33].

Embeddings are the popular method used to represent text in a neural

network, and all systems presented in Table 3.4 use embeddings from algo-

rithms such as word2vec, Doc2Vec and ELMo to represent free-form medical

text. Huggard et al. (2019) [138] also show that embeddings obtained from

fastText result in significantly higher F-measures on biomedical name entity

recognition when compared to other embeddings such as that of ELMo. This

research uses fastText to obtain embeddings.

Examples of transformer models in automatically predicting medical codes

inclueds submissions to CLEF eHealth 2019 ICD-10 predictions from German

documents [126, 139], and BERT and XLNet performance on most frequent
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System Architecture Label details

Zeng et al. (2019) [134] Deep transfer learning, most frequent 200 labels

Multi-scale CNN, 100-dimensional

general text pre-trained embeddings

Du et al. (2019) [135] ML-Net, ELMo based, most frequent 70 labels

LSTM

Baumel et al. (2018) [136] HAN (Bi-GRU), 100-dimensional 1047 labels and 6527 labels

general text pre-trained embeddings

Mullenbach et al. (2018) [2] CAML, DR-CAML, most frequent 50 labels

100-dimensional Word2Vec and 8922 labels

embeddings pre-trained on MIMIC-III

Li et al. (2018) [132] DeepLabeler, CNN, 6984 labels

128 dimensional Doc2Vec and 100

dimensional Skipgram word embeddings

general text pre-trained embeddings

Rios and Kavuluru (2018) [137] CNN, few-shot learning 6932 labels

300 dimensional Skip-gram embeddings

pre-trained on PubMed data.

Table 3.4: Examples of embeddings based neural networks for predicting ICD-

9 codes are presented.

ICD-9 codes from MIMIC-III with a maximum number of tokens set at 512 [15].

Biswas et al. (2021) [17] present a Transformer based architecture to capture

the interdependence among the tokens and makes use of a code-wise attention

mechanism to learn code-specific representations in MIMIC-III documents.

They show that the proposed new architecture outperforms CAML and other

networks when the most frequent 50 ICD-9 codes are considered a multi-label

problem. However, it is unclear how well transformer models can perform with

long clinical documents and in multi-label problems with a large number of

labels [15, 128, 17]. Also, many studies [15, 16, 17] focus on high-frequency

labels. Nonetheless, datasets such as MIMIC-III and eICU consist of many

infrequent labels where most codes only occur in a minimal number of clinical

documents. This research considers several variations of labels and frequency,

presents multiple transformer methods and compares them with SOTA meth-
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ods for various sequence lengths and labels.



Chapter 4

Domain-specific Embeddings

and Binary Classification

Extracting knowledge from electronic health records (EHRs) using NLP tech-

niques such as embeddings has proven to be very popular and useful [118, 26,

23]. However, in many cases, embeddings are trained on data that do not accu-

rately reflect how language is used in a healthcare context. Embeddings trained

on the general text, used for tasks that involve specialised language, results in a

domain shift, which will typically cause suboptimal performance [140]. Ideally,

to classify documents derived from EHRs, the embeddings should be trained

on an extensive collection of free-form text extracted from EHRs. This is not

possible for various legal and ethical reasons: the collections of health records

available for research purposes are not large enough to train high-quality word

embeddings.

This chapter presents an investigation on how domain-specific source data

used for pre-training embeddings and the dimensionality of embeddings im-

pacts the performance of the medical text classification. The prediction of

medical codes is used as the example application, where for simplicity and

understanding of NLP techniques, medical code predictions are treated as a

binary classification problem. The top-level 18 ICD-9 groups, as shown in

Figure 2.3, are considered 18 separate binary classification problems.
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In addition to embeddings, this chapter also considers BOW and trans-

formers to represent EHRs from MIMIC-III and eICU. Experiments show that

in most ICD-9 groups, F1 scores of transformers and embeddings are better

than that of BOW. Categories symp and preg are the two exceptions where it is

shown that the bag of words representation are better than word embeddings

and transformers.

Embeddings and BOW parts of this chapter was published as a conference

paper [28], where MIMIC-III data and traditional binary classifiers were used.

For eICU data, this chapter only presents selected ICD-9 groups with selected

classifiers. However, for the multi-label problems this thesis presents extensive

experimental evaluations for both MIMIC-III and eICU.

4.1 Bag-of-Words (BOW)

This section presents F1 scores for both MIMIC-III and eICU for BOW. Re-

sults for all 18 categories for MIMIC-III and selected groups for eICU are

presented. Figure 4.1 presents a flowchart of using BOW for predicting ICD-9

groups from MIMIC-III or eICU data. WEKA’s implementation of BOW is

used with dictionary sizes of 1,000, 10,000 and 100,000 words. ICD-9 level 1

groups are considered as an individual binary classification problem. WEKA’s

implementation of Multinomial NB and LR is used for classification, and scikit-

learn implementations of evaluation measures were used for evaluations. For

validation, ten-fold cross-validation was used.

Figure 4.1: Flow chart of using bag-of-words for predictions.
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ICD-9 BOW LR BOW multinomial NB

1,000 10,000 100,000 1,000 10,000 100,000

circ (78.4%) 0.930 0.920 0.931 0.913 0.922 0.927

e+v (69.1%) 0.801 0.788 0.808 0.806 0.783 0.806

endo (66.5%) 0.814 0.825 0.840 0.794 0.811 0.817

resp (46.6%) 0.763 0.775 0.788 0.712 0.733 0.734

inj (41.4%) 0.642 0.675 0.693 0.640 0.672 0.681

gen (40.3%) 0.733 0.751 0.769 0.668 0.688 0.691

diges (38.8%) 0.701 0.728 0.748 0.640 0.666 0.673

bld (33.6%) 0.558 0.595 0.608 0.587 0.602 0.611

symp (31.4%) 0.476 0.507 0.524 0.563 0.570 0.576

ment (29.7%) 0.567 0.616 0.635 0.531 0.549 0.569

nerv (29.1%) 0.491 0.594 0.628 0.538 0.567 0.589

inf (27.0%) 0.606 0.667 0.693 0.604 0.613 0.621

musc (18.0%) 0.344 0.476 0.488 0.381 0.398 0.456

pren (17.1%) 0.574 0.557 0.620 0.571 0.584 0.589

neop (16.4%) 0.665 0.713 0.766 0.506 0.525 0.628

skin (12.0%) 0.438 0.483 0.526 0.357 0.362 0.421

cong (5.4%) 0.348 0.485 0.519 0.365 0.361 0.429

preg (0.3%) 0.737 0.705 0.709 0.099 0.516 0.756

Table 4.1: F1 scores for ICD-9 groups for MIMIC-III data for BOW with

different dictionary sizes using logistic regression (left) and multinomial naive

Bayes (right) are presented. Bold is used to indicate the best F1 scores among

a varied number of words for BOW with the same classifier. The best F1 score

across all is underlined for each category. Frequency of occurrence of ICD-9

groups in unique hospital admission with MIMIC-III text data is indicated in

brackets, and labels are ordered from most frequent at the top to least frequent

at the bottom.
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Figure 4.2: Coefficient of features LR with BOW for category preg for MIMIC-

III. Blue is used for words which have the positive influence on making pre-

diction for category preg and red for words which have negative influence.

4.1.1 MIMIC-III

Table 4.1 provides a comparison of F1 score for predicting ICD-9 groups from

free-form MIMIC-III discharge summaries using BOW with different dictionary

sizes. A total of 52,710 discharge summaries were used, with text length

ranging from a few sentences to close to twenty pages. Classifiers used are

logistic regression with ridge value of 1 and multinomial Naive Bayes. LR

used for these experiments is modified to optimise for sparse data. F1 scores

for dictionary sizes 1,000, 10,000 and 100,000 are presented. In general, there

is an increase in F1 score as the size of the dictionary increases. A dictionary

size of 100,000 results in the best F1 scores, for all ICD-9 categories, except

preg, when LR is used. One explanation for such behaviour is that in MIMIC-

III, preg occurs in very few instances, and the vocabulary related to preg is

also specific and limited. In comparison to multinomial Naive Bayes, the F1

scores obtained using LR are better for most categories. Figure 4.2 presents

the coefficients of features where LR is used for category preg. Evidently,

the words related to preg are with the largest coefficients and have the most

influence in prediction.
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ICD-9 BOW multinomial NB

1,000 10,000 100,000

circ (53.52%) 0.796 0.798 0.798

symp (23.9%) 0.522 0.532 0.532

endo (23.0%) 0.641 0.648 0.648

bld (9.8%) 0.423 0.431 0.431

e+v (3.1%) 0.341 0.356 0.356

Table 4.2: F1 scores for selected ICD-9 groups for eICU data for BOW with

different dictionary sizes using multinomial naive Bayes. Bold to indicate

the best F1 scores among a varied number of words for BOW. Frequency of

occurrence of ICD-9 groups in unique patient stays with eICU text data is

indicated in brackets, and labels are ordered from most frequent at the top to

least frequent at the bottom.

4.1.2 eICU

Table 4.2 provides a comparison of F1 score for predicting selected ICD-9

groups from eICU using BOW for a varied number of words using multinomial

Naive Bayes. F1 scores of dictionary sizes 1,000, 10,000 and 100,000 are pre-

sented. F1 scores of dictionary sizes of 10,000 and 100,000 are the same for all

categories presented. The vocabulary in eICU is a lot smaller than MIMIC-III

with the total number of features being 2,700. Hence, a dictionary size of

10,000 captures all of the features used. As observed with MIMIC-III data,

BOW using LR only marginally improved the results obtained using BOW

with multinomial NB, therefore LR was omitted from Table 4.2.

4.2 Word Embeddings

This section presents details on training and visualising embeddings. Em-

beddings are used to classify medical codes from both MIMIC-III and eICU

data.
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4.2.1 Training Word Embeddings

Word embeddings of various dimensions using health-related data are pre-

trained with fastText [50, 48, 51]. For direct comparison, these embeddings

are primarily trained to the exact specifications as the Wikipedia and common

crawl fastText models in [141]. However, in future chapters, other parameter

choices and specifications are explored for training embeddings and are used

for analysis for multi-label classifications.

Both MIMIC-III and TREC 2017 datasets are used to train word embed-

dings. The sizes of these datasets are 4GB and 24GB, respectively. The word

embeddings are trained to the exact specifications of Wikipedia and common

crawl pre-trained fastText models –W300 [141]– using the CBOW method,

character n-grams of length 5, a window of size 5, ten negative samples per

positive sample, and various settings for the number of dimensions. The learn-

ing rate used for training these models is 0.05. Also, two recently published

medical text trained word embeddings of dimension size 200 and 700 [120, 121]

are included for comparison.

Table 4.3 presents the embedding trained using fastText, previously pub-

lished word embeddings, and the concatenated word embeddings. Concate-

nated embeddings are word embeddings formed by concatenating multiple

word embeddings. For example, in the T300+M300, the first 300 elements

are the word vectors obtained using the TREC dataset, and the second 300

elements are taken from the embeddings trained on MIMIC-III. The table in-

cludes details on dimensions, input data, training time1 and the size of the

model. Both the size of the input data and the number of dimensions influ-

ence the training times and model sizes. For the models trained for this thesis,

number of dimensions of a model with same input data is linearly propor-

tional to the training time. Model size also increases as the input data and

the number of dimensions increases.

1Training was run on a 4 core Intel i7-6700K CPU @ 4.00GHz with 64GB of RAM.
2https://www.ncbi.nlm.nih.gov/pubmed/
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Models Dimensions Source Data Train Time Model Size

M300 300 MIMIC 1 hour 5GB

T300 300 TREC 7 hours 13GB

TM300 300 TREC+MIMIC 9 hours 15GB

T600 600 TREC 13 hours 23GB

TM600 600 TREC+MIMIC 16 hours 30GB

T900 900 TREC 19 hours 35GB

TM900 900 TREC+MIMIC 23 hours 54GB

W300 [141] 300 Wiki - 7GB

BWV200 [120, 121] 200 PubMed2+MIMIC - 26GB

BSV700 [120, 121] 700 PubMed+MIMIC - 21GB

T300+M300 600 TREC+MIMIC 8 hours 18GB

W300+T300+M300 900 Wiki+TREC+MIMIC 8+ hours 25GB

T900+W300 1,200 Wiki+TREC 19+ hours 42GB

TM900+W300 1,200 Wiki+TREC+MIMIC 23+ hours 61GB

Table 4.3: Word embeddings trained for this thesis (top), from previous work

(middle), or concatenations thereof (bottom). Dimension details are presented,

as are training times (rounded to hours) and word embeddings model sizes.

4.2.2 Visualising Embeddings

To better understand the embeddings pre-trained using health-related text

and general text, Table 4.4 presents most similar words from an example in-

put sentence ‘patient brought into ED complaining of chest pain is admit

in cardio...’. The top 5 most similar words were obtained using gensim’s3 built

in function most similar4 which computes cosine similarity between the projec-

tion weight vectors of a word and the vectors of each word in the embeddings

model. The two models used for comparison are T300, which is a health-

related pre-trained embeddings, and W300, which is a general text pre-trained

embeddings, as presented in Table 4.3.

3https://tedboy.github.io/nlps/api gensim.html
4https://tedboy.github.io/nlps/generated/generated/gensim.models.Word2Vec.most similar.html
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Input word Similar words for T300

patient patientPatient, patientPrior, patientwhich,

patientWHO, oldpatient

ED EDs, nonemergencydepartment, emergencydepartment,

EDAll, EDThe

complaining uncomplaining, complained, complaint,

complains, complain

chest BChest, chestupper, CTChest, PChest, chestX

pain painwe, painXROA, painPain, pain. . . , painrelieved

admit admitting, hospitalize, admits, deny, admittable

cardio cardiovascular, cardiocerebral, heartcardiovascular,

cardiovasculary, cardiocerebro

Input word Similar words for W300

patient patients, Patient, clinician, patient.The, physician

ED non-ED, ED., EDs, SHEERAN, AE

complaining griping, complain, complaing, whining, bitching

chest chest., chest.The, chest.It, chest-, chest.This

pain pain.This, discomfort, pain-, pain.What, pain.But

admit confess, admitt, admit.I, admit-, concede

cardio workout, cardio-based, Cardio, HIIT, cardio.

Table 4.4: Five most similar words obtained using word embeddings trained by

fastText using health domain-specific text T300 (top) and general text W300

(bottom). For input tokens patient, ED, complaining, chest, pain, admit, cardio.

See Figures 4.3 and 4.4 for a visual representation of these words.

Figures 4.3 and 4.4 present visual representations of the most frequent 10

words of the above mentioned input tokens. A three dimensional scatter plot

is presented where scikit-learn’s principal component analysis (PCA)5 is used

to reduce the dimensionality of data from the embeddings and project it to a

lower-dimensional space.

5https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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Figure 4.3: Visualising word embeddings trained by fastText using health

domain-specific text T300. For input text of patient, ED, complaining, chest,

pain, admit, cardio, the 10 most similar words are presented.

Figure 4.3 shows clusters of most similar words for input tokens, where the

differences within each cluster are visible. Figure 4.4 presents visual repre-

sentations of the most frequent words for the input tokens, using general text

pre-trained embeddings W300, and is presented as two separate graphs.

In contrast to Figure 4.3, the top figure of 4.4 shows one cluster for most

of the input tokens with ED being an out-liar. Domain-specific embeddings

can differentiate the words in input text where the clusters are visibly separate

while also mapping the relationship between the words. Both Table 4.4 and

Figures 4.3 and 4.4 show a clear difference in the clusters of similar words

and, as explained, show the advantage of using domain-specific embeddings

for health-related input text.
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Figure 4.4: Visualising word embeddings trained by fastText using general text

W300. The top figure includes token ED while the bottom figure is focused

on all other tokens, excluding ED. On the top figure token ED dominates the

rest of the tokens, hence, the inclusion of the bottom figure. For input text

of ‘patient, ED, complaining, chest, pain, admit, cardio’, the ten most similar

words are presented.
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Figure 4.5: Flow chart of using word embeddings for predictions.

4.2.3 Binary Classification using Embeddings

This section presents F1 scores for MIMIC-III and eICU, where text is repre-

sented using word embeddings. Results for all 18 categories for MIMIC-III and

selected groups for eICU are presented. Figure 4.5 presents a flowchart for the

use of embeddings for predicting ICD-9 groups from MIMIC-III or eICU data.

FastText pre-trained embeddings presented in Table 4.3 are used. WEKA’s

implementation of LR and random forests is used for classification, and scikit-

learn implementations of evaluation measures are used for evaluations. For

validation, ten-fold cross-validation is used.

Tensorflow implementation of GRU incorporating the details of the network

structure is also used for experiments where input text of sequence length 3,000

is used with padding for text with the number of tokens less than 3,000. All

experimental results using neural networks are obtained from validations based

on training-testing scheme, and are averaged over three runs.

4.2.3.1 MIMIC-III

Logistic regression with a ridge value of 1 and GRU is used for word embed-

dings experiments presented in this chapter. The use of random forests with

various parameter choices were explored. However, random forest did not per-

form as well as LR or GRU. Other ridge values for logistic regression were also
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ICD-9 BWV200 W300 M300 T300 TM300 T600 TM600 T3+M3 BSV700

circ 0.931 0.932 0.932 0.932 0.931 0.935 0.934 0.924 0.931

e+v 0.829 0.828 0.829 0.829 0.828 0.832 0.832 0.832 0.831

endo 0.847 0.845 0.846 0.849 0.846 0.851 0.849 0.850 0.847

resp 0.774 0.774 0.774 0.778 0.772 0.789 0.788 0.787 0.776

inj 0.660 0.649 0.663 0.662 0.660 0.675 0.676 0.677 0.682

gen 0.721 0.716 0.724 0.731 0.725 0.740 0.740 0.740 0.732

diges 0.679 0.692 0.693 0.696 0.692 0.712 0.705 0.710 0.696

bld 0.557 0.566 0.573 0.570 0.570 0.593 0.589 0.594 0.586

symp 0.475 0.486 0.482 0.487 0.483 0.504 0.502 0.500 0.505

ment 0.533 0.530 0.530 0.542 0.539 0.577 0.576 0.577 0.559

nerv 0.530 0.534 0.527 0.543 0.531 0.571 0.558 0.564 0.553

inf 0.634 0.634 0.641 0.647 0.647 0.663 0.659 0.664 0.648

musc 0.254 0.274 0.258 0.294 0.267 0.338 0.314 0.319 0.315

pren 0.589 0.590 0.588 0.594 0.587 0.601 0.597 0.598 0.603

neop 0.693 0.688 0.702 0.705 0.690 0.728 0.721 0.732 0.727

skin 0.343 0.335 0.344 0.346 0.344 0.389 0.384 0.386 0.397

cong 0.365 0.371 0.369 0.391 0.350 0.438 0.406 0.435 0.424

preg 0.525 0.502 0.543 0.565 0.512 0.579 0.566 0.599 0.586

Table 4.5: A comparison of F1 scores for predicting ICD-9 groups using 200,

300, 600 and 700-dimensional word embeddings are presented. BWV200 and

BSV700 are both published word embeddings and are compared with 300-

dimensional word embeddings and 600-dimensional word embeddings, respec-

tively. Bold is used to indicate the best F1 scores among low dimensional

groups of word embeddings (200-300) and the higher dimensional word em-

beddings (600-700). The best F1 score across all presented word embeddings

is underlined for each category.

explored. LR provided consistent F1 scores across a range of different ridge

values. Appendix B presents a summary of random forest experiments and

LR results with varied ridge value.

Table 4.5 provides a comparison of the F1 score for predicting ICD-9 groups

from free-form MIMIC-III discharge summaries for 300-dimensional and 600-

dimensional embeddings. For 300-dimensional embeddings, W300 are word

embeddings trained by fastText on Wikipedia and other common crawl text.
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ICD-9 LR GRU

600 900 best 900- 1,200 best 1,200- T300 T600

dim model dim model

circ 0.935 0.937 T900 0.936 T9W3 0.938 0.939

e+v 0.832 0.833 W3T3M3 0.833 T9W3 0.803 0.804

endo 0.851 0.853 T900 0.854 T9W3 0.854 0.853

resp 0.789 0.792 W3T3M3 0.794 TM9W3 0.810 0.819

inj 0.677 0.684 WTM+T900 0.689 TM9W3 0.708 0.708

gen 0.740 0.748 TM9 0.751 TM9W3 0.795 0.776

diges 0.712 0.724 T900 0.730 T9W3 0.781 0.757

bld 0.594 0.601 TM9 0.607 T9W3 0.617 0.636

symp 0.504 0.514 W3T3M3 0.517 T9W3 0.521 0.516

ment 0.577 0.592 TM9 0.606 TM9W3 0.671 0.662

nerv 0.571 0.577 T900 0.586 T9W3 0.664 0.653

inf 0.664 0.671 T900 0.677 T9W3 0.733 0.729

musc 0.338 0.354 T900 0.372 T9W3 0.539 0.478

pren 0.601 0.607 W3T3M3 0.608 Both 0.618 0.610

neop 0.732 0.741 W3T3M3 0.746 T9W3 0.790 0.779

skin 0.389 0.418 T900 0.435 T9W3 0.585 0.567

cong 0.438 0.465 T900 0.463 T9W3 0.510 0.539

preg 0.599 0.593 W3T3M3 0.605 TM9W3 0.557 0.524

Table 4.6: F1 score for ICD-9 groups for word embeddings with varied dimen-

sions using LR (left) and GRU (right) for MIMIC-III. For LR, the best F1

score across 900-dimensional and 1200-dimensional word embeddings for each

category is presented. Corresponding best 900- and 1,200- dimensional models

are also listed. For details of the models see Table 4.3. Bold is used to indicate

the best F1 scores among varied dimensional word embeddings with the same

classifier. The best F1 score across all is underlined for each category.

