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Abstract—Informal design artefacts allow end-users and non-
experts to contribute to software design ideas and development.
In contrast, software engineering techniques such as model-
driven development support experts in ensuring quality prop-
erties of the software they propose and build. Each of these
approaches have benefits which contribute to the development
of robust, reliable and usable software, however it is not always
obvious how best to combine these two. In this paper we describe
a novel technique which allows us to use informal design artefacts,
in the form of ideation card designs, to generate formal models
of IoT applications. To implement this technique, we created
the Cards-to-Model (C2M) tool which allows us to automate the
model generation process. We demonstrate this technique with a
case study for a safety-critical IoT application called “Medication
Reminders”. By generating formal models directly from the
design we reduce the complexity of the modelling process. In
addition, by incorporating easy-to-use informal design artefacts
in the process we allow non-experts to engage in the design and
modelling process of IoT applications.

Index Terms—Formal Modelling; Human Computer Interac-
tion; Formal Methods; Internet of Things

I. INTRODUCTION

In rapid prototyping, ideation processes are used whereby
designers produce informal design artefacts to communicate
and visualise their ideas. These artefacts allow designers to
explore various solutions to a specific design problem. Ideation
card decks have been proposed as a way to support both
experts and non-experts to engage with this rapid prototyping
process. There are many different types of cards and card
decks, but typically they all provide a common structure
around which to discuss and clarify ideas.

While we might expect designers of software to have
expertise in the domain, in contrast, developers of Internet of
Things (IoT) applications may be hobbyists or people in maker
communities who are less technically experienced [1]. Ideation
cards have also been developed specifically for designing
Internet of Things (IoT) applications [2], [3]. The purpose of
the cards is to reduce the complexity of designing an IoT
application and support those who may not necessarily be
familiar with the relevant technology, allowing them to explore
solutions they could not have otherwise considered. Expert
designers can therefore easily communicate design ideas with
end users or stakeholders and non-experts can engage in IoT
design processes for their DIY solutions.

Different types of ideation card decks may focus on different
aspects of a design. For example, “The Intelligence Aug-

mentation Design Toolkit”1 enables designers to investigate
the user experience of an IoT application, which incorporate
machine learning and artificial intellignence. Alternatively,
the “Tiles IoT Inventor Toolkit”2 provides designers with
challenges centering on global issues, such as recycling or
traffic congestion etc. These challenges provide the basis for
a design but they may also be used to design IoT applications
in general. Using this toolkit, a designer can create an IoT
application at an abstract level, considering which sensors,
actions, services and feedback would be relevant to the end
user. As such, they are similar to other informal design
artefacts, such as paper-based prototypes, which support end-
user and non-expert collaboration.

In contrast, formal models are used for verification and
validation of software, interactive systems, and more generally
IoT applications. Within safety-critical settings, verification
and validation are important to ensure we reduce the potential
risk and harm that could be caused by error. By being able
to reason about a system formally, we can prove that a
system has certain properties (for example safety, liveness,
etc.) While the benefits of formal models are evident, they are
not communicated as easily to end users and instead require
expert knowledge in order to be utilised accurately. Given the
success of informal design artefacts for communicating with
stakeholders, it would therefore be useful to incorporate the
benefits provided by these informal artefacts with those of
formal models. This has been recognised in previous work
which seeks to make formal models more accessible ( [4]–
[8]).

Previous methods which have utilised informal design arte-
facts as the basis for formal models have typically focused
on the interface design or tasks that are able to be completed
by an end user. However, IoT applications are increasingly
being seen as solutions within safety-critical domains (avi-
ation, connected cars, power plants etc.), and therefore de-
sign considerations such as correctness and robustness are
becoming similarly important. IoT applications present a novel
problem as they have components which affect an end user’s
interaction but may not necessarily be interacted with directly
(for example, environmental sensors). Conversely, an end user
may have an indirect effect on a sensor or actuator of an IoT
application without it being evident (e.g. when sensors react to

1See https://futurice.com/ia-design-kit
2See https://www.tilestoolkit.io/



the physical presence of a user). As a result, existing methods
which combine informal and formal design artefacts do not
typically capture the richer range of interaction modes and
interactive elements that IoT applications present. Therefore,
we must consider extending these methods or developing new
ones specifically for IoT applications.

In this paper we present a technique for using informal
design artefacts, in the form of ideation card decks, to create
formal models of an IoT application. In the next section we
present some background to model-driven development in gen-
eral, and present related work on modelling IoT applications.
This is followed by a description of the approach we propose
for modelling IoT applications with an explanation of the
benefits this provides. In Section IV we describe the ideation
cards used in our approach and explain how to generate models
from a card-based design. We then introduce the Cards-to-
Model (C2M) tool which automates this process and exemplify
this with a case study. Lastly, we discuss the outcomes of our
work and finish with concluding remarks.

II. BACKGROUND AND RELATED WORK

A. Model-Driven Development (MDD)

In MDD, models of a system are created and then used as
the basis to derive or generate code and/or tests [9]. Weyers
et al. state that models allow a system to be abstracted to a
higher level, where focus can be applied to specific aspects
[10]. In this way models act as a tool to break complex
applications into manageable parts. Some modelling languages
may also provide automation enabling generation of code from
the model and most have tool support which also allows
models to be re-used [11].

A design-focussed approach is given by Masci et al. [7]
which can be used to prototype and model interactive systems.
Their tool, PVSio-web, creates models of systems and analyses
them, however in this work the focus is on user interactions
and interfaces of medical devices or clinical environments (see
[12]) as opposed to IoT-only applications.

There are several MDD approaches for IoT applications
which use formal models in their approach [13]–[15]. Souri
et al. use verification of formal models to prove correctness
for the behavioural workflows in IoT applications [16], while
Krichen shows how the testing of an IoT application can be
completed using formal verification and model-based testing
[17]. These works demonstrate the usefulness of using models
in an MDD approach for IoT applications. Their focus on
formal methods allows for a rigorous model-based approch,
but relies on the expertise of formal methods practitioners
which we aim to avoid in our own approach.

In contrast, “The Interaction Flow Modelling Language”
(IFML)3 is a standard that is used to create abstract descrip-
tions of the front-end of an application. The models used in
this approach are semi-formal and as a result do not allow
for verification and validation, but may be easier for non-
experts to adopt. Bernaschina et al. describe how these can

3See https://www.ifml.org/

be mapped to an existing formal language like Place Chart
Nets, a variant of Petri Nets, in order to take advantage of the
benefits of formal models [18]. They also describe an online
tool (IFMLedit.org) which can be used to create models. In
our approach we generate formal models directly from the
informal design artefacts, removing the need to map between
semi-formal and formal models, thereby providing a more
streamlined solution.

Domain specific languages (DSL) have also been proposed
for describing IoT applications. For example Khaled et al.
present the IoT Device Description Language (IoT-DDL)
[19], a machine readable DDL for ‘things’ which aims to
support integration and homogenization between disparate
technologies. IoT-DDL explicitly tools ‘things’ to self-discover
and securely share their own capabilities which helps to
break down the barriers that typically exist when trying to
incorporate a wide-range of different ‘things’ (particularly
from different providers) into IoT applications. These types
of DSLs help support important properties of IoT design, and
alongside the use of MDD contribute to robust design and
development processes. However, they all require significant
technical understanding in order to be used. In our approach
we reduce the technical knowledge required by using easy-
to-understand informal design artefacts to generate formal
models.