W300 embeddings are readily available for use in any application. Except for

the circulatory label, which is the most frequent one (78.4%), word embeddings

specially trained on medical corpora have better F1 scores. Overall, T300
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provides better F1 scores than other 300-dimensional word embeddings for

most ICD-9 groups. Compared to the recently published BWV200, the 300-

dimensional word embeddings performed better for all categories and on par

with e+v.

For 600-dimensional word embeddings, Table 4.5 presents comparisons

across embeddings obtained in a single training phase (T600 and TM600) and

word embeddings obtained via concatenation (T300 + M300). Comparing

the 600 dimension word embeddings trained for this research to the published

700-dimensional word embeddings (BSV700), F1 scores of this 600-dimensional

word embeddings are on par with or better than those recently published high

dimensional word embeddings.

Table 4.6 presents a comparison for predicting ICD-9 code from free-form

discharge summaries in MIMIC-III with various dimensions of word embed-

dings and between classifiers LR and GRU. The best F1 scores for 600-, 900-

and 1200- dimensional embeddings are presented for each ICD-9 group.Models

that produced the best 900-dimensional, and 1,200-dimensional embeddings

are also indicated. Refer to Table 4.3 for details of word embeddings, input

data and model dimensionality. The higher the dimensionality, the better the

F1 scores are for predicting the ICD-9 groups using LR. Compared to LR,

GRU performs better for most categories, except e+v, endo and preg. For

GRU, 300-dimensional embeddings T300 is better than T600 for the majority

of the categories.

4.2.3.2 eICU

Table 4.7 presents a comparison for predicting selected ICD-9 groups from

eICU data with various dimensions of word embeddings and between classi-

fiers LR and GRU. F1 scores of the 600-dimensional word embeddings trained

for this research (T600) is better than that of the published 700-dimensional

word embeddings (BSV700). For GRU, 300-dimensional embeddings T300 are

better than T600 for the majority of the categories. Also, both LR and GRU’s
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ICD-9 LR GRU

W300 T300 M300 TM300 T600 BSV700 T300 T600

circ 0.819 0.820 0.818 0.818 0.825 0.814 0.820 0.805

symp 0.436 0.442 0.442 0.438 0.470 0.445 0.386 0.410

endo 0.647 0.647 0.647 0.647 0.660 0.641 0.663 0.639

bld 0.375 0.382 0.376 0.369 0.412 0.374 0.345 0.270

e+v 0.585 0.592 0.583 0.581 0.595 0.569 0.627 0.618

Table 4.7: F1 score for ICD-9 groups for word embeddings with varied dimen-

sions using LR (left) and GRU (right) for eICU. For details of the models see

Table 4.3. Bold is used to indicate the best F1 scores among varied dimen-

sional word embeddings with the same classifier. The best F1 score across all

is underlined for each category.

performances are on par with each other.

4.3 Transformers

This section presents F1 scores for both MIMIC-III and eICU for various trans-

former models. Results for all 18 categories for MIMIC-III and selected groups

for eICU are presented. All experimental results using neural networks are ob-

tained from validations based on training-testing scheme, and are averaged

over three runs. The maximum number of tokens are calculated from the start

of the input sequence, i.e. 512 tokens indicate the first 512 tokens seen by the

transformer model.

4.3.1 MIMIC-III

Table 4.8 presents a comparison for predicting ICD-9 code from free-form dis-

charge summaries in MIMIC-III with various transformer models. BERT-base

and Longformer are pre-trained using general text, and ClinicalBERT, Pub-

MedBERT, and BioMed-Roberta are pre-trained using health-related data.

Longformer is the only transformer among the ones presented that can handle
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ICD-9 BERT ClinicalBERT PubMedBERT BioMed-Roberta Longformer Longformer

tokens = 512 512 512 512 512 3,000

circ 0.932 0.937 0.938 0.935 0.933 0.949

e+v 0.832 0.837 0.836 0.836 0.837 0.836

endo 0.873 0.763 0.872 0.865 0.867 0.893

resp 0.771 0.771 0.784 0.778 0.780 0.860

inj 0.665 0.682 0.671 0.670 0.678 0.722

gen 0.700 0.716 0.724 0.734 0.705 0.838

diges 0.752 0.743 0.773 0.771 0.765 0.825

bld 0.562 0.572 0.575 0.558 0.560 0.670

symp 0.442 0.519 0.468 0.471 0.418 0.555

ment 0.664 0.650 0.704 0.685 0.690 0.737

nerv 0.652 0.626 0.678 0.648 0.592 0.721

inf 0.646 0.649 0.668 0.665 0.655 0.774

musc 0.470 0.512 0.578 0.501 0.479 0.599

pren 0.611 0.639 0.663 0.658 0.646 0.640

neop 0.778 0.778 0.810 0.784 0.781 0.826

skin 0.445 0.455 0.480 0.496 0.486 0.623

cong 0.545 0.555 0.610 0.592 0.530 0.631

preg 0.602 0.716 0.755 0.762 0.750 0.795

Table 4.8: F1 score for ICD-9 groups for transformer models, where the max-

imum token length of the input data, MIMIC-III, is specified. Bold is used to

indicate the best F1 scores for each category for maximum token size of 512,

and underline is used for overall best F1 score.

a more extended sequence of text. Among the transformer models that restrict

the maximum token size of the input text to 512, health-related pre-trained

models perform better than BERT-base. PubMedBERT is the best performing

method for the 512 tokens setting. Overall, Longformer, with a longer input

sequence length of up to 3,000 tokens, performs better than all other models,

including Longformer with sequence length restricted to 512.

4.3.2 eICU

Table 4.9 presents a comparison for predicting selected ICD-9 groups from

eICU data with various transformer models. Given that eICU text is shorter
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ICD-9 ClinicalBERT PubMedBERT Longformer Longformer

tokens = 512 512 512 1,250

circ 0.828 0.828 0.834 0.834

sym 0.458 0.466 0.447 0.460

endo 0.685 0.667 0.673 0.670

bld 0.350 0.376 0.414 0.435

e+v 0.631 0.641 0.631 0.649

Table 4.9: F1 score for ICD-9 groups for transformer models, where the max-

imum token length of the input data, eICU, is 512 for ClinicalBERT and

PubMedBERT, and both 512 and 1,250 for Longformer. Bold is used to indi-

cate the best F1 scores for each category for maximum token size of 512, and

underline is used for overall best F1 score.

than MIMIC-III, Longformer’s maximum token length of the input sequence

is set at 1,250. Overall F1 score obtained using Longformer is better than that

of the other transformers presented.

4.4 Discussion

This chapter considered top-level ICD-9 groups as 18 individual binary classifi-

cation problems. An investigation on the impact of the performance of medical

text classification due to the source domain used for training word embeddings

is presented. Also, the role that embedding dimensionality plays in determin-

ing the accuracy of the resulting classifiers is demonstrated. The predictions

of ICD-9 codes are used as an example of health applications to show that

high dimensions, specifically trained on health-related corpora, have better F1

scores than word embeddings with lower dimensions or when trained on general

text like Wikipedia. A comparison with recently published word embeddings

shows that embeddings pre-trained for this research perform better for most

ICD-9 groups and are very similar for the rest. Reasons for such differences

include pre-processing of input data, parameter selection, and source of the
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datasets used for training the embeddings.

The sizes and training times required for training word embeddings are

also presented. Model sizes and training times are influenced by the input

data size and the number of dimensions generated and can become quite large.

The main reason for the large model sizes is the use of hash tables for storing

character n-gram information. FastText does provide ways to reduce the final

word embeddings model sizes. However, such compression may possibly also

impacts accuracy. Further analysis is needed to better understand the impact

of compression on accuracy.

In addition to embeddings, BOW representations and the more recent

transformer models were also used. Domain-specific transformer models per-

form better than the base models trained on general text for cases where

maximum input sequence length is limited to 512. In general, Longformer had

an advantage over the other models, primarily because Longformer can handle

longer sequences.

Figures 4.6 and 4.7 present a summary of the best F1 score presented in

this chapter for BOW, embeddings and transformers for MIMIC-III and eICU,

Figure 4.6: Best F1 scores, based on the results presented in this chapter, of

BOW, embeddings, and transformers for all 18 ICD-9 groups treated as indi-

vidual binary classification problem for MIMIC-III. The bar plots are ordered

such that the most frequent label circ is on the left with the least frequent preg

at the end.
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Figure 4.7: Best F1 scores, based on the results presented in this chapter,

of BOW, embeddings, and transformers for selected ICD-9 groups treated as

individual binary classification problem for eICU data. The bar plots are

ordered such that the most frequent label circ is on the left with the less

frequent e+v at the end.

respectively. For most categories in Figure 4.6, embeddings and transformers

perform better than BOW, except for categories symp and preg. In terms

of BOW performance, pregnancy is the most interesting ICD-9 group. Its

frequency is only 0.31% in the MIMIC-III dataset. This observation can be

better understood by taking a closer look at the coefficients, as shown in Fig-

ure 4.2, for each feature to determine its weight for LR. The model predicts

words such as ’pregnancy’, ’fetal’, ’section’, ’postpartum’, ’ob’, ’vaginal’, ’weeks’,

’obstetrics’, ’gynecology’, ’delivery’, ’products’, ’cesarean’, ’pregnant’, ’gyn’, ’pre-

natal’, ’intrauterine’, ’cardiomyopathy’, ’labs’, ’husband’, ’hcg’ with the largest

coefficients.

Figure 4.7 presents the best F1 scores for BOW, embeddings and transform-

ers for eICU data. In general, transformers have better F1 scores; however,

symp and bld perform better with BOW.

For simplicity and initial understanding of the data and classification tasks,

this chapter considered ICD-9 groupings as a set of binary classification prob-

lems. Alternatively, they can also be represented as a single multi-label classi-
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fication problem. Each unique patient admitted to the hospital can have more

than one diagnosis and be categorised into different groups or have more than

one diagnosis from the same ICD-9 group. The rest of this thesis research

considers multi-label representations of medical codes where the correlation

between the medical codes are exploited in various classification problems.



Chapter 5

Word Embeddings for

Multi-label Classification of

Medical Text

The human body is a very complex system, and often patients admitted to

hospitals with one initial prognosis or diagnosis have multiple related or un-

related chronic diseases. Modern medical practice emphasises the need to

understand the patient as a whole [142, 143, 144, 145, 146]. The effects of

different conditions may interact with each other and complicate the manage-

ment of each disease [142]. This, in turn, leads to poorer outcomes, such as in-

creased preventable hospital re-admissions, overall hospital re-admissions, and

increased total medical and long term care costs [146, 145]. For example, a pa-

tient newly diagnosed with human epidermal growth factor receptor 2 (HER2)

positive breast cancer may also have underlying, possibly undiagnosed, heart

failure. This can be crucial, as some treatments for breast cancer can cause

cardiac damage. Accurately identifying the symptoms of heart failure allows

the physician to best balance the risks and benefits of such treatments.

The need to understand the patient as a whole motivates using multi-

label classification techniques to improve the prediction of the medical codes

of patients with multi-morbidity from the medical text. In single-label classi-
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fication, as presented in Chapter 4, only one target variable is predicted per

instance, whereas in multi-label classification, the goal is to predict multiple

output variables for each input instance. In the above example, the patient is

an instance with potential labels such as cancer, hypertension, heart failure,

cholesterol and many more related and unrelated health complications. More-

over, the naive one-vs-all approach where each label is treated independently

as binary classification, as presented in Chapter 4, suffers from considerable

increase in required computational resource, both for training and predictions,

when labels are thousands to millions [147].

This chapter considers techniques that enable maximising the feature ex-

traction of the medical text of the embeddings layer for multi-label classifi-

cation problems.The embeddings layer is considered a significant component

for text representation [47]. Embeddings allow words to transform from iso-

lated distinct symbols to a numerical representations. The distance between

vectors and distance between words can be equated, and the relationship be-

tween words can be generated. This chapter considers multi-label problems

presented in Table 2.4 as individual flat multi-label problems. This chapter

extends the work presented in Chapter 4. More specifically, this chapter:

– acknowledges the multi-morbidity nature of patients and considers the

multi-label variations of medical text classification to enhance the pre-

diction of concurrent medical codes.

– presents new embeddings on the health-related text and compares several

variations to embeddings models when dealing with an imbalanced multi-

label medical text classification problem.

– presents a study exploring variations to tagging words, including the

traditional part-of-speech (POS).

– provides a comparison of popular machine learning classifiers used in

medical text classification, including neural networks.
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– presents a detailed study and discussion of results, extended by varying

the formations of embeddings, size of the embeddings and number of

labels considered for the prediction of medical codes.

Results from this chapter show that among traditional machine learning

classifiers, ECC-LR performed well. However, word embeddings-based neural

networks out-performs ECC-LR and other traditional machine learning classi-

fiers. Various fastText parameters were explored where results show skip-gram

models out-performing CBOW models. FastText pre-trained models T100SG

and T300SG are the best performing embeddings. To better understand the

text, text sequence, and relationship, options such as POS tagging and con-

catenating embeddings were explored. However, in general, these options were

not very successful in improving the overall performances. SOTA methods

CAML and DR-CAML out-perform other classifiers for various levels of ICD-

9 codes.

5.1 ICD-9 Level 1

In Chapter 4, for simplicity, 18 top-level ICD-9 groupings were considered as

individual binary classification problems. However, as mentioned earlier, pa-

tients are usually admitted to hospitals with more than one related or unrelated

medical condition or symptoms in most cases. It is more appropriate to con-

sider these groups as a single multi-label classification problem. This section

considers the 18 top-level ICD-9 groups as a single flat multi-label problem. In

order to understand the differences in performances of multi-label classifiers’,

a detailed study comparing performance overall and for individual F1 scores

is presented. In addition, comparisons of embeddings and fastText parameter

choices are presented. This enabled a better understanding of the parameter

choices, and as a result improve the performace of the multi-label classifiers.

The option of tagging words, including POS, is also explored, however, there

were no noticeable improvements to the F1-scores of the 18-labels. MIMIC-III
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is used as the primary dataset for most experiments, and eICU is used as an

additional dataset. Critical difference plots are presented as supportive sta-

tistical analysis. The Nemenyi posthoc test (95% confidence level) identifies

statistical differences between learning methods. CD graph show the average

ranking of individual F1 scores obtained using various language models. The

lower the rank, the better a model is. The difference in average ranking is

statistically significant if it is larger than the critical difference (CD), or in

other words, if there is no bold line connecting the two settings.

5.1.1 Comparing Multi-label Classifiers

This section first considers the traditional multi-label classifiers followed by

embeddings-based neural networks. Table 5.1 presents the overall performance

of top-level ICD-9 groups for MIMIC-III data for traditional machine learning

classifiers binary relevance (BR), classifier chains (CC), ensembles of classifier

chains (ECC) and multi-label k-nearest neighbor (MLKNN). All experiments

use the T300 word embeddings and 10-fold cross-validation. Experiments using

BR and CC use logistic regression as the base classifier, and ECC explores SGD

and LR as base classifiers. Only experiments with a ridge value of 1 for LR as

the base classifiers is presented. However, other values were experimented with

and logistic regression performed well and provided consistent F1 scores across

a range of different ridge values. In comparison to BR, multi-label classifiers

perform better overall, except for rank loss. For micro and macro F1, ECC-LR

is better than other classifiers presented in Table 5.1.

Table 5.2 presents a comparison of label F1 scores between the classifiers

and variations presented in Table 5.1 for the 18 top-level ICD-9 groups. Per-

formance when considering the 18 groups as individual binary classification

problems is also presented (BR-LR). All experiments use the T300 word em-

beddings and 10-fold cross-validation. As anticipated, using multi-label varia-

tions does provide an advantage over the individual binary classification case.

Evidently, for most ICD-9 groups, ECC using logistic regression (LR) performs
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Classifiers Micro-F1 Macro-F1 Hamming Loss Rank loss Jaccard similarity

BR-LR, R = 1 0.724 0.618 0.171 0.105 0.579

MLKNN, k=10 0.668 0.500 0.203 0.145 0.520

CC-LR, R = 1 0.719 0.616 0.173 0.200 0.571

ECC-SGD, E=50, I=10 0.725 0.594 0.176 0.135 0.579

ECC-SGD, E=50, I=30 0.723 0.595 0.173 0.120 0.577

ECC-SGD, E=50, I=100 0.723 0.599 0.173 0.120 0.577

ECC-SGD, E=100, I=10 0.725 0.602 0.175 0.134 0.580

ECC-SGD, E=100, I=30 0.723 0.599 0.173 0.120 0.577

ECC-SGD, E=100, I=100 0.721 0.596 0.171 0.112 0.575

ECC-SGD, E=500, I=10 0.725 0.611 0.176 0.135 0.588

ECC-SGD, E=500, I=30 0.723 0.611 0.173 0.120 0.578

ECC-SGD, E=500, I=100 0.722 0.608 0.171 0.112 0.576

ECC-LR, R=1, I=10 0.734 0.645 0.183 0.170 0.587

ECC-LR, R=1, I=30 0.734 0.643 0.178 0.161 0.587

ECC-LR, R=1, I=100 0.735 0.643 0.178 0.155 0.588

Table 5.1: Overall performance of top level ICD-9 groups is presented for

varying multi-label classifiers. I indicates number of iterations and E is the

number of epochs to perform. T300 is used for embeddings. Bold is used

to indicate the best results. For micro-F1, macro-F1 and Jaccard similarity,

higher values are better; and for Hamming loss and rank loss, lower values are

better.

Figure 5.1: Critical difference plots. Nemenyi post-hoc test (95% confidence

level), identifying statistical differences between multi-label classifier presented

in Table 5.2. The lower the rank the better it is. The difference in average

ranking is statistically significant if there is no bold line connecting the two

settings.

best. Optimising the number of iterations and epochs for ECC can improve F1

score results. ECC-LR with a ridge value of R = 1 and the number of iterations
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ICD-9 BR-LR MLkNN CC-LR ECC-SGD ECC-LR

groups Best case Best case

F1 E = I = F1 I =

circ 0.932 0.921 0.932 0.933 100 10 0.932 30, 100

e+v 0.829 0.823 0.812 0.831 100 30 0.830 30, 100

endo 0.848 0.839 0.848 0.851 50 100 0.848 10, 30, 100

resp 0.777 0.703 0.770 0.784 500 10 0.782 30

inj 0.662 0.590 0.653 0.683 500 10 0.686 30

gen 0.731 0.657 0.731 0.735 500 30 0.739 10, 30, 100

diges 0.696 0.600 0.694 0.706 50 30 0.713 10

bld 0.571 0.494 0.571 0.577 50 100 0.612 10

symp 0.487 0.361 0.463 0.489 50 10 0.552 10

ment 0.542 0.299 0.538 0.562 500 30 0.590 10

nerv 0.543 0.376 0.522 0.530 100 10 0.589 10

inf 0.647 0.547 0.651 0.667 500 30 0.683 10

musc 0.298 0.086 0.302 0.272 500 30 0.410 10

pren 0.594 0.575 0.592 0.588 500 10 0.590 10

neop 0.703 0.500 0.705 0.709 500 10 0.718 10

skin 0.347 0.075 0.349 0.328 500 10 0.413 10

cong 0.384 0.294 0.383 0.361 500 100 0.449 30

preg 0.592 0.267 0.572 0.542 500 100 0.514 100

Table 5.2: Comparison of F1 scores for the 18 top level ICD-9 groups is pre-

sented for varying multi-label classifiers. I indicates number of iterations and

E is the number of epochs to perform. T300 is used for embeddings. Bold

is used to indicate F1 scores better than that of the BR-LR, and underline is

used to indicate the best F1 score across all presented.