Other MDD approaches for IoT applications have been pro-
posed which focus on aspects such as adaptive IoT [20], man-
agement of heterogeneous components [21], run-time man-
agement [22], etc. Of most relevance for our work are those
which focus on user-interfaces and user interactions. Brambilla
and Umuhoza described a visual modelling language for IoT,
which is also based on IFML, and which incorporates IoT
specific UI design patterns. This provides a mechanism for
partial code-generation, as well as validation of proposed
solutions. Their use of design patterns is intended also to
support user acceptance. In contrast, we seek to support user-
centred design approaches by providing a way of incorporating
light-weight design artefacts into a more formal model-driven
approach. As such, we build on approaches which seek to
support interaction design in safety-critical domains through
the use of combining models at different levels of focus and
abstraction (such as [23]–[26] etc.) As has been described
previously, the use of different types of models adopted in such
approaches leads to a wide-range of benefits over and above
the provision of formal descriptions [27] and we envisage these
benefits will also be seen for IoT development.

The approaches described here all require a high level
of technical expertise, or effort in translating between semi-
formal and formal approaches in order to be utilised. However,
our goal is to use informal design artefacts, which are easy for
end users to understand, to inform an MDD approach without
the need for mapping or translation effort. The benefit of this
is that it will reduce the technical expertise required to create
IoT applications while retaining the benefits formal models
provide.



B. Informal Design Artefacts

In a rapid prototyping environment, designers use various
techniques to assist in ideation processes. Research findings
suggest that game-like tools which provide tips and guidance
are successful in supporting ideation [2], [3]. Peters et al.
[28] examined 76 analogue design tools and in their study
found that card based tools made up the majority. Design cards
have increased in popularity over the past 3-5 years [29] and
this effect has also been seen in the IoT design domain. We
therefore focussed our attention on card based ideation tools
as the starting point for our informal design approach.

System design ideation cards are not limited to IoT applica-
tions alone. “The Intelligence Augmentation Design Toolkit”4

aims to make Artificial Intelligence (AI) concepts easier to
understand in order to create an application which uses AI.
“UX Flowchart Cards”5 are used to aid in website structure
planning, and while they help design a better user experience,
they also assist in the design of the system itself.

Ideation cards aid collaboration and are useful for exploring
different design ideas. These cards fall into one of two cate-
gories, user experience or system design. For example, “Ethics
Cards”6 and “The Tarot Cards of Tech”7, demonstrate ways
to use ideation in designing user experience. Alternatively,
Karakuri IoT [30] and the Tiles IoT Toolkit Cards [31] are
decks used for the ideation of IoT applications. As our focus
is on the design of IoT applications, we consider only cards
which describe the system design.

III. MODELLING IOT APPLICATIONS

IoT applications comprise different components and combi-
nations of components depending on their purpose and domain
of use. Here we consider IoT applications that incorporate
some sort of user interaction. Again these vary in size and
complexity. In the simplest case we may have a single sensor
or actuator where the only interaction is initial set up. For
example, the simple “Smart bulb” system shown in Figure 1
provides a mobile app where the user can set times for the
bulb to turn on and off, no other interaction is required.
In the most complex cases, however, we may have multiple
sensors and actuators interacting with multiple services and
users (e.g. a smart city environment). Some of these examples
will either be entirely safety-critical or incorporate aspects
that are safety-critical. These are the cases of most interest
to us, as they necessarily require robust software engineering
methods to ensure critical aspects are correct (although we
would argue that such robustness and correctness also apply
more generally).

Our aim then is to consider three main components of IoT
applications (sensors, actuators and ‘things’; cloud services;
mobile or web applications targetted at users) within the design
process to ensure consistency and correctness. That is, we

4See https://futurice.com/ia-design-kit
5See https://www.uxflowcharts.com/
6See http://ethicskit.org/ethics-cards.html
7See https://www.artefactgroup.com/case-studies/the-tarot-cards-of-tech/