I = 10 achieves the best results overall. This observation is also supported

by the critical difference plots presented in Figure 5.1, where ECC-LR-I10 has

the lowest rank. Experiments across a range of different ridge values provided

almost identical values for F1 score, hence only a ridge value of 1 is included

in Tables 5.1 and 5.2.
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Classifiers Micro-F1 Macro-F1 Hamming Loss Rank loss Jaccard similarity

CNNText 0.823 0.743 0.157 0.298 0.694

BiGRU 0.808 0.711 0.178 0.318 0.673

CAML 0.837 0.755 0.154 0.277 0.713

DRCAML 0.838 0.761 0.153 0.275 0.715

HAN-LSTM 0.795 0.708 0.147 0.303 0.671

HAN-GRU 0.798 0.715 0.145 0.302 0.675

ECC-LR, I=10 0.734 0.645 0.183 0.170 0.587

Table 5.3: Overall performance of top-level ICD-9 groups is presented for

various multi-label neural networks. T300 is used for embeddings. Bold is used

to indicate the best results. For micro-F1, macro-F1 and Jaccard similarity,

higher values are better; for Hamming loss and rank loss, lower values are

better. ECC-LR with I = 10 is presented for comparison.

Table 5.3 considers overall performance of top-level ICD-9 groups for several

multi-label neural networks. For consistency and comparison, T300 is used for

embeddings. Results for ECC-LR with I=10 are also presented for direct

comparison. Maximum input text sequence length is set to 3,000 tokens for all

neural networks. The number of filters used in CNNText is 100 and filter sizes

of 1,2,3,4 are used. Appendix C.1 provides a summary of results using other

combination of parameters for CNNText. All experimental results using neural

networks are obtained from validations based on training-testing scheme, and

are averaged over three runs. Rank loss of ECC-LR is lower than that of

the neural networks compared in this research. Overall, micro and macro F1

scores and Jaccard similarity are better for DRCAML, with a relatively big

improvement over ECC-LR. This is also supported by critical difference plots

presented in Figure 5.3, where DRCAML has the lowest rank and ECC-LR the

highest rank with no bold line connecting the two indicating that difference in

average ranking is statistically significant. Input for ECC-LR is static features

of 300-dimensional vectors obtained using T300 for MIMIC-III data.

Figure 5.2 presents a comparison of individual F1 scores for the top-level

ICD-9 groups for multi-label classifiers presented in Table 5.3 for the MIMIC-
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Figure 5.2: Comparison of F1 scores for the 18 top level ICD-9 groups is

presented for various multi-label neural networks. T300 is used for embeddings.

ECC-LR with I = 10 is presented for comparison. Most frequent label on the

left to the least frequent on the right.

Figure 5.3: Critical difference plots. Nemenyi post-hoc test (95% confidence

level), identifying statistical differences between multi-label classifier presented

in Table 5.3 and Figure 5.2.

III dataset. The choice of classifiers impacts F1 scores across all 18 ICD-9

groups, but not necessarily always for the better. For most labels, ECC-LR

performs similar to HAN variants presented. However, for pren, inj and preg,

the F1 score of ECC-LR is better than some neural networks.
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Option Dimensions Window neg Character n-gram Loss Function Epoch

Size minn maxn

I 50 5 10 5 5 softmax 5

II 50 3 10 5 5 softmax 5

III 50 7 10 5 5 softmax 5

IV 50 5 5 5 5 softmax 5

V* 50 5 10 0 0 softmax 5

VI 50 5 10 3 3 softmax 5

VII 50 5 10 5 5 hierarchical softmax 5

VIII 50 5 10 5 5 negative sampling 5

IX 50 5 10 5 5 softmax 10

Table 5.4: Variations of parameter choices for embeddings trained using fast-

Text are presented. These options are used for both CBOW and skip-gram.

Option “I” contains the exact same parameter choices as the published model

W300. “neg” refers to the number of negative samples per positive sample.

[minn, maxn] refers to minimum length and maximum length respectively.

*Option V sets maxn = 0, this means no sub-words will be used by fastText.

Hence, the model should give similar results to that of word2vec.

5.1.2 FastText Parameter Choices

Table 4.3 in Chapter 4, presented embeddings models trained to the exact

same specifications as general text trained published models. To better under-

stand the effects of fastText parameter choices on performance of multi-label

classifiers, a more detailed comparison of variations of specifications for train-

ing embeddings is presented in this chapter. The combination of variations to

parameter choices is presented in Table 5.4. The learning rate used to train

all of the variations presented is 0.05. For simplicity, all dimensions were set

to 50. The twoword representation models are skip-gram and CBOW.

Figure 5.4 presents a comparison of F1 scores of the fastText parameter

choices I-IX for both CBOW and skip-gram embeddings as outlined in Table

5.4 for MIMIC-III data. For simplicity, BR with logistic regression is used as

the classifier for these experiments. Results correspond to 18 embeddings × 13
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Figure 5.4: Comparison of F1 scores for top level ICD-9 groups for embeddings

obtained by varying fastText parameters, as presented in Table 5.4. Options

I to IX match that of Table 5.4. Embeddings are trained on TREC data and

the classifier used for experiments is BR with logistic regression and R = 1.

Best F1 scores for CBOW models are presented for comparison (see Appendix

Figure C.1 for more details of CBOW model F1 scores). Most frequent label

on the left to the least frequent on the right.

3 4 5 6 7 8 9

CD

VIII

IX

IV

III

I

VI

V

II

CBOW

VII

Figure 5.5: Critical difference plots. Nemenyi post-hoc test (95% confidence

level), identifying statistical differences between learning methods. Best F1

scores for CBOW models are presented for comparison.

classifiers × 10 folds cv for a total of 2340 tests. The best F1 score among the

models using the options presented in Table 5.4 for CBOW is also presented.
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Models Dimensions Source Data Train Time Model Size

T100SG 100 TREC 7 hours 4GB

T300SG 300 TREC 28 hours 13GB

T600SG 600 TREC 51 hours 23GB

Table 5.5: Skip-gram embeddings, with dimension details, training times and

embeddings model sizes. See Table 4.3 for details on other embeddings models.

Evidently, for all 18 groups, skip-gram out-performs CBOW. Option I has the

same specifications as the W300 embeddings. FastText parameters impact F1

scores across all 18 ICD-9 groups, but not necessarily always for the better.

Thus, care must be taken when selecting these parameters. Critical difference

plots presented in Figure 5.5 indicates the best options as VIII and IX.

For this research, in addition to the embeddings presented in Table 4.3,

skip-gram models T100SG, T300SG, T600SG were also trained using fast-

Text. Table 5.5 presents details of the skip-gram embeddings used in this

research with details of dimensional size, source data, model size and training

time1. The embeddings presented in Table 5.5 are trained as per option I in

Table 5.4 for comparison. The F1 scores of comparison between embeddings

and classifiers are presented in Section 5.1.5.

5.1.3 Concatenating Embeddings

The option of splitting the free-form medical data into sections and concate-

nating the embeddings was also explored. This enabled the option of capturing

the meaning each sub-section of discharge summary with separate embeddings

representations. The discharge summary in MIMIC-III is split into seven log-

ical sections: Admission Date, Past Medical History, Pertinent Results, Brief

Hospital Course, Medications on Admission, Discharge Diagnosis and Followup

Instructions. Embeddings for each section can be obtained and concatenated

1Processing was run on a 4 core Intel i7-6700K CPU @ 4.00GHz with 64GB of RAM.
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(sample text shown below in Figure 5.7). For example, if a 50-dimensional

embeddings model is used, the resulting concatenated embeddings has 350 di-

mensions. If the discharge summary does not include any of the sub-sections

mentioned above, then the respective embeddings are all zeros. For hospital

admissions with more than one available discharge summary, all the summaries

are first embedded independently and then averaged into one final embedding.

Another variation considers concatenating statistical outcomes of the em-

beddings from each of the sections of a given hospital admission. This research

looks at the minimum, maximum, mean, standard deviation, lower quartile

and upper quartile of the embeddings for these experiments. For example,

for each hospital admission the discharge summary will have 7 splits, hence 7

embeddings for each split. The mean of these 7 embeddings are calculated.

Similarly, minimum, maximum, standard deviation, lower quartile and upper

quartile are also calculated. Hence, the resulting embeddings will have six

times as many dimensions as the original one.

Figure 5.6 presents a comparison of embeddings formed by concatenating

embeddings. The base embeddings used here are T50 and ECC-LR is used

for classification. CONCAT300 is formed by concatenating the embeddings

of the statistical outcomes, i.e. CONCAT300 = 50 dim × (min + max +

mean + sd + q1 + q3). CONCAT350 is formed by concatenating the embed-

dings of the seven text splits 7 × 50 dim. In comparison, both CONCAT300

and CONCAT350 improve F1 scores relative to the base embeddings T50 ex-

cept for the ICD-9 group pren. CONCAT350 generally performs better than

CONCAT300. However, the T300 embeddings outperform both CONCAT300

and CONCAT350 across all 18 groups. Also, the improvements that CON-

CAT300 and CONCAT350 produce over T50 are not replicated for larger

embeddings. For instance, when starting with T300 and generating CON-

CAT1800, or CONCAT2100, no significant improvements are observed. This

may be because T300 already performs much better than T50, possibly not

leaving much room for further improvement.
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Figure 5.6: A comparison of F1 scores for top-level ICD-9 groups is presented.

F1 scores for two models T50 and T300, and two variations of concatenations

CONCAT300 and CONCAT350 are presented. All experiments used ECC

with logistic regression as the base classifier, using a ridge value of one.

5.1.4 Tagging Words

Two variations of tagging words in free-form medical text were considered as

options for improving the understanding of free-form medical text and poten-

tially improving the accuracy of predictions. The first variant, part-of-speech

(POS), is a technique used to automatically identify the syntactic categories

of words in a given sentence. POS provides information about each word and

its neighbors. Knowing whether a word is a noun or a verb can helpful in cat-

egorising the likely neighboring words and the syntactic structure around the

word. Common examples of such POS tags are: noun, verb, adjective, adverb,

pronoun, preposition, conjunction and interjection. POS taggers are created

using Natural Language Toolkit (NLTK2) [148], where if the input text is:

History of Present Illness 54 year old female with recent diagnosis

of ulcerative colitis on mercaptopurine

2http://nltk.org/
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output is:

HistoryNN ofIN PresentNNP IllnessNNP 54CD yearNN oldJJ fe-

maleNN withIN recentJJ diagnosisNN ofIN ulcerativeJJ colitisNN

onIN mercaptopurineJJ

NN indicates a noun, IN is referring to preposition or conjunction, NNP is

referring to a proper noun, CD is referring to numeral and JJ is referring to

adjective.

The second variation is text split tags where the words of MIMIC-III dis-

charge summaries were tagged using the text splits presented in Section 5.1.3,

in-order to incorporate the collective meanings of each split. Tokens in each

of these sections are tagged with 0 , 1 , 2 , 3 , 4 , 5 , 6 for text in the seven

splits Admission Date, Past Medical History, Pertinent Results, Brief Hos-

pital Course, Medications on Admission, Discharge Diagnosis and Followup

Instructions, respectively as shown in Figure 5.7.

Figure 5.8 presents a comparison of F1 scores for top level ICD-9 groups

among the MIMIC-III discharge summaries with POS tags, with text split

tags and for the raw text without any tagging. Evidently, except for categories

bld, sym, and preg, using a POS tagger does not improve the F1 scores. For

categories bld, sym and preg, the use of the POS tagger improves the F1 score,

from 0.612 to 0.616, from 0.552 to 0.555, and from 0.470 to 0.491, respectively.

When using the text split tagger, the F1 score for circ is equivalent to the

no-tagger case, and for category endo there is a small improvement from 0.848

to 0.850.

Both POS and text split tags were explored to better understand the word

representations and possibly improve the overall performance. However, with

a very few exceptions, in general there were no significant improvements in F1

scores. In fact, with many ICD-9 groupings there was a drop in F1 score when

compared to non-tagged embeddings with ECC-LR.
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5.1.5 Comparison between Embeddings and Classifiers

Table 5.6 presents an extensive comparison of the overall performance of top-

level ICD-9 groups among various embeddings and classifiers for MIMIC-III.

Text split for MIMIC-III, sample text:

Admission Date: [**2164-4-23**] Discharge Date: [**2164-4-27**] Date

of Birth: [**2096-1-7**] Sex: M Service: CARDIOTHORACIC Allergies:

No Known Allergies Adverse

Past Medical History: diabetes type II diagnosed [**2160**] controlled

on oral agents w/ hyperlipidemia hypertension

Pertinent Results: [**2164-4-23**] Echo PREBYPASS No spontaneous

echo contrast is seen in the body of the left atrium or left atrial

Brief Hospital Course: Mr. [**Known lastname**] 68 yr old male

with history of MI, developed worsening chest pain underwent cath which

revealed

Medications on Admission: ATENOLOL 50 mg Daily. LIPITOR 20

mg Daily. PLAVIX 75 mg Daily. started on [**2164-4-14**] LD 417

DILTIAZEM HCL 240 mg Daily.

Discharge Diagnosis: Diabetic. blood in your vomit. Hypertension

Chronic renal

Followup Instructions: Please call Dr office to schedule

output is:

0 Admission 0 Date 0 2164423 0 Discharge 0 Date 0 2164427 0 Date

0 of 0 Birth 0 209617 0 Sex 0 M 0 Service 0 CARDIOTHORACIC

0 Allergies 0 No 0 Known 0 Allergies 0 Adverse

1 Past 1 Medical 1 History 1 diabetes 1 type 1 II 1 diagnosed 1 2160

1 controlled 1 on 1 oral 1 agents 1 hyperlipidemia 1 hypertension

2 Pertinent 2 Results 2 2164423 2 Echo 2 PREBYPASS 2 No

2 spontaneous 2 echo 2 contrast 2 is 2 seen 2 in 2 the 2 body 2 of

2 the 2 left 2 atrium 2 or 2 left 2 atrial

3 Brief 3 Hospital 3 Course 3 Mr 3 Known 3 lastname 3 68 3 yr 3 old

3 male 3 with 3 history 3 of 3 MI 3 developed 3 worsening 3 chest 3 pain

3 underwent 3 cath 3 which 3 revealed

4 Medications 4 on 4 Admission 4 ATENOLOL 4 50 4 mg 4 Daily

4 LIPITOR 4 20 4 mg 4 Daily 4 PLAVIX 4 75 4 mg 4 Daily 4 started

4 on 4 2164414 4 LD 4 417 4 DILTIAZEM 4 HCL 4 240 4 mg 4 Daily

5 Discharge 5 Diagnosis 5 Diabetic 5 blood 5 in 5 your 5 vomit

5 Hypertension 5 Chronic 5 renal

6 Followup 6 Instructions 6 Please 6 call 6 Dr 6 office 6 to 6 schedule

Figure 5.7: Sample text split of MIMIC-III data before and after tagging.
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Figure 5.8: A comparison of F1 scores for top-level ICD-9 groups between

discharge summaries with and without a POS tagger and with text split tags.

All experiments used ECC with logistic regression as the base classifier, using

a ridge value of one.

For ECC-LR, increasing dimensionality of the embeddings, and in essence,

the number of input features, improves the overall performance, except T900,

which is better than T600 but not when compared to the skip-gram model

T600SG. Moreover, for ECC-LR, medical text pre-trained embeddings are

better than the general text pre-trained embeddings W300.

For the neural networks presented in Table 5.6, embedding sizes of up to 300

perform better than more high-dimensional embeddings. For instance, using

T300SG with CNNTest performs better than using the published medical pre-

trained embeddings BSV700 for CNNText. Overall, considering the micro F1

score for embeddings-based SOTA methods CAML and DRCAML, T100SG

performs better than higher-dimensional embeddings, including the general

text pre-trained embeddings W300. For macro F1 score, T300SG performs

best and consistently so across all multi-label neural networks presented in

this research. Critical difference plots for T100SG and T300SG for multi-label
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Classifiers Embeddings Micro-F1 Macro-F1 Hamming Loss Rank loss Jaccard similarity

ECC-LR W300 0.730 0.639 0.187 0.174 0.582

ECC-LR T300 0.734 0.645 0.183 0.170 0.587

ECC-LR T300SG 0.738 0.650 0.180 0.168 0.592

ECC-LR T600 0.742 0.659 0.175 0.158 0.596

ECC-LR T600SG 0.745 0.668 0.173 0.155 0.601

ECC-LR T900 0.744 0.665 0.177 0.151 0.598

CNNText T100SG 0.824 0.734 0.158 0.304 0.692

CNNText W300 0.823 0.741 0.159 0.302 0.691

CNNText T300 0.823 0.743 0.157 0.298 0.693

CNNText T300SG 0.826 0.743 0.161 0.298 0.694

CNNText T600 0.820 0.717 0.158 0.301 0.690

CNNText T600SG 0.817 0.724 0.161 0.307 0.685

CNNText BSV700 0.822 0.726 0.164 0.303 0.691

CAML T100SG 0.842 0.731 0.146 0.271 0.721

CAML W300 0.841 0.766 0.147 0.269 0.721

CAML T300 0.837 0.755 0.154 0.277 0.712

CAML T300SG 0.840 0.770 0.149 0.271 0.719

CAML T600 0.839 0.758 0.152 0.274 0.716

CAML T600SG 0.840 0.766 0.150 0.271 0.718

DRCAML T100SG 0.843 0.733 0.145 0.270 0.722

DRCAML W300 0.839 0.757 0.151 0.273 0.717

DRCAML T300 0.838 0.761 0.153 0.275 0.715

DRCAML T300SG 0.840 0.772 0.150 0.272 0.719

DRCAML T600 0.839 0.759 0.153 0.275 0.715

DRCAML T600SG 0.840 0.766 0.150 0.272 0.717

BiGRU T100SG 0.821 0.731 0.166 0.306 0.693

BiGRU W300 0.827 0.737 0.167 0.298 0.698

BiGRU T300 0.808 0.711 0.178 0.318 0.673

BiGRU T300SG 0.830 0.752 0.161 0.291 0.703

Table 5.6: Comparison of overall performance of top level ICD-9 group-

ings among various multi-label neural classifiers with various embeddings for

MIMIC-III data. ECC-LR, with R=1 and I = 10 is presented for comparison.

Bold is used to indicate the best results for each classifier and underline is

used to indicate best overall measure. For micro-F1, macro-F1 and Jaccard

similarity, higher values are better; and for Hamming loss and rank loss lower

values are better.
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Figure 5.9: Comparison of individual F1 scores of top level ICD-9 groups with

various embeddings for MIMIC-III data using CNNText. Most frequent label

on the left to the least frequent on the right.

classifiers are presented in Figure 5.10.

Figure 5.10: Critical difference plots for ICD-9 Level 1 groups. Nemenyi post-

hoc test (95% confidence level), identifying statistical differences between se-

lective multi-label neural networks with varied embeddings presented in Table

5.6 for MIMIC-III data.

Figure 5.9 presents the F1 scores of labels for various embeddings using

CNNText for ICD-9 top-level groups presented in Table 5.6. For most labels,

skip-gram models perform better than other embeddings presented. However,

for preg, W300 performs better than health-related pre-trained embeddings.

The published embeddings BSV700 performs poorly for category preg in com-
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Level 1 ICD-9 codes, 18 labels, eICU

Models Embeddings Micro -F1 Macro-F1 Hamming Loss Rank loss Jaccard similarity

CNNText T100SG 0.642 0.477 0.099 0.372 0.536

CNNText W300 0.639 0.481 0.104 0.361 0.529

CNNText T300SG 0.632 0.487 0.105 0.374 0.529

BiGRU T100SG 0.623 0.498 0.138 0.283 0.485

BiGRU W300 0.576 0.453 0.164 0.309 0.433

BiGRU T300SG 0.617 0.501 0.129 0.322 0.485

CAML T100SG 0.645 0.511 0.125 0.267 0.523

CAML W300 0.639 0.504 0.130 0.266 0.509

CAML T300SG 0.638 0.504 0.130 0.267 0.508

DRCAML T100SG 0.647 0.512 0.123 0.268 0.526

DRCAML W300 0.640 0.504 0.129 0.267 0.510

DRCAML T300SG 0.639 0.499 0.128 0.261 0.515

Table 5.7: Comparison of overall performance of ICD-9 levels 1 among various

multi-label neural classifiers with various embeddings for eICU. Bold is used to

indicate the best results for each embeddings and underline is used to indicate

best overall measure. For micro-F1, macro-F1 and Jaccard similarity, higher

values are better; and for Hamming loss and rank loss, lower values are better.

parison.

Table 5.7 and Figure 5.11 present the overall performance and F1 scores of

level ICD-9 groups for eICU data. Multi-label neural networks with embed-

dings T100SG, T300SG and W300 are experimented with using eICU data with

a maximum input text sequence size of 1,250 tokens. It is essential to point out

that sequence length of 99.7% of the eICU data are less than or equal to 1,250

tokens (see Figure 2.2). Micro and macro F1 scores of DRCAML with T100SG

is the best among all the classifiers presented. This observation is also sup-

ported by critical difference plots presented in Figure 5.12. Figure 5.11 shows

very poor performance across the networks for infrequent labels compared to

frequent labels, with the exception of F1 score of 0.42 for BiGRU and 0.13 for

CNNText for preg.
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Figure 5.11: Comparison of individual F1 scores of top level ICD-9 groups

with various embeddings and classifiers for eICU data. Most frequent label on

the left to the least frequent on the right.

Figure 5.12: Critical difference plots for ICD-9 Level 1 groups. Nemenyi post-

hoc test (95% confidence level), identifying statistical differences between se-

lective multi-label neural networks with various embeddings presented in Table

5.7 for eICU data.

5.1.6 Summary

This section presented a detailed study of multi-label top-level ICD-9 groups,

where several classifiers and embeddings were explored. Among the traditional

machine learning classifiers, ECC-LR performed well; however, neural net-

works performed better. The skip-gram model performs better than CBOW,
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Figure 5.13: Critical difference plots for Level 2 ICD-9 codes, 158 labels. Ne-

menyi post-hoc test (95% confidence level), identifying statistical differences

between multi-label neural networks presented in Table 5.8 for MIMIC-III

data.

and T100SG and T300SG are the better performing embeddings among those

presented. Options of tagging words and concatenating embeddings were ex-

plored, however, results did not show improvement in the overall performances,

with very few exceptions.

5.2 ICD-9 Level 2 and 3

In this section, Level 2 and 3 ICD-9 codes are modelled as flat multi-label prob-

lems for MIMIC-III and eICU data. Table 5.8 presents overall comparison for

both Level 2 and 3 of ICD-9 codes for MIMIC-III data. Input sequence length

was limited to a maximum of 3,000 tokens. For the MIMIC-III data Level 2

ICD-9 codes include 158 labels, where T100SG performs better than T300SG

for all classifiers. Embeddings-based methods CAML and DRCAML are the

two better performing networks. These observations are further supported

by critical difference plots for T100SG and T300SG for multi-label classifiers

presented in Figure 5.13.

Figure 5.14 presents a comparison of F1 scores for Level 2 ICD-9 code

labels for MIMIC-III data, where the frequency of occurrence of the labels is

ordered from high (left) to low (right). CAML and DRCAML with T100SG

embeddings are used for direct comparison. Label frequency less than one

percent is indicated. For higher frequencies, both methods perform on par

with each other. However tail-end labels include multiple labels with F1 scores

of zero.
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Level 2 ICD-9 codes, 158 labels, MIMIC-III

Models Embeddings Micro-F1 Macro-F1 Hamming Loss Rank loss Jaccard similarity

CNNText T100SG 0.692 0.404 0.050 0.345 0.530

BiGRU T100SG 0.700 0.414 0.051 0.298 0.540

CAML T100SG 0.716 0.428 0.047 0.303 0.560

DRCAML T100SG 0.716 0.415 0.047 0.305 0.559

CNNText T300SG 0.670 0.356 0.051 0.386 0.504

BiGRU T300SG 0.679 0.378 0.053 0.332 0.519

CAML T300SG 0.709 0.402 0.048 0.301 0.552

DRCAML T300SG 0.710 0.391 0.048 0.306 0.552

Level 3 ICD-9 codes, 923 labels, MIMIC-III

CNNText T100SG 0.582 0.214 0.013 0.466 0.421

BiGRU T100SG 0.577 0.215 0.014 0.458 0.419

CAML T100SG 0.635 0.264 0.012 0.392 0.474

DRCAML T100SG 0.633 0.241 0.012 0.403 0.471

CNNText T300SG 0.563 0.203 0.014 0.481 0.402

BiGRU T300SG 0.581 0.220 0.014 0.452 0.423

CAML T300SG 0.620 0.231 0.013 0.407 0.456

DRCAML T300SG 0.617 0.220 0.012 0.424 0.453

Table 5.8: Comparison of overall performance of ICD-9 Level 2 and 3 among

various multi-label neural classifiers with various embeddings for MIMIC-III.

Bold is used to indicate the best results for each embeddings and underline is

used to indicate best overall measure. For micro-F1, macro-F1 and Jaccard

similarity, higher values are better; and for Hamming loss and rank loss, lower

values are better.
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Level 2 ICD-9 codes, 93 labels, eICU

Models Embeddings Micro -F1 Macro-F1 Hamming Loss Rank loss Jaccard similarity

CNNText T100SG 0.554 0.297 0.032 0.369 0.416

BiGRU T100SG 0.570 0.307 0.031 0.335 0.440

CAML T100SG 0.567 0.314 0.034 0.280 0.427

DRCAML T100SG 0.572 0.320 0.033 0.294 0.434

CNNText T300SG 0.466 0.243 0.053 0.289 0.335

BiGRU T300SG 0.515 0.305 0.043 0.289 0.358

CAML T300SG 0.557 0.314 0.036 0.274 0.412

DRCAML T300SG 0.560 0.310 0.035 0.282 0.416

Level 3 ICD-9 codes, 316 labels, eICU

CNNText T100SG 0.469 0.162 0.012 0.483 0.339

BiGRU T100SG 0.487 0.215 0.010 0.458 0.391

CAML T100SG 0.504 0.216 0.012 0.362 0.375

DRCAML T100SG 0.501 0.214 0.012 0.381 0.384

CNNText T300SG 0.424 0.166 0.017 0.391 0.285

BiGRU T300SG 0.477 0.208 0.012 0.450 0.360

CAML T300SG 0.494 0.202 0.013 0.366 0.358

DRCAML T300SG 0.497 0.189 0.012 0.383 0.364

Table 5.9: Comparison of overall performance of ICD-9 Level 2 and 3 among

various multi-label neural classifiers with various embeddings for eICU. Bold is

used to indicate the best results for each embeddings and underline is used to

indicate best overall measure. For micro-F1, macro-F1 and Jaccard similarity,

higher values are better; and for Hamming loss and rank loss, lower values are

better.

Table 5.8 includes an overall comparison of individual F1 scores for Level

3 ICD-9 code labels for MIMIC-III data. As for Level 2 ICD-9 codes, SOTA

methods CAML and DRCAML with T100SG perform better overall. Ap-

pendix Figure C.4 presents a comparison of F1 scores of individual 923 labels

between CNNText and CAML with T100SG for ICD-9 Level 3 codes.
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Table 5.9 presents overall comparison for both Level 2 and 3 of ICD-9 codes

for eICU data. Input sequence length was limited to a maximum of 1,250 to-

kens. For eICU data, Level 2 ICD-9 codes include 93 labels, where T100SG

performs better than T300SG for all classifiers. Micro and macro F1 scores

for CAML and DRCAML are better than for other networks. Critical differ-

ence plots for T100SG and T300SG for multi-label classifiers are presented in

Figure 5.16 also supports these observations.

Figure 5.16: Critical difference plots for Level 2 ICD-9 codes, 93 labels. Ne-

menyi post-hoc test (95% confidence level), identifying statistical differences

between multi-label neural networks presented in Table 5.9 for eICU data.

Figure 5.15 presents a comparison of F1 scores for Level 2 ICD-9 code labels

for eICU data, where the frequency of occurrence of the labels is ordered from

high (left) to low (right). CAML and DRCAML with T100SG embeddings

are used for direct comparison. A label frequency of less than one percent is

indicated. The eICU data has a higher percentage for tail-end labels at Level

2 than MIMIC III. As observed in MIMIC-III, for higher frequencies, both

methods perform on par with each other. Tail-end labels include many labels

with F1 scores of zero.

Table 5.9 also includes an overall comparison of individual F1 scores for

Level 3 ICD-9 code labels for eICU data. In addition to CAML, BiGRU

performs better overall in comparison to CNNText. Appendix Figure C.3

presents a comparison of F1 scores of individual 316 labels between BiGRU

and CAML for ICD-9 Level 3 codes. Critical difference plots for T100SG and

T300SG for multi-label classifiers are presented in Appendix Figure C.2.
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5.2.1 Summary

This section presented experimental findings for Level 2 and 3 of ICD-9 codes

for both MIMIC-III and eICU. Based on the findings in Section 5.1, only neural

networks CAML, DRCAML, CNNText and BiGRU were used for experiments

with embeddings T100SG and T300SG. For both MIMIC-III and eICU, the

best choice is CAML with T100SG for Level 2 and 3 of ICD-9 codes. In

addition, 100-dimensional embeddings T100SG outperformed 300-dimensional

T300SG. Tail-end labels were explicitly considered, where F1 scores of zero

were observed across many labels.

5.3 Case Studies

This section considers embeddings-based multi-label neural networks for case

studies presented in Table 2.4 for both MIMIC-III and eICU data. Predictions

of medical codes are presented as a flat multi-label problem for codes associ-

ated with cardiovascular disease, COVID-19 patient shielding, and systemic

fungal or bacterial infections. Comparison between label F1 scores are also

presented for selected classifiers. Critical difference plots are used to deter-

mine the classifiers used for label F1 score comparisons, where only the low

ranking models are presented.

Table 5.10 presents micro and macro F1 scores for the three case studies

using MIMIC-III data, where classifiers embeddings and a maximum number

of tokens in input text sequence is varied. Evidently, for all classifiers, increase

in the number of tokens of the input text shows considerable improvement in

performances.

Table 5.11 presents micro and macro F1 scores for the three case studies

using eICU data, where classifiers embeddings and a maximum number of

tokens in input text sequence is varied. The eICU data includes only 1% of

text sequence with more than 512 tokens. Hence, when the maximum number

of tokens in increased from 512 to 1, 250, micro and macro F1 scores show
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almost no improvements.

Classifier Embeddings Tokens Cardiovascular COVID-19 Fungal or Bacterial

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

CAML T100SG 512 0.71 0.20 0.41 0.23 0.41 0.26

CAML T100SG 3,000 0.77 0.24 0.61 0.40 0.57 0.40

CAML T300SG 3,000 0.77 0.24 0.54 0.37 0.62 0.37

DRCAML T100SG 512 0.71 0.19 0.44 0.27 0.39 0.25

DRCAML T100SG 3,000 0.77 0.24 0.60 0.39 0.62 0.38

DRCAML T300SG 3,000 0.77 0.25 0.54 0.40 0.62 0.37

BiGRU T100SG 512 0.68 0.19 0.39 0.19 0.44 0.27

BiGRU T100SG 3,000 0.77 0.26 0.59 0.31 0.62 0.37

BiGRU T300SG 3,000 0.74 0.24 0.52 0.33 0.57 0.36

CNNText T100SG 512 0.72 0.22 0.49 0.31 0.41 0.24

CNNText T100SG 3,000 0.74 0.30 0.58 0.42 0.59 0.32

CNNText T300SG 3,000 0.75 0.31 0.59 0.41 0.57 0.40

Table 5.10: Comparison of micro-F1, macro-F1 of case studies among various

multi-label neural classifiers with various embeddings and sequence length for

MIMIC-III data. Bold is used to indicate the best results.

Classifier Embeddings Tokens Cardiovascular COVID-19 Fungal or Bacterial

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

CAML T100SG 512 0.68 0.41 0.60 0.32 0.64 0.25

CAML T100SG 1,250 0.68 0.41 0.60 0.32 0.64 0.25

CAML T300SG 1,250 0.68 0.40 0.61 0.30 0.63 0.22

DRCAML T100SG 512 0.65 0.43 0.61 0.32 0.63 0.29

DRCAML T100SG 1,250 0.65 0.42 0.61 0.32 0.63 0.29

DRCAML T300SG 1,250 0.68 0.41 0.61 0.30 0.63 0.23

BiGRU T100SG 512 0.67 0.43 0.58 0.35 0.62 0.27

BiGRU T100SG 1,250 0.67 0.43 0.59 0.35 0.62 0.27

BiGRU T300SG 1,250 0.65 0.41 0.58 0.35 0.63 0.24

CNNText T100SG 512 0.68 0.40 0.59 0.36 0.63 0.25

CNNText T100SG 1,250 0.68 0.40 0.59 0.36 0.63 0.25

CNNText T300SG 1,250 0.64 0.39 0.58 0.34 0.61 0.24

Table 5.11: Comparison of micro-F1, macro-F1 of case studies among various

multi-label neural classifiers with various embeddings and sequence length for

eICU data. Bold is used to indicate the best results.

Critical difference plots for T100SG and T300SG for multi-label classifiers
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Figure 5.17: Critical difference plots for case studies - cardiovascular disease

(top); COVID-19 (middle); and fungal or bacterial infection (bottom), for

MIMIC-III data. Nemenyi post-hoc test (95% confidence level), identifying

statistical differences between label F1 scores of multi-label neural networks

presented in Table 5.10 for MIMIC-III data.

are presented in Figure 5.17 and Figure 5.18 for MIMIC-III and eICU respec-

tively. As indicated before in this chapter, critical difference plots are used as

additional supportive statistical analysis. For MIMIC-III, CNNText (T100SG)

is the prefered choice for cardiovascular disease, DRCAML (T300SG) for COVID-

19 patient shielding and CAML (T100SG) for systemic fungal or bacterial

infection. For eICU, the difference in average ranking is not statistically sig-

nificant, as there is a bold line connecting across the classifiers.

5.3.1 Cardiovascular Disease

For cardiovascular disease, based on the results presented in Tables 5.10 and

5.11, micro F1 scores of CAML and DRCAML are better than that of other

classifiers presented in this research for MIMIC-III and eICU data. This is

similar to the observation in predictions of Level 1, 2, and 3 of ICD-9 codes. For

eICU data, micro F1 scores of CNNText are on par with CAML and DRCAML

for cardiovascular disease. Macro F1 scores obtained from CNNText performs
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Figure 5.18: Critical difference plots for case studies - cardiovascular disease

(top); COVID-19 (middle); and fungal or bacterial infection (bottom), for

eICU data. Nemenyi post-hoc test (95% confidence level), identifying statisti-

cal differences between label F1 scores of multi-label neural networks presented

in Table 5.11 for eICU data.

better for MIMIC-III in comparison to other multi-label classifiers presented

in Table 5.10, and BiGRU performs on par with DRCAML for eICU data.

Figure 5.19 presents a comparison between label F1 scores for cardiovas-

cular disease using MIMIC-III and eICU dataset. For MIMIC-III, CNNText

shows a clear improvement in performances, especially in tail-end labels com-

pared to DRCAML.

5.3.2 COVID-19 Patient Shielding

For COVID-19 patient shielding, based on the results presented in Tables 5.10

and 5.11, micro F1 scores of CAML are better for MIMIC-III, and both CAML

and DRCAML are better for eICU data in comparison, as noticed in other

multi-label problems presented in this research. For macro F1 scores, CNNText

performs better for both MIMIC-III and eICU in comparison to other multi-

label classifiers presented in Table 5.10.

Figure 5.20 presents a comparison between label F1 scores for COVID-19

patient shielding using MIMIC-III and eICU dataset. Each plot includes a
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Figure 5.19: Comparison of F1 scores for cardiovascular disease with MIMIC-

III (top) and eICU (bottom). The tail end labels are indicated. Each plot

presents with individual legends for references.
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Figure 5.20: Comparison of F1 scores for COVID-19 patient shielding with

MIMIC-III (top) and eICU (bottom). The tail end labels are indicated. Each

plot presents with individual legends for references.



109

Figure 5.21: Comparison of F1 scores for systemic fungal or bacterial infection

with MIMIC-III (top) and eICU (bottom). The tail end labels are indicated.

Each plot presents with individual legends for references.



110

legend to indicate the classifier and embeddings used. Tail-end labels are also

indicated. COVID-19 presents a similar trend to cardiovascular disease, where

for labels with high frequency, all networks are on par, but for tail-end labels,

CNNText performs better than CAML or DRCAML for MIMIC-III data.

5.3.3 Systemic Fungal or Bacterial Infection

For fungal or bacterial infection, Tables 5.10 and 5.11, shows micro F1 scores

of CAML, DRCAML and BiGRU are the same for MIMIC-III, and CAML

is better for eICU data. Macro F1 scores of CAML and CNNText are better

for MIMIC-III, and DRCAML for eICU in comparison to other multi-label

classifiers presented in Table 5.10.

Figure 5.21 presents a comparison between label F1 scores for fungal or

bacterial infection using MIMIC-III and eICU dataset. Each plot includes a

legend to indicate the classifier and embeddings used. Tail-end labels are also

indicated. As observed in the COVID-19 patient shielding case, the trend of

F1 scores is similar where for labels with high frequency, all networks are on

par, but for tail end labels, CNNText performs better for datasets.

5.4 Discussion

This chapter presented experimental outcomes of NLP techniques used for

a multi-label medical text classification tasks. Predicting medical codes for

patients with multi-morbidity for ICD-9 levels 1, 2 and 3 for both MIMIC-

III and eICU are used as supervised multi-label classification tasks. Label-set

sizes include 18, 93, 158, 316 and 923. Predicting medical codes related to case

studies are also presented for both MIMIC-III and eICU data. Results and

analysis are done at both individual label level and also at overall performances

of multi-label classifiers. It is evident that variations in embeddings such as

the skip-gram model over CBOW do result in improvements in F1 scores. In

general, as observed in Chapter 4, health-related pre-trained embeddings do
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achieve better results than general text pre-trained embeddings.

Neural networks provide better accuracy than traditional machine learning

classifiers. The input features of classifiers such as ECC are static, whereas

neural networks are dynamic. CAML and DRCAML and embeddings T100SG

and T300SG perform better across all levels of ICD-9 codes. For case stud-

ies using MIMIC-III data, CNNText provides an improvement in F1 scores,

especially for tail-end labels. The general poor performances across the multi-

label classifiers are evident for tail-end labels. This thesis presents a more

detailed study and potential techniques to improve such poor tail-end label

performances in Chapter 7.

Results presented in this chapter show that there is a definite benefit in

exploring various techniques for representing the text features. However, not

all techniques result in improvements of overall accuracy of predictions, i.e.,

POS or text split tags did not show consistent improvements across labels. An

analysis of text representations using transformers for multi-label is presented

in the next chapter, which presents more experimental evaluations of language

models for multi-label medical text classifications.



Chapter 6

Transformers for Multi-label

Classification of Medical Text

There has been a significant advance in NLP in the last couple of years, es-

pecially with transformer models. With minimum effort, transfer learning of

pre-trained models by fine-tuning on downstream supervised tasks achieves

very good results [16, 126]. This chapter fills the gap in the use of transform-

ers in multi-label medical domain-specific tasks for highly imbalanced datasets.

Predicting medical codes is used as one of the down-streaming tasks, where

levels 1, 2 and 3 of ICD-9 codes are considered individual flat multi-label

problems. The three case studies introduced in Section 2.8 are also used as

down-streaming tasks. Both eICU and MIMIC-III data are used for experi-

ments, and selected experimental results for embedding based neural networks

from Chapter 5 are presented for direct comparison. Experimental results for

multiple multi-label problems are presented to gain a better understanding

of the effectiveness of transformers. Critical difference plots are presented as

supportive statistical analysis. This chapter:

– analyses the effectiveness of using transformers for the task of automat-

ically predicting medical codes of levels 1, 2, and 3 of ICD-9 codes, and

predicting medical codes related to case studies from EHRs for multiple

document lengths and several labels.
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– demonstrates that for documents with sequence length truncated at 512

tokens, medical domain-specific transformer models outperform state-of-

the-art (SOTA) methods for multi-label problems with 18, 93 and 158

labels for both datasets.

– demonstrates that for longer documents and larger multi-label prob-

lems, standard transformer models’, with restricted text sequence length

(i.e. 512 tokens), F1 scores are not as good as the traditional word-

embeddings-based SOTA networks.

– demonstrates that transformer models such as TransformerXL with longer

input sequences outperform SOTA networks.

– as with Chapter 5, tail-end labels were explicitly considered, where F1

scores of zero were observed across many labels.

6.1 ICD-9 Level 1

This section presents detailed experimental results for level 1 ICD-9 codes for

both eICU and MIMIC-III data. First, a summary of text input sequence

selection is presented, followed by a comparison of transformer models. An

outline of the time required for each epoch using various transformers and

traditional embeddings-based networks are also presented.

6.1.1 Medical Text Input Sequence Selections

MIMIC-III contains long documents with an average of more than 1,500 tokens.

Standard transformer models can only handle a maximum sequence length of

512 tokens. Generally, if the sequence is long, it will be truncated to the first

512 tokens. Schäfer and Friedrich (2020) [15] observed that compared to the

first 512 tokens (head-only), tokens from ‘Brief Hospital Course’ is better in

discharge summary for predicting most frequent medical codes. Taking this

into consideration, discharge summaries of MIMIC-III data are rearranged
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Model Tokens Sequence Micro-F1 Macro-F1

BERT-base 128 head-only 0.74 0.66

ClinicalBERT 128 head-only 0.77 0.68

BioMed-RoBERTa-base 128 head-only 0.77 0.66

PubMedBERT 128 head-only 0.77 0.68

BERT-base 512 head-only 0.79 0.71

ClinicalBERT 512 head-only 0.80 0.72

BioMed-RoBERTa-base 512 head-only 0.80 0.74

PubMedBERT 512 head-only 0.81 0.80

BERT-base 512 all text 0.79 0.70

ClinicalBERT 512 all text 0.80 0.72

BioMed-RoBERTa-base 512 all text 0.79 0.72

PubMedBERT 512 all text 0.81 0.80

Table 6.1: Comparison of overall performance of top level ICD-9 groupings

among various multi-label transformer models where input text sequence to-

kens are varied. Tokens were counted from the start of the pre-processed

discharge summary (head-only), or text rearranged using the seven logical

sections as mentioned in Section 5.1.3 to ‘Brief Hospital Course’, ‘Discharge

Diagnosis’, ‘Past Medical History’, ‘Admission Date’ and the rest (all text).

Bold is used to indicate the best overall measure.

using the seven logical sections as mentioned in Section 5.1.3 to ‘Brief Hospital

Course’, ‘Discharge Diagnosis’, ‘Past Medical History’, ‘Admission Date’ and

the rest (refered to as all text in Table 6.1). Table 6.1 presents a comparison

of level 1 ICD-9 codes for MIMIC-III data with various sequence length and

segment selections. It shows that there is a clear improvement from 128 tokens

to 512 tokens across all transformer models. However, there is no significant

difference between head-only and all text. Hence, this thesis uses head-only for

all experiments.
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6.1.2 Comparison between Transformers

Table 6.2 considers the overall performance of top-level ICD-9 groups for sev-

eral transformer models with various sequence length for MIMIC-III data.

For comparison, results for DRCAML and CAML with T100SG are also pre-

sented. Experiments use a train-test hold-out set for validation, where data

is split into 80/20. The results presented are obtained by averaging three

independent runs.

Across standard transformer models with a sequence length of 512, Pub-

MedBERT outperforms other models, with micro and macro F1 scores of

MeDAL-Electra being the worst among those presented. TransformerXL (3,072)

outperforms all other models. This is supported by critical difference plots pre-

sented in Figure 6.1, where TransformerXL (3,072) has the lowest rank, and

MeDAL-Electra the highest rank with no bold line connecting the two, indi-

cating that difference in average ranking is statistically significant. Compared

to Longformer (512) and TransformerXL (512), micro and macro F1 scores

of Longformer (3,000) and TransformerXL (3,072) show an improvement of 5

- 10%. Moreover, no bold lines are connecting Longformer (512) with Long-

former (3,000) and TransformerXL (512) with TransformerXL (3,072) in the

CD-plot presented in Figure 6.1, indicating that the difference in average rank-

ing is statistically significant. Macro-F1 scores of SOTA models DRCAML and

Figure 6.1: Critical difference plots for MIMIC-III, top level ICD-9 groupings.

Nemenyi post-hoc test (95% confidence level), identifying statistical differences

between multi-label transformers and embeddings-based neural networks pre-

sented in Table 6.2 for MIMIC-III data.



116

Level 1 ICD-9 codes, 18 labels, MIMIC III

Models Tokens Micro -F1 Macro-F1 Hamming Loss Rank loss Jaccard Similarity

BERT-base 512 0.792 0.714 0.157 0.313 0.665

ClinicalBERT 512 0.796 0.725 0.157 0.308 0.670

PubMedBERT 512 0.807 0.746 0.148 0.296 0.685

BioMed-RoBERTa 512 0.798 0.736 0.154 0.305 0.673

MeDAL-electra 512 0.782 0.712 0.168 0.327 0.650

Longformer 512 0.796 0.733 0.155 0.310 0.666

TransformerXL 512 0.788 0.723 0.166 0.327 0.648

Longformer 3,000 0.837 0.795 0.123 0.249 0.725

TransformerXL 3,072 0.846 0.801 0.118 0.238 0.739

DRCAML, T100SG 3,000 0.843 0.733 0.145 0.270 0.722

CAML, T100SG 3,000 0.842 0.731 0.146 0.271 0.721

Table 6.2: Comparison of overall performance of top level ICD-9 groupings

among various transformers and sequence length for MIMIC-III. CAML and

DRCAML with T100SG embeddings are presented for comparison. Bold is

used to indicate the best results for each token length group for transformers

and underline is used to indicate best overall measure. For micro-F1, macro-F1

and Jaccard similarity, higher values are better; for Hamming loss and rank

loss, lower values are better.

CAML are worse than PubMedBERT, BioMed-RoBERTa, Longformer (3,000)

and TransformerXL (3,072), with almost 10% improvement observed between

CAML/DRCAML and TransformerXL (3,072).

Figure 6.2 presents a comparison of F1 scores for level 1 ICD-9 codes for

various transformer models and maximum sequence lengths for MIMIC-III

data. Across transformers with maximum sequence length of 512, F1 scores

of PubMedBERT are better or on par with other transformers except for cat-

egories preg, pren and bld. In contrast, compared to Longformer (3,000) and

TransformerXL (3,072), where longer sequence text is used, F1 scores of Pub-

MedBERT is either the same or worse. Generally, TransformerXL (3,072) out-

performs other models, with the exception of categories skin and preg where

F1 score of Longformer (3,000) is better.

Table 6.3 considers overall performance of top-level ICD-9 groups for sev-

eral transformer models with various sequence length for eICU data. For com-
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Figure 6.2: Comparison of individual F1 scores of top level ICD-9 groups with

varied transformer models with max sequence length of 512 (top) and varied

sequence lengths (bottom) for MIMIC-III data. Most frequent label on the

left to the least frequent on the right.

parison, results for DRCAML and CAML with T100SG are also presented.

Experiments use a train-test hold-out set for validation, where data is split

into 80/20. The results presented are obtained by averaging three indepen-
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Level 1 ICD-9 codes, 18 labels, eICU

Models Tokens Micro -F1 Macro-F1 Hamming Loss Rank loss Jaccard Similarity

BERT-base 512 0.682 0.510 0.081 0.380 0.605

ClinicalBERT 512 0.685 0.530 0.081 0.342 0.609

PubMedBERT 512 0.682 0.520 0.082 0.347 0.602

BioMed-RoBERTa 512 0.689 0.536 0.080 0.333 0.613

MeDAL-electra 512 0.667 0.505 0.086 0.354 0.590

Longformer 512 0.688 0.533 0.081 0.332 0.614

TransformerXL 512 0.692 0.530 0.080 0.329 0.619

Longformer 1,250 0.690 0.538 0.081 0.331 0.615

TransformerXL 1,250 0.700 0.540 0.080 0.328 0.619

DRCAML, T100SG 1,250 0.647 0.512 0.123 0.268 0.526

CAML, T100SG 1,250 0.645 0.511 0.125 0.267 0.523

Table 6.3: Comparison of overall performance of top level ICD-9 groupings

among various transformers and sequence length for eICU. CAML and DR-

CAML with T100SG embeddings are presented for comparison. Bold is used

to indicate the best results for each token length groups for transformers and

underline is used to indicate best overall measure. For micro-F1, macro-F1

and Jaccard similarity, higher values are better; for Hamming loss and rank

loss lower values are better.

Figure 6.3: Critical difference plots of label F1 scores for eICU, top level

ICD-9 groupings. Nemenyi post-hoc test (95% confidence level), identifying

statistical differences between multi-label transformers and embeddings-based

neural networks presented in Table 6.3 for eICU data.

dent runs.

Across standard transformer models with a sequence length of 512, the

macro F1 score of BioMed-RoBERTa outperforms other models, with macro

F1 scores of MeDAL-Electra being the worst among those presented. Trans-
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formerXL (1,250) outperforms all other models. This is supported by critical

difference plots presented in Figure 6.3, where TransformerXL (1,250) has the

lowest rank and MeDAL-Electra the highest rank, with no bold line connecting

the two, indicating that difference in average ranking is statistically significant.

Compared to Longformer (512) and TransformerXL (512), micro and macro

F1 scores of Longformer (1,250) and TransformerXL (1,250) show marginal

improvements, with no statistically significant differences observed in the CD-

plot. Moreover, micro and macro F1 scores of SOTA models DRCAML and

CAML are worse than most transformer models, with 5-8% improvements

observed between CAML/DRCAML and TransformerXL (1,250). This obser-

vation was only evident in macro-F1, not in the micro-F1 score for MIMIC-III.

Figure 6.4 presents comparison of F1 scores for level 1 ICD-9 codes for

various transformer models and maximum sequence lengths for eICU data.

Across transformers with a maximum sequence length of 512, F1 scores of

BioMed-RoBERTa-base are better or on par with other transformers for ten

of the 18 categories, with category cong being the most prominent. For a

maximum sequence length of 1250, F1 scores of TransformerXL (1,250) are

better or on par with other classifiers for nine of the 18 categories. F1 score

of DRCAML (1,250) is better than the F1 scores of transformers for pren, skin

and musc. For infrequent labels preg and cong, DRCAML performs worse on

comparison.

6.1.3 Computational Time Requirements

As indicated through the results in this section, TransformerXL, with a longer

sequence limit, 3,072 token for MIMIC-III and 1.250 for eICU, outperforms

other transformer models and traditional word embeddings-based SOTA meth-

ods. Table 6.1.3 presents an overview of the runtime required per epoch in

seconds across a range of models. Traditional embeddings-based neural net-

works require significantly less time than transformers, with MeDAL-Electra

needing the less time per epoch within the transformer models. On the other
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Figure 6.4: Comparison of individual F1 scores of top level ICD-9 groups with

varied transformer models with max sequence length of 512 (top) and with

varied sequence length and models (bottom) for eICU data. Most frequent

label on the left to the least frequent on the right.

hand, TransformerXL (3,072) and TransformerXL (1,250) require considerably

more computational time than other models. For example, the computational

time required is about 50 times more than BERT-base for MIMIC-III with

TransformerXL (3,072), and 17 times more than BERT-base for eICU with
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Level 1 ICD-9 codes, 18 labels

MIMIC-III eICU

Models Tokens Time per epoch Tokens Time per epoch

MeDAL-electra 512 1,321 sec 512 2,998 sec

PubMedBERT 512 1,475 sec 512 4,024 sec

BERT-base 512 1,502 sec 512 4,918 sec

ClinicalBERT 512 3,280 sec 512 5,879 sec

BioMed-RoBERTa 512 3,221 sec 512 8,827 sec

Longformer 512 7,123 sec 512 21,205 sec

TransformerXL 512 7,844 sec 512 21,791 sec

Longformer 3,000 31,901 sec 1,250 32,238 sec

TransformerXL 3,072 73,655 sec 1,250 83,335 sec

CNNText, T100SG 3,000 42 sec 1,250 52 sec

CAML, T100SG 3,000 45 sec 1,250 57 sec

DRCAML, T100SG 3,000 55 sec 1,250 58 sec

BiGRU, T100SG 3,000 215 sec 1,250 240 sec

Table 6.4: Time required (in seconds) for language models presented in Ta-

ble 6.2 and Table 6.3 for Level 1 ICD-9 grouping2.

TransformerXL (1,250). Compared to TransformerXL, Longformer, with iden-

tical/similar maximum sequence length requires less than half the time for long

sequences. However, for text truncated to 512 tokens, both Longformer and

TransformerXL require very similar time. This behaviour is partly explained

by the fact that the Longformer architecture is designed to scale linearly with

sequence length, instead of quadratically as in the original transformer mod-

els [82].

2Average times (in seconds) based on experiments run on 12 core Intel(R) Xeon(R) W-

2133 CPU @ 3.60GHz, GPU device GV100GL [Quadro GV100].
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Level 2 ICD-9 codes, 158 labels, MIMIC III

Models Tokens Micro -F1 Macro-F1 Hamming Loss Rank loss Jaccard Similarity

BERT-base 512 0.623 0.386 0.051 0.412 0.475

ClinicalBERT 512 0.627 0.387 0.051 0.405 0.477

PubMedBERT 512 0.647 0.424 0.048 0.385 0.502

BioMed-RoBERTa 512 0.635 0.405 0.049 0.402 0.487

MeDAL-electra 512 0.591 0.286 0.050 0.489 0.439

Longformer 512 0.633 0.377 0.048 0.417 0.486

Longformer 3,000 0.716 0.444 0.040 0.317 0.576

CAML, 100SG 3,000 0.716 0.428 0.047 0.303 0.560

DRCAML, 100SG 3,000 0.716 0.415 0.047 0.305 0.559

Level 3 ICD-9 codes, 923 labels, MIMIC III

ClinicalBERT 512 0.526 0.166 0.012 0.377 0.540

PubMedBERT 512 0.547 0.184 0.012 0.520 0.400

BioMed-RoBERTa 512 0.533 0.175 0.012 0.536 0.386

Longformer 3,000 0.602 0.168 0.010 0.477 0.450

CAML, T100SG 3,000 0.635 0.264 0.012 0.392 0.474

DRCAML, T100SG 3,000 0.633 0.241 0.012 0.403 0.471

Table 6.5: Comparison of the overall performance of Levels 2 and 3 of ICD-9

codes among various transformers and sequence lengths for MIMIC-III. CAML

and DRCAML with T100SG embeddings are presented for comparison. Bold is

used to indicate the best results for each token length groups for transformers,

and underline is used to indicate the best overall measure. For micro-F1,

macro-F1 and Jaccard similarity, higher values are better; for Hamming loss

and rank loss, lower values are better.

6.2 ICD-9 Levels 2 and 3

In this section, levels 2 and 3 ICD-9 codes are considered flat multi-label prob-

lems for MIMIC-III and eICU data. Table 6.5 presents overall comparison for

both levels 2 and 3 of ICD-9 codes for MIMIC-III data. Only Longformer is

used for a longer sequence of text, as the required resource for TransformerXL

is restrictive (see section 7.7 for detailed explanation of computer resource

restrictions). Embeddings-based SOTA methods CAML and DRCAML are

also presented for direct comparison. For level 2 ICD-9 codes, Longformer

(3,000) outperforms other transformer models. Micro-F1 scores of CAML

and DRCAML are the same as Longformer (3,000). Critical difference plots
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Level 2 ICD-9 codes, 93 labels, eICU

Models Tokens Micro -F1 Macro-F1 Hamming Loss Rank loss Jaccard Similarity

BERT-base 512 0.567 0.293 0.026 0.428 0.478

ClinicalBERT 512 0.577 0.322 0.026 0.411 0.487

PubMedBERT 512 0.574 0.303 0.026 0.419 0.490

BioMed-RoBERTa 512 0.578 0.327 0.026 0.409 0.423

MeDAL-electra 512 0.574 0.248 0.023 0.454 0.482

Longformer 512 0.585 0.311 0.024 0.414 0.495

Longformer 1,250 0.589 0.320 0.024 0.407 0.499

DRCAML, T100SG 1,250 0.572 0.320 0.033 0.294 0.434

BiGRU, T100SG 1,250 0.570 0.307 0.031 0.335 0.440

Level 3 ICD-9 codes, 316 labels, eICU

ClinicalBERT 512 0.504 0.171 0.009 0.508 0.416

PubMedBERT 512 0.502 0.167 0.009 0.515 0.405

BioMed-RoBERTa 512 0.501 0.180 0.009 0.506 0.412

Longformer 1,250 0.508 0.178 0.009 0.506 0.417

CAML, T100SG 1,250 0.504 0.216 0.012 0.362 0.375

BiGRU, T100SG 1,250 0.487 0.215 0.010 0.458 0.391

Table 6.6: Comparison of overall performance of Levels 2 and 3 of ICD-9 codes

among various transformers and sequence length for eICU. CAML, DRCAML

and BiGRU with T100SG embeddings is presented for comparison. Bold is

used to indicate the best results for each token length groups for transformers

and underline is used to indicate best overall measure. For micro-F1, macro-F1

and Jaccard similarity, higher values are better; for Hamming loss and rank

loss, lower values are better.

presented in Appendix Figure D.1 indicate no statistically significant differ-

ences between Longformer, CAML and DRCAML. For level 3 of ICD-9 codes,

CAML, T100SG outperforms other models, including Longformer (3,000).

Figure 6.5 presents a comparison of F1 scores for level 2 ICD-9 code labels

for MIMIC-III data, where the frequency of occurrence of the labels is ordered

from high (left) to low (right) between PubMedBERT and Longformer, and

CAML and Longformer. Label frequency less than one percent is indicated.

For higher frequencies, all three methods perform similar to each other. How-

ever, tail-end labels include multiple labels with F1 scores of zero. Overall for

tail-end labels, PubMedBERT performs better than both CAML and Long-



124

former. One possible reason for this may be because the vocabulary used to

train PubMedBERT is health-related, whereas Longformer is a general text

pre-trained transformer.

Table 6.6 presents overall comparison for both levels 2 and 3 of ICD-9

codes for eICU data. As with MIMIC-III data, only Longformer is used for a

longer sequence of text. Embeddings-based methods CAML, DRCAML and

BiGRU, are also presented for direct comparison. For level 2 ICD-9 codes,

the micro F1 score of Longformer (1,250) and macro F1 of BioMed-RoBERTa

outperforms all other models. The critical difference plots presented in Ap-

pendix Figure D.2 indicate BioMed-RoBERTa with the lowest rank, and no

statistically significant differences between Longformer, DRCAML, BioMed-

RoBERTa and ClinicalBERT. For level 3 of ICD-9 codes, macro-F1 scores of

CAML and BiGRU, outperforms macro-F1 scores of other models, including

Longformer (1,250), by almost 20%. The micro-F1 score of Longformer (1,250)

is marginally (≈ 1%) better than that of CAML.

Figure 6.6 presents a comparison of F1 scores for level 2 ICD-9 code labels

for eICU data, where the frequency of occurrence of the labels is ordered

from high (left) to low (right) between BioMed-RoBERTa, Longformer, and

DRCAML. Label frequency less than one percent is indicated. For higher

frequencies, all three methods perform similar to each other. However, tail-

end labels include multiple labels with F1 scores of zero. A closer look at these

labels is presented in Chapter 7.
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6.3 Case Studies

This section considers transformer models for case studies presented in Ta-

ble 2.4 for both MIMIC-III and eICU data. This research considers predictions

of medical codes as a flat multi-label problem for codes associated with cardio-

vascular disease, COVID-19 patient shielding and systemic fungal or bacterial

infections. In addition to the number of labels, the number of instances is

different for each case study and data. Only a subset of the available text

data is used, due to the availability associated with the relevant case study.

Critical difference plots are presented in Appendix D.6 and D.7 for MIMIC-III

and eICU respectively.

Table 6.7 presents micro and macro F1 scores for the three case studies us-

ing MIMIC-III data, for various different transformer models, and for different

limits on the maximum input length. Evidently, across all three case studies,

TransformerXL (3,072) outperformed all other models.

Table 6.8 presents micro and macro F1 scores for the three case studies us-

ing eICU data. An increase in maximum token sizes of the input sequence has

less influence on the overall performance, as observed with other multi-label

problems using eICU. This behaviour is explained by the average sequence

Classifier Tokens Cardiovascular COVID-19 Fungal or Bacterial

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BioMed-RoBERTa 512 0.69 0.30 0.53 0.45 0.45 0.39

PubMedBERT 512 0.70 0.30 0.54 0.48 0.48 0.39

TransformerXL 512 0.68 0.28 0.53 0.45 0.47 0.39

Longformer 512 0.69 0.29 0.52 0.45 0.45 0.36

TransformerXL 1,536 0.73 0.32 0.58 0.49 0.55 0.44

TransformerXL 3,072 0.77 0.32 0.65 0.51 0.64 0.46

Longformer 3,000 0.74 0.30 0.58 0.50 0.58 0.43

CAML (T100SG) 3,000 0.77 0.24 0.61 0.40 0.57 0.40

CNNText (T100SG) 3,000 0.74 0.30 0.58 0.42 0.57 0.32

Table 6.7: Comparison of micro-F1, macro-F1 of case studies among various

transformer models and sequence length for MIMIC-III data. Bold is used to

indicate the best results.
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Classifier Tokens Cardiovascular COVID-19 Fungal or Bacterial

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT-base 512 0.67 0.40 0.61 0.37 0.62 0.28

BioMed-RoBERTa 512 0.66 0.39 0.61 0.37 0.62 0.30

PubMedBERT 512 0.67 0.41 0.64 0.39 0.63 0.30

Longformer 512 0.67 0.39 0.61 0.38 0.62 0.29

Longformer 1,250 0.69 0.42 0.61 0.40 0.62 0.29

DRCAML (T100SG) 1,250 0.65 0.42 0.61 0.32 0.63 0.29

BiGRU (T100SG) 1,250 0.67 0.43 0.59 0.35 0.62 0.27

Table 6.8: Comparison of micro-F1, macro-F1 of case studies among various

transformer models and sequence length for eICU data. Bold is used to indicate

the best results.

length of eICU data, which is less than 512 tokens. There is no clear overall

winner among the models presented across the three case studies. This ob-

servation is supported by the critical difference plots presented in Appendix

Figure D.7, where no statistically significant differences were found among the

models presented here across all three case studies.

6.3.1 Cardiovascular Disease

Figure 6.7 presents a comparison between label F1 scores for cardiovascular

disease using MIMIC-III and eICU datasets. Each plot includes a legend to

indicate the different models used. For MIMIC-III, both CNNText and Trans-

formerXL (3,072) show better F1 scores for most labels, with PubMedBERT

performing better than Longformer at the tail-end labels. For eICU, with a

total of 15 labels and only three tail-end labels, as the frequency of occurrences

decreases, F1 scores of BiGRU are better than the transformer model scores,

except for label ICD9 402.91.

6.3.2 COVID-19 Patient Shielding

Figure 6.8 presents a comparison between label F1 scores for COVID-19 patient

shielding using MIMIC-III and eICU dataset. For MIMIC-III data, Trans-
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Figure 6.7: Comparison of F1 scores for cardiovascular disease with MIMIC-

III (top) and eICU (bottom) using transformers and embeddings-based neural

networks. The tail end labels are indicated.
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Figure 6.8: Comparison of F1 scores for COVID-19 patient shielding with

MIMIC-III (top) and eICU (bottom) using transformers and embeddings-

based neural networks. The tail end labels are indicated.
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Figure 6.9: Comparison of F1 scores for systemic fungal or bacterial with

MIMIC-III (top) and eICU (bottom) using transformers and embeddings-

based neural networks. The tail end labels are indicated.
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formerXL (3,072) shows better F1 scores than other models across all labels

for COVID-19 patient shielding. F1 scores of CAML for labels with less fre-

quency of occurrence are being the worst among those presented. For eICU,

Longformer (1,250) shows improvements for tail-end labels.

6.3.3 Systemic Fungal or Bacterial Infection

Figure 6.9 presents a comparison between label F1 scores for systemic fungal

or bacterial infection using MIMIC-III and eICU dataset. For both datasets,

there are more extended tail-end labels. For MIMIC-III, F1 scores of Trans-

formerXL (3,072) are better for higher frequent labels. However, for lower

frequent labels, F1 scores of PubMedBERT are better than both CAML and

TransformerXL. For eICU data, F1 scores of all three methods compared are

similar across the labels.

6.4 Discussion

This chapter presented a study analysing the effectiveness of transformers for

several multi-label problems. It has been shown that using transformers, espe-

cially domain-specific pre-trained models can be highly beneficial in multi-label

medical text classifications. This chapter has presented new SOTA results for

predicting level 1 and level 2 ICD-9 codes from EHRs using a fixed sequence

length. However, some issues with using transformers have also been pointed

out throughout this thesis. For standard transformers, the input sequence

length cannot exceed 512 tokens, impacting the accuracy of predictions, espe-

cially for MIMIC-III data. The results presented in this chapter show that for

longer documents, such as the MIMIC-III data and multi-label problems with

more labels, standard transformer models with restricted text sequence length

(i.e. 512 tokens) are not as good as the traditional word-embeddings-based

SOTA networks.

As a solution to this issue with input token limitations, TransformerXL
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and Longformer were considered. Both Longformer and TransformerXL can

be beneficial for long medical documents. There is an increase in performance

compared to standard transformer models, which can only handle sequences of

at most 512 tokens. TransformerXL (3,072) outperformed all other networks

compared in this chapter. However, the resources required for TransformerXL

(3,072) present a new limitation. For example, for level 1 ICD-9 codes with 18

labels, TransformerXL (3,072) requires almost 50 times more computational

time per epoch than the standard BERT-base for MIMIC-III data. If process-

ing time is not an issue, then TransformerXL with a more extended sequence

will be the best model to use. It will also be interesting to try continuously

training both Longformer and TransformerXL with health-related text.

As with Chapter 5, this chapter also highlighted the F1 scores of the tail-

end labels. Chapter 7 presents a more detailed study of tail-end labels, where

it is shown that concatenating transformers improves the F1 scores of tail-end

labels.



Chapter 7

Language Model Variations

Recent developments in NLP, especially transformers’ success, motivated this

research to explore the opportunity to further improve performance for medical-

domain specific tasks by exploiting models pre-trained on health data. Chap-

ters 5 and 6 presented an extensive study on various domain-specific language

models for various multi-label medical text classification problems. However,

most transformer models are limited to a maximum sequence length of 512

tokens, with some exceptions, such as Longformer and TransformerXL, which

can process long documents. For a dataset such as MIMIC-III, where the

average number of tokens of individual documents are greater than 512, re-

sults presented in Chapters 5 and 6 show longer sequences improves predictive

accuracy of models. Although Longformer and TransformerXL perform well

compared to other language models for long documents, these models require

considerable resources such as GPU, CPU, memory and process time in com-

parison to other models. Moreover, results presented in Chapter 6 show that

for larger multi-label problems and infrequent labels, transformer models’ F1

scores are not as good as the traditional word-embeddings-based SOTA neural

networks.

This chapter considers the option of using multiple variations of language

models for multi-label classification with extended text and multi-sources of

texts while using fewer resources in comparison to TransformerXL and Long-
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former. This chapter presents various options where language models are

concatenated and compares them with the results presented in Chapters 5

and 6. This chapter also takes a closer look at the infrequent tail-end labels

and explores the option of improving performances when variations of lan-

guage models are considered. Results show improvements to overall micro and

macro F1 scores when concatenated BioMed-Transformer models are consid-

ered, even for multi-label problems with more than 100 labels. In addition,

there is evidence of improvements in F1 scores for tail-end labels.

The maximum sequence length of eICU dataset is very short compared to

MIMIC-III. Hence this chapter only focuses on MIMIC-III data. It is essential

to point out that some preliminary experiments were conducted using eICU for

cardiovascular disease and systemic fungal or bacterial infections. However, as

expected, due to the lack of long text sequences, the language model variations

did not show any performance improvements. Examples of results for eICU

are presented in Apprendix E.

Three variations of concatenated language models are presented: multi-

CNNText, multi-BioMed-Transformers and CNNText with Transformers. A

brief overview of input text data is also provided. Cardiovascular disease

is used to present overall results of significant variations of language models,

followed by results for systemic fungal or bacterial infection, COVID-19 patient

shielding, and levels 2 and 3 of ICD-9 codes. Micro and macro F1 scores for

many language models for epochs 1 to 30 are also presented. The improvement

of F1 scores in tail-end labels is presented by considering the differences of F1

scores for each label. For comparison, differences in F1-scores of labels with the

frequency of occurrence > 1% is also presented. The primary focus here is to

show the differences when compared to Longformer and TransformerXL. Due

to the extreme amount of resources required by these methods, our experiments

are limited in terms of the use of TransformerXL.
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7.1 Multi-BioMed-Transformers

Multi-BioMed-Transformers refer to an architecture where more than one

domain-specific transformer model is concatenated together to enable the op-

tion of multiple text inputs. Figure 7.1 presents an example architecture of

three PubMedBERT models concatenated together. Chalkidis et al. (2020) [149]

proposed a similar architecture called HIER-SCI-BERT for processing long

MIMIC-III data. HIER-SCI-BERT encoded consecutive segments on texts

with a maximum sequence length of 512 using SCI-BERT [149]. Results ob-

tained using HIER-SCI-BERT outperformed SCI-BERT. However, it still per-

formed poorly compared to other networks [149]. One possible reason for poor

results is the use of a continuously pre-trained BERT model instead of a BERT

model trained from scratch using biomedical related text [149]. For this thesis,

PubMedBERT, a BERT model trained from scratch using biomedical related

Figure 7.1: TriplePubMedBERT architecture, where each PubMedBERT ar-

chitecture, as indicated by blue dotted lines, is concatenated together. Three

separate input text is indicated by clinical text 1, 2 and 3.
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text, is used. Results presented in Chapter 6 also suggests that PubMedBERT

performs better than other transformer models with fixed length restrictions.

This research explores the options of two to four PubMedBERT models

that are concatenated together. Concatenated transformer models enable the

processing of longer input sequences, where the longer input sequence is split

into multiple smaller segments with a maximum sequence length of 512 to-

kens. The average length of discharge summaries in MIMIC-III is approxi-

mately 1, 500 tokens, hence the choice to concatenate two to four PubMed-

BERT models. Moreover, as indicated in Chapter 2, MIMIC-III contains text

from other categories, such as text summaries of ECG reports and radiol-

ogy reports. Multi-BioMed-Transformers provides the option to explore using

these other available texts as additional input text. More details on input text

sequences is provided in Section 7.4.

This research focusses mainly on PubMedBERT, but some experiments

also include BioMed-RoBERTa. However, this concept can be expanded us-

ing multiple transformer models and different models, including Longformer

or TransformerXL. Due to the restrictions of computational resources, this

thesis focuses only on the variations mentioned above. This selection of spe-

cific transformer models is supported by the results presented in Chapter 6,

where PubMedBERT and BioMed-RoBERTa are two models that consistently

perform well. Micro and macro F1 scores are better for PubMedBERT and

BioMed-RoBERTa than for the other transformer models presented in this

research.

7.2 Multi-CNNText

Multi-CNNText adopts the same idea as multi-BioMed-Transformers, where

more than one CNNText model is concatenated together. Figure 7.2 presents

an example of DualCNNText where two CNNText models are concatenated

together. Although CNNText can handle longer sequence length as input text,
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Figure 7.2: DualCNNText architecture, where two identical CNNText [1], in-

dicated by blue dotted lines, are concatenated together.

concatenating multiple CNNText models provides the option of using input

text from different categories such as ECG and radiology, as mentioned before.

As the features of different categories can be captured separately. Embeddings

used for CNNText is a fastText pre-trained model using health-related data

with 100-dimensions (T100SG).

7.3 CNNText with Transformers

The third variation is combining CNNText with transformers. Although many

variations can be considered, this research only considers a couple of varia-

tions. BERT-base and PubMedBERT are the two transformers that are used

with CNNText. These choices are because PubMedBERT performs well across

multi-label problems as shown in Chapter 6, and BERT-base provides a base-

line. However, multiple transformer models can be used and variations to

CNNText, such as with embeddings dimensions. It is also important to point

out that CNNText is just one possible choice, and there are many other deep

learning models that can be used instead of CNNtext.
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Figure 7.3: CNNText with Transformer architecture with different input text,

where CNNText [1] and transformer model (see Figures 3.7 and 3.8), indicated

by blue dotted lines, are concatenated together.

7.4 Input Text Data

This section presents a brief overview of the variations to the input text used

in experiments. Figure 2.2 presented an overview of the frequency of words

in MIMIC-III data for categories: discharge summary (dis), text summary of

ECG reports (ecg) and text summary of radiology reports (rad). As more

than 90% of the patient records in MIMIC-III contain discharge summaries,

they has been used as the primary text data for MIMIC-III throughout this

research. However, this chapter also explores the option of using ecg and rad.

As indicated earlier, multiple language models are concatenated to enable

the option of using multiple input texts. Discharge summary contains text se-

quences with an average of 1,500 tokens and a range of 60 to 9,500 tokens. The

discharge summary is split into equal segments for a given hospital admission,

and each section is labelled text 1, ..., 4. For example, for two splits, if a given

discharge summary is 700 tokens long, text 1 is the first 350 tokens, and text

2 is the last 350 tokens. In the case of a lengthy document, if the discharge

summary is 2500 tokens long, text 1 is the first 1, 250 tokens, and text 2 is

the last 1, 250 tokens. For multi-BioMed-Transformers where the maximum

sequence length is 512, each of text 1, ..., 4 is truncated to 512 tokens. There
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are many other ways to split the text, including sequential splits. For instance,

with the first example above, text 1 being the first 512 tokens, and text 2 be-

ing the remainder 238 tokens. Each of these decisions has some advantages

and disadvantages. After preliminary experiments and also based on results

presented in [149], the decision was made to split the discharge summary into

equal sections.

Another option is using dis as text 1, and ecg and rad as text inputs 2 and

3. This research presents results for the following options:

Option 0: dis1 of 2 + dis2 of 2

Option 1: dis1 of 3 + dis2 of 3 + dis3 of 3.

Option 2: dis1 of 2 + dis2 of 2 + ecg.

Option 3: dis1 of 2 + dis2 of 2 + rad.

Option 4: dis1 of 2 + dis2 of 2 + ecg + rad.

Option 5: dis1 of 4 + dis2 of 4 + dis3 of 4 + dis4 of 4.

Option 6: dis + ecg.

Option 7: dis + rad.

7.5 Overall Performances of Language Models

This section presents overall micro and macro F1 scores for language model

variations with several input text sequences. Critical difference plots are pre-

sented as supportive statistical analysis. The Nemenyi posthoc test (95% con-

fidence level) identifies statistical differences between learning methods. CD

graphs show the average ranking of individual F1 scores obtained using vari-

ous language models. The lower the rank, the better it is. The difference in

average ranking is statistically significant if there is no bold line connecting

the two settings. This section also presents micro and macro F1 scores for each
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Model Variations Input CVD COVID-19 Infections Level 2 Level 3

BioMed-RoBERTa - c6 c6 c6 c6 c6

PubMedBERT - c6 c6 c6 c6 c6

TransformerXL (3,072) - c6 c6 c6 - -

Longformer (3,000) - c6 c6 c6 c6 c6

CAML - c5 c5 c5 c5 c5

CNNText - c5 c5 c5 c5 c5

Dual-Bio-RoBERTa Option 0 X - - X X

DualPubMedBERT Option 0 X X X X X

Triple-BioMed-RoBERTa Option 1 X - - - -

TriplePubMedBERT Option 1 X X X X -

TriplePubMedBERT Option 2 X X - - -

TriplePubMedBERT Option 3 X X - - -

QuadruplePubMedBERT Option 4 X X - - -

QuadruplePubMedBERT Option 5 - X X - -

DualCNNText Option 0 X X - - -

TripleCNNText Option 2 X - - - -

TripleCNNText Option 3 X - - - -

TripleCNNText Option 1 - X - - -

QuadrupleCNNText Option 5 X X - - -

CNNText + BERT-base Option 6 X - - - -

CNNText + PubMedBERT Option 6 X - - - -

CNNText + PubMedBERT Option 7 X - - - -

Table 7.1: Summary checklist of the experimental results presented for various

models. For the purpose of comparison, some results from Chapter 5 (c5) and

Chapter 6 (c6) are also presented. Cardiovascular disease (CVD) presents

experimental results with the most variations and other multi-label problems

present selective model variations. T100SG is used for traditional embeddings-

based neural networks and concatenations that use CNNText. Various input

options are also indicated. See Tables 7.2 and 7.3 for details on input text

options.

epoch for a range of one to 30, where selected language models are directly

compared. Table 7.1 provides a summary checklist of various experimental

results presented for language models. Cardiovascular disease is used in the
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most variety of models. However, due to resource restrictions, only selective

concatenated models are used for other multi-label problems.

7.5.1 Cardiovascular Disease

Table 7.2 presents results for various language model variations for cardiovas-

cular disease, using MIMIC-III data where the number of instances is 28, 154,

and the number of labels is 30. Selected results from Chapters 5 and 6

are also presented for direct comparison. Multi-PubMedBERT options and

multi-BioMed-RoBERTa options show a consistent improvement of 3 to 7%

in micro-F1 scores over single PubMedBERT and BioMed-RoBERTa, respec-

tively. The macro-F1 score of TriplePubMedBERT (option 2) is better than

other language models presented with at least 3% improvement, except for

TransformerXL with 3,072 tokens. Macro F1 scores of multi-CNNText and

CNNText with transformers perform poorly compared to all other language

models presented. For cardiovascular disease, incorporating ecg and rad does

show some improved overall results, especially with TriplePubMedBERT op-

tions. Critical difference plots for individual label F1 scores obtained using

various language models in Table 7.2 is presented in Figure 7.4. Both Ta-

ble 7.2 and Figure 7.4 show TransformerXL with dis 3,072 tokens is the best

option. However, multi-BioMed-Transformers show improvements, especially

when compared to single-BioMed-Transformers.

Figure 7.4: Critical difference plots. Nemenyi post-hoc test (95% confidence

level), identifying statistical differences between language models for cardio-

vascular disease presented in Table 7.2.
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Neural Network Details Input Text Options Micro-F1 Macro-F1

BioMed-RoBERTa (c6) dis 512 0.69 0.30

PubMedBERT (c6) dis 512 0.70 0.30

TransformerXL (c6) dis 1,536 0.75 0.28

TransformerXL (c6) dis 3,072 0.77 0.32

Longformer (c6) dis 3,000 0.74 0.30

Dual-Bio-RoBERTa Option 0: 512 0.72 0.28

DualPubMedBERT Option 0: 512 0.72 0.30

Triple-BioMed-RoBERTa Option 1: 512 0.72 0.29

TriplePubMedBERT Option 1: 512 0.73 0.29

TriplePubMedBERT Option 2: 512 0.73 0.31

TriplePubMedBERT Option 3: 512 0.73 0.30

QuadruplePubMedBERT Option 4: 512 0.74 0.28

CNNText (T100SG) dis 512 0.72 0.23

DualCNNText (T100SG) Option 0: 1,000 0.73 0.22

TripleCNNText (T100SG) Option 2: 1,000 0.74 0.24

TripleCNNText (T100SG) Option 3: 1,000 0.75 0.25

QuadrupleCNNText (T100SG) Option 4: 1,000 0.74 0.22

CNNText (T100SG) + BERT-base Option 6: dis 3,000 + ecg 512 0.75 0.20

CNNText (T100SG) + PubMedBERT Option 6: dis 3,000 + ecg 512 0.76 0.22

CNNText (T100SG) + PubMedBERT Option 7: dis 3,000 + rad 512 0.75 0.21

CAML (T100SG) (c5) dis 3,000 0.77 0.24

CNNText (T100SG) (c5) dis 3,000 0.74 0.30

Table 7.2: Comparison of micro-F1, macro-F1 of cardiovascular disease among

various language models and input text for MIMIC-III data. The number of

instances is 28,154, and the number of labels is 30. Input text options include

the maximum sequence length, reference to the option, and where appropriate,

a reference to the previous chapter the results were originally presented. Bold

is used to indicate the best results for each grouping in the table, and underline

is used for overall best results. Results are averaged over three runs.

Figure 7.5 presents a comparison of micro and macro F1 scores after each

epoch for a range of 1 to 30 for selected language models presented in Ta-

ble 7.2 for cardiovascular disease using MIMIC-III data. For TransformerXL

(3,072), the experiments were only performed for 20 epochs as the required

computational resources for these experiments are very high. Across all micro
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Figure 7.5: micro (top) and macro (bottom) F1 scores of selected language

models for cardiovascular disease with varied epochs. Due to resource restric-

tions, TransformerXL (3,072) was only experimented for 20 epochs.

F1 scores, the rate of increase is very high from one to two epochs, with a

peak of the best score after four to seven epochs, followed by a drop. Over-

all micro-F1 scores settle to a more stable measure after 15 epochs. As an-

ticipated, TransformerXL (3,072) is considerably better than other methods.

However, Longformer is not much different to triple and quadruple PubMed-

BERT. Compared to single PubMedBERT, dual is slightly better and with

triple and quadruple showing more significant improvements. For macro-F1

scores, there is a direct proportionality to the increase in the epoch. Although,

in general, TransformerXL is better than other models, Longformer (3,000) is

not. Single PubMedBERT shows closer associations with the macro-F1 scores

of TransformerXL from seven to 12 epochs. Dual and triple PubMedBERT

show a higher rate of increase over the increase in epochs. There is a clear
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difference in the behaviour of language models between micro and macro F1

scores. For this research, macro-F1 scores were prioritised, as the individual

labels directly influence them.

7.5.2 Systemic Fungal or Bacterial Infection

Table 7.3 presents results for various language model variations for systemic

fungal or bacterial infection, using MIMIC-III data where the number of in-

Neural Network Details Input Text Options Micro-F1 Macro-F1

PubMedBERT (c6) dis 512 0.48 0.39

TransformerXL (c6) dis 3,072 0.64 0.46

Longformer (c6) dis 3,000 0.58 0.43

DualPubMedBERT Option 0: 512 0.57 0.43

TriplePubMedBERT Option 1: 512 0.56 0.40

TriplePubMedBERT Option 2: 512 0.54 0.39

TriplePubMedBERT Option 3: 512 0.54 0.40

QuadruplePubMedBERT Option 5: 512 0.57 0.40

QuadruplePubMedBERT Option 4: 512 0.54 0.40

DualCNNText (T100SG) Option 0: 2,000 0.54 0.27

TripleCNNText (T100SG) Option 1: 2,000 0.50 0.27

QuadrupleCNNText (T100SG) Option 5: 1,000 0.47 0.24

CAML (T100SG) (c5) dis 3,000 0.62 0.38

CNNText (T100SG) (c5) dis 3,000 0.57 0.40

Table 7.3: Comparison of micro-F1, macro-F1 of systemic fungal or bacterial

infection among various language models and input text for MIMIC-III data.

Number of instances is 30,814 and number of labels is 73. Bold is used to

indicate the best results for each groupings in the table, and underline is used

for overall best results. Results are averaged over three runs. Maximum length

of sequence is also indicated next to input text. Reference to options are also

presented.
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Figure 7.6: Critical difference plots. Nemenyi post-hoc test (95% confidence

level), identifying statistical differences between language models for systemic

fungal or bacterial infection presented in Table 7.3.

Neural Network Details Tokens Time per epoch

CNNText (T100SG) 3,000 43 sec

CAML (T100SG) 3,000 47 sec

PubMedBERT 512 2,940 sec

TransformerXL 512 2,921 sec

TransformerXL 1,536 15,000 sec

TransformerXL 3,072 43,200 sec

Longformer 3,000 13,500 sec

DualPubMedBERT 1,024 4,020 sec

TriplePubMedBERT 1,536 5,580 sec

QuadruplePubMedBERT 2,048 7,080 sec

DualCNNText (T100SG) 4,000 1,606 sec

TripleCNNText (T100SG) 6,000 1,669 sec

Table 7.4: Systemic fungal or bacterial infection, time per epoch using MIMIC-

III. Results are averaged over three runs.

stances is 30, 814, and the number of labels is 73. Multi-PubMedBERT options

show improvements of 12 to 19 % in micro-F1, and 2 to 10 % in macro-F1

scores over single PubMedBERT, except for TriplePubMedBERT (option 2),

where the macro-F1 score is on par with single PubMedBERT. Contrary to

the case of cardiovascular disease, additional input texts ecg and rad here do

not result in better performance. One possible reason is that labels for sys-

temic fungal or bacterial infection are not directly associated with ecg and rad.

Macro F1 scores of multi-CNNText perform poorly in comparison to all other
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Figure 7.7: micro (top) and macro (bottom) F1 scores of selected language

models for systemic fungal or bacterial infection with varied epochs. Due

to resource restrictions TransformerXL (3,072) was only experimented for 20

epochs.

variations of language models presented. Critical difference plots for label F1

scores obtained using various language models in Table 7.3 are presented in

Figure 7.6. Both Table 7.3 and Figure 7.6 show TransformerXL with dis 3,072

tokens to be the best option as observed in cardiovascular disease. However,

multi-BioMed-Transformers show improvements, especially when compared to

single-BioMed-Transformers.

Table 7.4 presents time per epoch in seconds for systemic fungal or bac-

terial infection to provide a direct comparison among the language models.

TransformerXL (3,072) requirements are much higher than that of other lan-

guage models, including multi-PubMedBERT. For example, if CNNText is

directly compared to TransformerXL (3,072), the time required per epoch is
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1,000 times more.

Figure 7.7 presents a comparison of micro and macro F1 scores after each

epoch for a range of one to 30 for selected language models presented in Ta-

ble 7.3 for systemic fungal or bacterial infection using MIMIC-III data. For

TransformerXL (3,072), the experiments were only performed for 20 epochs as

the required computational resource for these experiments are very high, which

is also evident from Table 7.4. For micro F1 scores, initially, the rate of increase

is very high, followed by long, consistently stable measures. As anticipated,

TransformerXL (3,072) is better than other methods. Longformer starts with

lower measures followed by improved micro-F1 scores after 15 epochs. In com-

parison to single PubMedBERT, all variations of multi-PubMedBERT models

show significant improvements. For Macro-F1 scores, all language model vari-

ations present a similar pattern where, as the number of epochs increases, the

micro-F1 scores are increasing, with the rate of increase slowing down over

later epochs. TransformerXL is better than the other models, with dualPub-

MedBERT performing better than Longformer for the initial ten epochs and

following a similar path to Longformer after 20 epochs. Compared to cardio-

vascular disease, the trend of language models over epochs is similar.

7.5.3 COVID-19 Patient Shielding

Table 7.5 presents results for various language model variations for cardiovas-

cular disease, using MIMIC-III data where the number of instances is 35, 458,

Figure 7.8: Critical difference plots. Nemenyi post-hoc test (95% confidence

level), identifying statistical differences between language models for COVID-

19 patient shielding presented in Table 7.5.
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Neural Network Details Input Text Options Micro-F1 Macro-F1

PubMedBERT (c6) dis 512 0.54 0.48

TransformerXL (c6) dis 3,072 0.65 0.51

Longformer (c6) dis 3,000 0.58 0.50

DualPubMedBERT Option 0: 512 0.58 0.49

TriplePubMedBERT Option 1: 512 0.54 0.46

QuadruplePubMedBERT Option 5: 512 0.52 0.46

CAML (T100SG) (c5) dis 3,000 0.64 0.40

CNNText (T100SG) (c5) dis 3,000 0.58 0.42

Table 7.5: Comparison of micro-F1, macro-F1 of COVID-19 patient shielding

among various language models and input text for MIMIC-III data. Number

of instances is 35,458 and number of labels is 42. Bold is used to indicate the

best results for each grouping in the table, and underline is used for overall best

results. Results are averaged over three runs. Maximum length of sequence is

also indicated next to input text.

and the number of labels is 42. As observed with the other case studies, both

Table 7.5 and Figure 7.8 show TransformerXL with dis 3,072 tokens to be the

best option. DualPubMedBERT shows improvements over single PubMed-

BERT and other variations of multi-PubMedBERT.

Figure 7.9 presents a comparison of micro and macro F1 scores after each

epoch for a range of one to 30 for selected language models presented in Ta-

ble 7.5 for COVID-19 patient shielding using MIMIC-III data. For Trans-

formerXL (3,072), the experiments were only performed for 15 epochs. For

micro F1 scores, initially, the rate of increase is very high, followed by long,

consistently stable measures, with the exception of dualPubMedBERT, which

drops slightly at 12 epochs. TransformerXL (3,072) is much better than other

methods after a couple of epochs. Although dualPubMedBERT performs bet-

ter than other variations of PubMedBERT, micro and macro F1 scores of single
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Figure 7.9: micro (top) and macro (bottom) F1 scores of selected language

models for COVID-19 patient shielding with varied epochs. Due to resource

restrictions, TransformerXL (3,072) was only experimented for 15 epochs.

PubMedBERT are better than that of triple and quadruple PubMedBERT.

Figure 7.10: Critical difference plots. Nemenyi post-hoc test (95% confidence

level), identifying statistical differences between language models for levels 2

of ICD-9 codes presented in Table 7.6.
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Level 2 ICD-9 codes, 158 labels, MIMIC-III

Neural Network Details Input Text Options Micro-F1 Macro-F1

CAML, T100SG (c5) dis 3,000 0.72 0.43

PubMedBERT (c6) dis 512 0.65 0.43

BioMed-RoBERTa (c6) dis 512 0.64 0.41

Longformer (c6) dis 3,000 0.72 0.45

DualPubMedBERT Option 0: 512 0.68 0.45

DualBioMed-RoBERTa Option 0: 512 0.66 0.43

TriplePubMedBERT Option 1: 512 0.66 0.43

Level 3 ICD-9 codes, 923 labels, MIMIC-III

CAML, T100SG (c5) dis 3,000 0.64 0.26

PubMedBERT (c6) dis 512 0.55 0.18

BioMed-RoBERTa (c6) dis 512 0.53 0.18

Longformer (c6) dis 3,000 0.60 0.17

DualPubMedBERT Option 0: 512 0.57 0.20

DualBioMed-RoBERTa Option 0: 512 0.56 0.19

Table 7.6: Comparison of micro-F1, macro-F1 of levels 2 and 3 of ICD-9

codes among various language models and input text for MIMIC-III data.

The number of instances is 52,722 for both levels, and the number of labels

is 158 for level 2 and 923 for level 3. Bold is used to indicate the best results

for each grouping in the table, and underline is used for overall best results.

Results are averaged over three runs. A maximum length of the sequence is

also indicated next to input text.

7.5.4 Levels 2 and 3 ICD-9 codes

This section compares the overall performances of language models for levels 2

and 3 of ICD-9 codes. Due to the computational restrictions, TransformerXL

(3,072) was not used for long documents. Table 7.6 presents results for various

language model variations for levels 2 and 3 of ICD-9 codes, using MIMIC-III

data where the number of instances is 52, 722, and the number of labels is 158
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Figure 7.11: Micro (top) and macro (bottom) F1 scores of selected language

models for level 2 ICD-9 codes with varied epochs.

for level 2 and 923 for level 3. Selected results from Chapters 5 and 6 are also

presented for direct comparison. For level 2 ICD-9 codes, Longformer with

dis 3,000 tokens is the best option, as indicated in Table 7.6 and Figure 7.11

- with one exception, where macro-F1 of DualPubMedBERT is equal to that

of Longformer. DualPubMedBERT shows improvements in both micro and

macro F1 scores by 3 to 5% over other PubMedBERT variations. For level

3 ICD-9 codes, CAML (T100SG) is the best option with the best micro and

macro F1 scores. However, it is essential to point out that the macro-F1

score of DualPubMedBERT is better than other transformer models, including

Longformer, where the macro-F1 score improves from 0.17 to 0.20.

Figure 7.11 presents a comparison of micro and macro F1 scores after each

epoch for a range of one to 30 for selected language models presented in Ta-

ble 7.6 for level 2 ICD-9 codes using MIMIC-III data. For micro F1 scores,
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Figure 7.12: Micro (top) and macro (bottom) F1 scores of selected language

models for level 3 ICD-9 codes with varied epochs.

initially, the rate of increase is very high, followed by long, consistently stable

measures. Longformer (3,000) is much better than other methods after the

first five epochs. DualPubMedBERT performs better than other variations of

PubMedBERT and BioMed-RoBERTa, with the lowest micro-F1 scores from

single BioMed-RoBERTa. For Macro-F1 scores, all language model variations

present a similar pattern where, as the number of epochs increases, the micro-

F1 scores are increasing, with the rate of increase slowing down over epochs.

Initially, DualPubMedBERT performs better than other models, with Long-

former overtaking macro-F1 scores of all language models after 15 epochs.

However, in general, the macro-F1 scores of language models over epochs are

closely related to each other, with BioMed-RoBERTa variations at the lower

end of the scale.

Figure 7.12 presents a comparison of micro and macro F1 scores after each
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epoch for a range of one to 30 for selected language models presented in Ta-

ble 7.6 for level 3 ICD-9 codes using MIMIC-III data. Micro-F1 scores of

language models are closely related to each other, with Longformer start-

ing with the lowest micro-F1 scores and becoming the model with the best

micro-F1 scores after ten epochs. For Macro-F1 scores, Longformer performs

consistently worse than all other models across all epochs.

7.5.5 Summary

This section compared multiple language models for MIMIC-III data for the

number of labels being 30, 42, 73, 158 and 923. TransformerXL (3,072) con-

sistently outperformed other language models. Compared to single BioMed-

Transformers, multi-BioMed-transformers outperforms, with a more noticeable

improvement in micro-F1 scores for cardiovascular disease and systemic fungal

or bacterial infection. Only Longformer was used to handle long text sequences

for levels 2 and 3 of ICD-9 codes due to computational restrictions. For level

2 macro-F1 score of ICD-9 codes, dualPubMedBERT was the same as Long-

former, and for level 3 with 923 labels, the macro-F1 score was better than

Longformer for dual-BioMed-transformer models. The trend of micro-F1 and

macro-F1 scores after each epoch was also presented. For micro-F1, in general,

there is an initial rapid growth in scores, followed by stable measures. Macro-

F1 scores improve as the number of epochs increases, with the rate of increase

slowing down over epochs. Macro-F1 scores are calculated by averaging the

F1 scores of labels, and as the number of labels increases, the required epochs

for a more stable macro-F1 score also increases. For example, COVID-19 with

42 labels the change in macro-F1 score is minimum after 15 epochs. How-

ever, for level 3 ICD-9 codes with 923 labels, there is an increase in macro-F1

scores with the number of epochs, where Longformer could overtake the other

methods over a longer run.
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7.6 Tail-end Labels

This section presents a comparison of individual label F1 scores for the multi-

label problems presented in Section 7.5. The focus here is on showing the

differences and the improvements in F1 scores of tail-end labels with multi-

BioMed-Transformers compared to Longformer and TransformerXL. Labels

with frequency ≥ 1% are grouped, and tail-end labels (with label frequency <

1%) are grouped for clear differentiation. Throughout Chapters 5 and 6, tail-

end label F1 scores were highlighted for reference. Differences are calculated

by taking the actual differences of F1 scores of Longformer or TransformerXL

from a particular language model variation, i.e., F1 scores of a label (multi-

BioMed-Transformers) - F1 scores of the same label (Longformer (3,000)).

Hence, negative values indicate Longformer or TransformerXL with the better

F1 score.

In order to make it easier to follow, this section starts with the two multi-

label problems, levels 2 and 3 of ICD-9 codes, where only Longformer (3,000)

was used for extended sequences of clinical text. This is followed by the three

case studies, where the differences between TransformerXL (3,072)/Longformer

(3,000) and selected variations of language models are presented.

Heat maps illustrating the number of label wins, losses and draws are also

included for each multi-label problem. This provides an additional demon-

stration of the performances of concatenated language models compared to

TransformerXL (3,072)/Longformer (3,000). For multi-label problems, F1-

scores of many infrequent labels are zero. This observation is also evident in

F1 scores presented in Chapter 5 and 6. In order to quantify, the observations

in the differences of F1 scores are presented as wins, draws and losses. For

most cases, draws occur when both F1 scores for a label are zero.
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Figure 7.13: Level 2 ICD-9 codes, where the difference between F1 scores

of dual/triple language model variations and Longformer (3,000 tokens) is

presented. Top plot: Label frequency ≥ 1% where labels are ordered based

on frequency with most frequent label at the left of the plot. Bottom plot:

Tail-end labels (frequency < 1%) with labels ordered based on frequency with

the least infrequent label at the right end. Legend is presented for references.

Negative F1 scores indicated better F1 scores for Longformer (3,000).

7.6.1 Levels 2 and 3 ICD-9 codes

Figure 7.13 presents the difference in F1 scores for three combinations: du-

alPubMedBERT - Longformer (3,000), triplePubMedBERT - Longformer (3,000)

and dualBioMed-RoBERTa - Longformer (3,000). Two separate graphs are

presented for label frequency ≥ 1% and tail-end labels. For frequent labels,

the F1 scores of Longformer are better than the other three models. Smaller
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Figure 7.14: Heat maps for levels 2 and 3 of ICD-9 codes illustrating the

number of wins, draws and losses of concatenated language models compared

to Longformer (LF). Label Frequency ≥ 1% is in blue, and tail-end labels with

frequency < 1% is in green. Number of labels that win, loss and draw with

LF are also indicated.

differences in F1 scores are noticed among the most frequent labels, and oc-

casional dual and triple models perform slightly better than Longformer for

specific labels. In general, Longformer has the most wins over other models

for label frequency ≥ 1%. This pattern is reversed for tail-end labels, with

Longformer losing more to the dual and triple models where the difference

in F1 scores is noted. For some labels these differences can be rather large,

reaching a maximum value of 0.52 for label inf8.

Figure 7.14 presents heat maps for the number of label wins, draws and

losses for Level 2 and 3 ICD-9 codes. For tail-end labels there are more wins

achieved by concatenated models. DualPubMedBERT is the best performing

option with the least number of losses among the more frequent label group

and most wins among the tail-end labels.
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Figure 7.15: Level 3 ICD-9 codes, where the difference between F1 scores of

dual language model variations and Longformer (3,000 tokens) is presented.

Top two plots: Label frequency ≥ 1% where labels are ordered based on fre-

quency, with most frequent label at the left of the plot (only selected frequen-

cies are indicated on x-axis). Bottom two plots: Tail-end labels (frequency

< 1%) with labels ordered based on frequency, with the least frequent label

at the right end. Considering the large number of tail-end labels (more than

650 labels), individual labels are not indicated in x-axis. Legend is presented

for references. Negative F1 scores indicated better F1 scores for Longformer

(3,000).
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Figure 7.15 presents the difference in F1 scores for dual transformers and

Longformer (3,000). Level 3 contains 923 labels, with more than 650 labels

being infrequent. Figure 7.15 also shows Longformer losing more to dual trans-

formers at tail-end labels. This observation is further illustrated through the

heat maps presented in Figure 7.14, where for tail-end labels, the majority of

F1 scores obtained using dual transformers wins or draws with Longformers’

F1 scores.

7.6.2 Case Studies

Figure 7.16 and Figure 7.17 present the difference in F1 scores for systemic fun-

gal or bacterial infection between multi-PubMedBERT and TransformerXL,

and multi-PubMedBERT and Longformer (3,000) respectively. For frequent la-

bels, the F1 scores of TransformerXL are consistently better than the PubMed-

BERT variations and a clear winner. For infrequent labels, multi-PubMedBERT

variations perform better than TransformerXL and Longformer for many la-

bels. This observation is further illustrated by the heat map presented in

Figure 7.18, where for tail-end labels, concatenated transformer models show

improvements.
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Figure 7.16: Systemic fungal or bacterial infection, where the difference be-

tween F1 scores of dual/triple language model variations and TransformerXL

(3,072 tokens) is presented. Top plot: Label frequency ≥ 1% where labels are

ordered based on frequency, with most frequent label at the left of the plot.

Bottom plot: Tail-end labels (frequency < 1%) with labels ordered based on

frequency, with the least frequent label at the right end. Legend is presented for

references. Negative F1 scores indicated better F1 scores for TransformerXL

(3,072 tokens).
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Figure 7.17: Systemic fungal or bacterial infection, where the difference be-

tween F1 scores of dual/triple language model variations and Longformer

(3,000 tokens) is presented. Top plot: Label frequency ≥ 1% where labels

are ordered based on frequency with most frequent label at the left of the plot.

Bottom plot: Tail-end labels (frequency < 1%) with labels ordered based on

frequency with the least frequent label at the right end. Negative F1 scores

indicated better F1 scores for Longformer (3,000 tokens).
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Figure 7.18: Heat maps for systemic fungal or bacterial infections illustrating

the number of wins, draws and losses of concatenated language models com-

pared to Longformer (LF) and TransformerXL (TXL). Label Frequency ≥ 1%

is in blue, and tail-end labels with frequency < 1% is in green. The number

of labels that win, loss and draw with LF/TXL is also indicated.

Figure 7.19 presents the difference in F1 scores for COVID-19 patient

shielding between multi-PubMedBERT and TransformerXL (3,072)/Longformer

(3,000). Across all the label frequencies, F1 scores of Longformer or Trans-

formerXL are generally better than other language models, with a few ex-

ceptions, including label ‘ICD9 508’. Heat maps as presented in Figure 7.20

provide further evidence, where for COVID-19 with only 42 labels in MIMIC-

III, TransformerXL (3,072) is better than concatenated PubMedBERT models.

The number of wins and losses for tail-end labels are between 4 - 6 labels.
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Figure 7.19: COVID-19 patient shielding, where the difference between F1

scores of multi-PubMedBERT and Longformer (3,000 tokens) (top plot) and

the difference between F1 scores of multi-PubMedBERT and TransformerXL

(3,072 tokens) (bottom plot) is presented. Legend is presented for references.

Negative F1 scores indicated better F1 scores for Longformer (3,000 tokens)

or for TransformerXL (3,072). tail-end labels are indicated on the plots.
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Figure 7.20: Heat maps for COVID-19 patient shielding illustrating the num-

ber of wins, draws and losses of concatenated language models compared to

Longformer (LF) and TransformerXL (TXL). Label Frequency ≥ 1% is in

blue, and tail-end labels with frequency < 1% is in green. The number of

labels that win, loss and draw with LF/TXL is also indicated.

Figure 7.21 presents the difference in F1 scores for cardiovascular disease

between various language model variations and TransformerXL (3,072)/Long-

former (3,000). The cardiovascular disease domain only incorporates 30 labels.

Across the label frequencies, F1 scores of Longformer or TransformerXL are

better than for the other language models, with only a few exceptions, includ-

ing label ‘ICD9 40291’. Heat map presented in Figure 7.22 provides further

evidence to this observation.
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Figure 7.21: Cardiovascular disease, where the difference between F1 scores of

language model variations and Longformer (3,000 tokens) (top plot) and the

difference between F1 scores of language model variations and TransformerXL

(3,072 tokens) (bottom plot) is presented. Legend is presented for references.

Negative F1 scores indicated better F1 scores for Longformer (3,000 tokens)

or for TransformerXL (3,072). tail-end labels are indicated on the plots.
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Figure 7.22: Heat maps for cardiovascular disease illustrating the number of

wins, draws and losses of concatenated language models compared to Long-

former (LF) and TransformerXL (TXL). Label Frequency ≥ 1% is in blue, and

tail-end labels with frequency < 1% is in green. The number of labels that

win, loss and draw with LF/TXL is also indicated.

7.7 Discussions

This chapter presented concatenated language model variations, especially

transformer-based ones, to improve the overall performance of infrequent multi-

label problems where the input text data sequence is long. Although Trans-

formerXL and Longformer can encode long sequences, and in general, Trans-

formerXL outperforms other models, the required computational resources are

restrictive. As indicated in several subsections of the thesis TransformerXL re-

quires considerable GPU/CPU resources and time. For example, for MIMIC-

III level 1 ICD-9 codes, TransformerXL for a sequence length of 3,072 required

73,655sec (or 20.45 hours) per epoch, which means for 15 epochs and 3 sepa-

rate runs = 20.45*15*3 = 921 hours of processing time. Such long run times
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rendered large-scale TransformerXL experiments infeasible.

Three main concatenated variations were presented where multi-PubMedBERT

models outperformed other variations and also single BioMed-Transformers.

There was a noticeable improvement in micro-F1 for multi-BioMed-transformers

with cardiovascular disease and systemic fungal or bacterial infection. For

larger multi-label problems, compared to Longformer, the macro-F1 score of

dualPubMedBERT is the same for level 2 ICD-9 codes and better than Long-

former for level 3 ICD-9 codes.

This research also studies the impact on predictive performance for less

frequent labels. Label frequency is highly biased to the hospital/department

the data were collected. If the data were from a fertility ward, the label

frequency of pregnancy-related medical codes would be high, while for the

cardiovascular ward this may not be the case. However, only being able to

predict highly frequent labels well, pose risks to the patients’ health and well

being. Hence, this research also compared individual label F1 scores for multi-

label problems focusing on tail-end labels. For larger multi-label problems

with long tail-end labels, such as level 2 and 3 ICD-9 codes, multi-BioMed-

transformers had more wins than Longformer.

This chapter has provided experimental evidence shows that, with fewer

resources, concatenated BioMed-Transformers can improve overall micro and

macro F1 scores for multi-label problems with long medical text. In ad-

dition, for multi-label problems with many tail-end labels, multi-BioMed-

Transformers outperform other language models when F1 scores of tail-end

labels are compared directly.



Chapter 8

Conclusions

This thesis started by explaining the advantages of machine learning tech-

niques in healthcare and considers predicting medical codes as a multi-label

classification problem. Moreover, this thesis argues that infrequent labels are

as important as frequent labels when a patient’s health is concerned. Several

avenues were explored to achieve two main goals:

1. Improving SOTA for predicting medical codes from EHRs as

multi-label classification problems.

2. Improving the accuracy of predictions of infrequent labels for

long medical documents.

In regards to the first point, Chapters 4 and 5 present domain-specific

multi-sourced fastText pre-trained word embeddings with various dimension-

alities. Experimental results show that changes to dimensionalities and train-

ing methods— skip-gram in comparison to CBOW, and health-related data

compared to general text— are all factors that influence the overall predictive

accuracy of classifiers. Neural networks provide better accuracy than tra-

ditional machine learning classifiers such as ECC. Among embeddings-based

neural networks, SOTA methods CAML and DRCAML with health-related

text pre-trained embeddings T100SG and T300SG perform better across all

levels of ICD-9 codes. Chapter 6 focuses on the effectiveness of transformers.

Domain-specific pre-trained transformer models show benefits over general text
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pre-trained transformers among the same type of models. However, the limita-

tion of maximum sequence length for standard transformers impacts predictive

accuracy for data such as MIMIC-III with long documents. It is shown that

for longer documents, such as the MIMIC-III data and multi-label problems

with more labels, standard transformer models with restricted text sequence

length (i.e. 512 tokens) are not as good as the traditional word-embeddings-

based SOTA networks. Using TransformerXL and Longformer overcomes the

limitation of sequence length, with TransformerXL (3,072) outperforming all

other networks. TransformerXL (3,072) requires considerable computational

time, and if processing time is not an issue, then TransformerXL with a more

extended sequence will be the best model to use.

The second point is mentioned throughout Chapters 5 and 6, and is ad-

dressed in Chapter 7. TransformerXL and Longformer can handle long docu-

ments and outperform SOTA for predicting medical codes from EHRs. How-

ever, the tail-end performance across many language models is poor. Chap-

ter 7 presents concatenated language models for domain-specific transformers.

Experimental results show that multi-BioMed-Transformers outperform other

language models, including TransformerXL and Longformer, when F1 scores

of tail-end labels are compared directly for multi-label problems with long-tail

labels. In addition, results also show improvements in overall micro and macro

F1 scores and are achieved with fewer resources.

8.1 Future work

The research presented in this thesis opens directions for future research. This

section discusses some avenues and possible extensions to the research pre-

sented in this thesis.



170

8.1.1 Domain-specific continuous training of TransformerXL

and Longformer

Given the evidence presented in this thesis regarding the benefits of domain-

specific language models, continuous training of TransformerXL and Long-

former are the most obvious next steps. The training would initialize with

the standard TransformerXL and Longformer model, pre-trained using gen-

eral text. It then continues the pre-training process using domain-specific

data. Alternatively, TransformerXL and Longformer models can be trained

from scratch using domain-specific data. Domain-specific TransformerXL and

Longformer can also be used as part of concatenated models, as presented in

Chapter 7.

8.1.2 Hierarchical Multi-label Classifications

Medical codes such as ICD-9 codes have a tree hierarchy nature. The most

obvious extension to the research presented in this thesis is to consider pre-

dicting ICD-9 codes as a hierarchical multi-label classification problem. The

information of ancestor classes could be incorporated for each label. This will

also be possible for the case studies, as each label belongs to a parent class

and ancestor class as shown in Figures 2.9, 2.10 and 2.11 for cardiovascular

disease, COVID-19 patient shielding and systemic fungal or bacterial infec-

tions, respectively. Moreover, using transformers in a hierarchical multi-label

setting is a relatively new area [150]. Hence, the benefits of incorporating

the advancements of transformers in the hierarchical setting is an open and

exciting research avenue to explore.

8.1.3 HAN with Transformers and Word Embeddings

This thesis has outlined the benefits and limitations of both domain-specific

word embeddings and transformer models. An alternative avenue is to combine

both transformers and word embeddings. Based on the original HAN [3] archi-
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tecture and the recent modification presented by Si and Roberts (2021) [129],

an alternative is to use domain-specific transformer-based encoders to learn

features from words to sentences and use word embeddings to encode sen-

tences to build the document representations. This means at the first level

from word to sentence a domain-specific pre-trained transformer model is di-

rectly applied, and aggregate the representation of the words to form a sentence

vector. The number of tokens in any given sentence is generally a lot less than

512 tokens and hence provides an alternative to overcoming the limitations of

domain-specific transformers.

8.2 Final Remarks

This thesis presents an extensive research study on domain-specific language

models for multi-label classification of medical text; where predicting ICD-9

codes from EHRs is the primary application. The research shows that domain-

specific multi-sourced fastText pre-trained embeddings improve predictive ac-

curacy; and that transformer models, such as TransformerX, outperform SOTA

results for predicting medical codes from EHRs. In addition, this research ex-

plored ways to improve tail-end label predictions for multi-label classification.

Whereas multi-label classifications generally focus on improving overall pre-

dictive accuracy, this leads to most frequent labels having greater influence

on model inference. For EHRs, however, accuracy for low-frequency labels

is of considerable importance; and this research has shown how concatenated

models yield improvement to tail-end label predictions for multi-label classifi-

cation.



Appendix A

Additional Data Information

Figure A.1: Sample eICU Data as obtained from the Database.



Appendix B

Additional Results for Binary

Classification

LR, Ridge value

ICD-9 groups Models 1e-8 1e-4 1e-2 1 100

circ (78.4%)

W300 0.932 0.932 0.932 0.932 0.933

M300 0.931 0.931 0.931 0.931 0.931

T300 0.933 0.933 0.933 0.933 0.933

TM300 0.932 0.932 0.932 0.932 0.932

resp (46.6%)

W300 0.774 0.774 0.774 0.774 0.774

M300 0.771 0.771 0.771 0.771 0.768

T300 0.779 0.779 0.779 0.779 0.778

TM300 0.776 0.776 0.776 0.776 0.774

skin (12.0%)

W300 0.336 0.336 0.336 0.335 0.303

M300 0.347 0.347 0.347 0.345 0.281

T300 0.350 0.350 0.349 0.349 0.311

TM300 0.344 0.344 0.344 0.342 0.295

Table B.1: F-measure for selected ICD-9 groups for word embeddings with

varied dimensions using LR with varied ridge values for MIMIC III data is

presented. Refer to Table 4.3 for word embeddings models details. 10-fold

cross validation was used.
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Random Forest parameters W300 M300 T300 TM300

depth = 50 I = 100 K = 0 0.915 0.918 0.917 0.918

depth = 200 I = 100 K = 0 0.915 0.918 0.917 0.918

depth = 0 I = 100 K = 0 0.914 0.917 0.915 0.916

depth = 0 I = 100 K = 20 0.916 0.920 0.918 0.918

depth = 0 I = 100 K = 50 0.918 0.920 0.919 0.919

depth = 0 I = 300 K = 0 0.915 0.918 0.917 0.918

depth = 0 I = 300 K = 20 0.916 0.920 0.918 0.909

depth = 0 I = 300 K = 50 0.918 0.921 0.919 0.919

depth = 0 I = 600 K = 0 0.914 0.917 0.915 0.916

depth = 0 I = 600 K = 50 0.916 0.920 0.918 0.918

Table B.2: F-measure for circ(78.9%) for word embeddings using random forest

for MIMIC III data is presented. Refer to Table 5.5 for word embeddings

models details. 10-fold cross validation was used.

Random Forest parameters W300 M300 T300 TM300

depth = 50 I = 100 K = 0 0.712 0.711 0.703 0.703

depth = 200 I = 100 K = 0 0.712 0.711 0.703 0.703

depth = 0 I = 100 K = 0 0.707 0.709 0.701 0.701

depth = 0 I = 100 K = 20 0.715 0.713 0.703 0.708

depth = 0 I = 100 K = 50 0.715 0.718 0.703 0.707

depth = 0 I = 300 K = 0 0.712 0.711 0.703 0.703

depth = 0 I = 300 K = 20 0.720 0.716 0.708 0.711

depth = 0 I = 300 K = 50 0.718 0.720 0.709 0.710

depth = 0 I = 600 K = 0 0.707 0.709 0.701 0.701

depth = 0 I = 600 K = 50 0.715 0.713 0.703 0.708

Table B.3: F-measure for resp(46.6%) for word embeddings using random

forest for MIMIC III data is presented. Refer to Table 5.5 for word embeddings

models details. 10-fold cross validation was used.
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Random Forest parameters W300 M300 T300 TM300

depth = 50 I = 100 K = 0 0.003 0.021 0.009 0.011

depth = 200 I = 100 K = 0 0.003 0.021 0.009 0.011

depth = 0 I = 100 K = 0 0.004 0.013 0.006 0.006

depth = 0 I = 100 K = 20 0.010 0.039 0.017 0.022

depth = 0 I = 100 K = 50 0.020 0.053 0.033 0.029

depth = 0 I = 300 K = 0 0.003 0.021 0.009 0.011

depth = 0 I = 300 K = 20 0.008 0.031 0.014 0.013

depth = 0 I = 300 K = 50 0.015 0.047 0.030 0.027

depth = 0 I = 600 K = 0 0.04 0.013 0.006 0.006

depth = 0 I = 600 K = 50 0.010 0.039 0.017 0.022

Table B.4: F-measure for skin(12.0%) for word embeddings using random

forest for MIMIC III data is presented. Refer to Table 4.3 for word embeddings

models details. 10-fold cross validation was used.



Appendix C

Additional Results for

Multi-label Classification

Figure C.1: Comparison of F1-scores for top level ICD-9 groups for embeddings

obtained by varying fastText parameters for CBOW model, as presented in

Table 5.4.
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Tokens Filters Filter Size Micro-F1 Macro-F1

2,500 100 [1,2,3,4] 0.81 0.73

2,500 300 [2,4,6,8] 0.81 0.73

2,500 600 [2,4,6,8] 0.81 0.74

2,500 600 [4,6,8,10,12] 0.81 0.74

5,000 300 [2,4,6,8] 0.82 0.76

Table C.1: Overall performance of top level ICD-9 groupings, 50 dimensional

embeddings for varied parameters of CNNText.

Figure C.2: Critical difference plots for Level 3 ICD-9 codes, 316 labels. Ne-

menyi post-hoc test (95% confidence level), identifying statistical differences

between multi-label neural networks presented in Table 5.9 for eICU data.
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Figure C.3: Comparison of individual label F1-score of ICD-9 level 3 between

BiGRU (T300SG) and CAML (T100SG) embeddings.
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Figure C.4: Comparison of individual label F1-score of ICD-9 level 3 between

CNNText and CAML with T100SG embeddings.



Appendix D

Additional Results for

Multi-label Classification using

Transformers

Figure D.1: Critical difference plots for Level 2 ICD-9 codes, MIMIC-III data,

158 labels. Nemenyi post-hoc test (95% confidence level), identifying statisti-

cal differences between multi-label transformers and embeddings-based neural

networks presented in Table 6.5 for MIMIC-III data.

Figure D.2: Critical difference plots for Level 2 ICD-9 codes, eICU data, 93

labels. Nemenyi post-hoc test (95% confidence level) identifying statistical dif-

ferences between multi-label transformers and embeddings-based neural net-

works presented in Table 6.6 for eICU data.
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Figure D.3: Critical difference plots for Level 3 ICD-9 codes, 316 labels. Ne-

menyi post-hoc test (95% confidence level) identifying statistical differences

between multi-label neural networks presented in Table 6.6 for eICU data.

Figure D.4: Comparison of individual label F1-score of ICD-9 level 3 between

Longformer and ClinicalBERT.
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Figure D.5: Comparison of individual label F1-score of ICD-9 level 3 between

PubMedBERT and Longformer.
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Figure D.6: Critical difference plots for case studies - cardiovascular disease

(top); COVID-19 (middle); and fungal or bacterial infection (bottom), for

MIMIC-III data using transformers and embeddings-based neural networks.

Nemenyi post-hoc test (95% confidence level), identifying statistical differences

between label F1 scores of multi-label neural networks presented in Table 6.7

for MIMIC-III data.

Figure D.7: Critical difference plots for case studies - cardiovascular disease

(top); COVID-19 (middle); and fungal or bacterial infection (bottom), for

eICU data using transformers and embeddings-based neural networks. Ne-

menyi post-hoc test (95% confidence level), identifying statistical differences

between label F1 scores of multi-label neural networks presented in Table 6.8

for eICU data.



Appendix E

Additional Results for Language

Model Variations

Neural Network Details Input Micro-F1 Macro-F1

DualCNNText dis 512 + dis 512 0.67 0.19

TripleCNNText dis 512 + dis 512 + ecg 512 0.67 0.20

TripleCNNText dis 512 + dis 512 + rad 512 0.68 0.19

QuadrupleCNNText dis 512 + dis 512 + ecg 512 + rad 512 0.68 0.21

Table E.1: Additional results for Cardiovascular disease, MIMIC-III data.

Nueral Network Details Tokens Micro-F1 Macro-F1

CAML (T100SG) 1,250 0.68 0.41

BiGRU (T100SG) 1,250 0.67 0.43

PubMedBERT 256 0.67 0.41

PubMedBERT 512 0.67 0.41

Longformer 1,250 0.69 0.42

DualPubMedBERT 2*128 0.60 0.35

DoublePubMedBERT 2*256 0.62 0.37

TriplePubMedBERT 3*128 0.62 0.34

TriplePubMedBEERT 3*256 0.62 0.35

QuadruplePubMedBERT 4*128 0.66 0.36

Table E.2: Cardiovascular disease, eICU data. Number of instances are 53,477

and number of labels are 15.
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Neural Network Embeddings Tokens Micro-F1 Macro-F1

CNNText T100SG 512 0.41 0.28

CNNText T300SG 3000 0.57 0.37

CNNText T600SG 3000 0.57 0.36

DualCNNText T100SG 1024 0.45 0.21

TripleCNNText T100SG 1536 0.48 0.22

QuadrupleCNNText T100SG 2048 0.43 0.22

Table E.3: Additional results for systemic fungal or bacterial infection,

MIMIC-III data.

Nueral Network Details Max tokens Micro-F1 Macro-F1

BiGRU (T100SG) 1250 0.62 0.27

DR-CAML (T100SG) 1250 0.63 0.25

Longformer 1250 0.62 0.29

PubMedBERT 128 0.58 0.25

PubMedBERT 256 0.61 0.30

PubMedBERT 512 0.63 0.30

DualPubMedBERT 2*128 0.58 0.24

TriplePubMedBERT 3*128 0.60 0.24

QuadruplePubMedBERT 4*128 0.58 0.24

DualPubMedBERT 2*256 0.58 0.26

TriplePubMedBEERT 3*256 0.58 0.24

Table E.4: Systemic fungal or bacterial infection, eICU data. Number of

instances are 54,193 and number of labels are 42.
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tifying risk factors for heart disease over time: Overview of 2014

i2b2/UTHealth shared task track 2. Journal of Biomedical Informat-

ics, 58(Supplement):S67 – S77, 2015.

[100] Seyedmostafa Sheikhalishahi, Riccardo Miotto, Joel T Dudley, Alberto

Lavelli, Fabio Rinaldi, and Venet Osmani. Natural language processing

of clinical notes on chronic diseases: Systematic review. JMIR medical

informatics, 7(2):e12239, 2019.

[101] Duy Duc An Bui, Mathew Wyatt, and James J. Cimino. The UAB

informatics institute and 2016 CEGS N-GRID de-identification shared

task challenge. Journal of Biomedical Informatics, 2017.

[102] Hee-Jin Lee, Yonghui Wu, Yaoyun Zhang, Jun Xu, Hua Xu, and Kirk

Roberts. A hybrid approach to automatic de-identification of psychiatric

notes. Journal of Biomedical Informatics, 2017.



196

[103] Hui Yang and Jonathan M. Garibaldi. Automatic detection of protected

health information from clinic narratives. Journal of Biomedical Infor-

matics, 58(Supplement):S30 – S38, 2015.

[104] Zengjian Liu, Buzhou Tang, Xiaolong Wang, and Qingcai Chen. De-

identification of clinical notes via recurrent neural network and condi-

tional random field. Journal of Biomedical Informatics, 2017.

[105] Carol Friedman, George Hripcsak, et al. Natural language processing

and its future in medicine. Academic Medicine, 74(8):890–5, 1999.

[106] Peter J Haug, David L Ranum, and Philip R Frederick. Computerized

extraction of coded findings from free-text radiologic reports. work in

progress. Radiology, 174(2):543–548, 1990.

[107] Peter J Haug, Spence Koehler, Lee Min Lau, Ping Wang, Roberto

Rocha, and Stanley M Huff. Experience with a mixed semantic/syntactic

parser. In Proceedings of the Annual Symposium on Computer Applica-

tion in Medical Care, page 284. American Medical Informatics Associa-

tion, 1995.

[108] Anthony N Nguyen, Julie Moore, John O’Dwyer, and Shoni Philpot.

Assessing the utility of automatic cancer registry notifications data ex-

traction from free-text pathology reports. In AMIA Annual Symposium

Proceedings, volume 2015, page 953. American Medical Informatics As-

sociation, 2015.
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