Figure 1. Smartbulb IoT Application

Figure 2. Plant Water Sensor IoT Application

want to ensure that the components described satisfy the user
and behavioural requirements correctly. Consider the IoT plant
water sensor application shown in Figure 2 as an example.
In the simplest case a single sensor is registered to a cloud
service which has details of the plant type, soil type, water
requirements etc. The sensor is placed into the soil of the
plant pot and sends moisture readings to the cloud service
at regular intervals. The readings are assessed by the cloud
service to determine if any action is required (for example
if the soil is too dry or too wet) and if action is required
an update is sent to a user’s mobile app. The data is also
stored and can be used to provide information over time for
the specific plant. The mobile app provides notifications to the
user based on updates as they arrive, it also enables the user
to report actions taken (i.e. if they water the plant) which will
clear notifications. The mobile app can also report a history
log of notifications and actions, as well as display information
about the sensor readings/plant over time. To ensure that the
application design will behave as required we need to ensure
the following:
• the proposed sensor(s) provide(s) required information
• the cloud service correctly analyses the data
• the cloud service generates required notifications
• the mobile app provides the functionality to inform user

of notifications
• the mobile app can provide updates to the cloud service

In order to achieve this we now consider how we might model
such a system, we present the details of this next.

As described in Section II, there are different approaches
we can take to modelling this design in order to be able
to consider the consistency and correctness properties. Here



we will use the ‘Presentation Model’ approach [32] which
combines different models for different parts of the system.
The advantages of this approach are that it uses lightweight
models for the interactive components which lend themselves
to design artefacts, while also providing a formal semantics.
The semantics for the interaction model enables combination
with a formal specification of the system behaviour, which
in turn allows for formal reasoning and model checking of
the entire system (see [25] for a detailed explanation of this).
The presentation model approach was developed for interactive
systems more generally rather than IoT solutions, however
it is easily extended to capture the information of an IoT
application, which we describe next.

Originally presentation models were designed to capture the
narrative (both the meaning and interaction possibilities) of
design artefacts such as prototypes, scenarios, storyboards etc.
The approach consists of three main components:

1) Presentation model(s) (pmodels) describing the inter-
face elements (widgets) of a system along with their
behaviours

2) Presentation interaction models (PIMs) describing the
navigational properties of the system

3) Presentation model relation (PMR) which connects the
described behaviours of the widgets with a formal spec-
ification

The formal specification is assumed to have been developed
separately from the design artefacts (following the usual
process for specification creation) and while it is typically
given in the Z notation [33] it could be any formal language
(e.g. ML within Petri Nets [34]). In order to make this
approach applicable for IoT applications we extend the
categories of interactive widgets to include IoT sensors and
actuators, and so describe these in pmodels. In addition we
include both the service behaviour of the cloud and functional
behaviour of the mobile app within the formal specification.
As such, the PMR relates the sensors and mobile apps with
relevant system functions. Consider again the example in
Figure 2, we describe the sensor and the widgets of the
mobile screens (for simplicity only one is shown in the
image but there will be more in the total design) in pmodels,
describe the navigation within the mobile app in the PIM
and relate the behaviours of all widgets and sensors to the
formal specification in the PMR. The specification describes
the functionality of the cloud service as well as the mobile
app. We therefore have the following:

Presentation model

WaterMe app is sensors:wmMobile
sensors is
(moistureSensor,dataInput,(S_updateData))

wmMobile is notification:detail:mainScreen

notification is
(plantInfo,display,(S_plantNotification)),

(doneButton,actioncontrol,(S_confirmAction,
I_main)),

(detailButton,actioncontrol,
(S_showFullDetail,I_detail),

(historyLog,display,(S_showHistory))

Note we have omitted the pmodels for the ‘main’ and ‘detail’
screens of the mobile app for brevity. The first line of the
model declares the total IoT application (WaterMe) as the con-
junction of all of the sensors and wmMobile pmodels (presen-
tation models are a conservative extension of set theory, allow-
ing all standard set operations). The pmodels (wmMobile and
notification) consist of tuples describing the widgets/sensors.
Each tuple gives the name of the widget/sensor, a high-
level category description and a set of associated behaviours.
Behaviours pre-fixed with an ‘S’ are functional behaviours
whereas those pre-fixed with an ‘I’ are interactive behaviours
of the UI. Figure 3 shows the presentation interaction model
for the system. It is a transition diagram which shows how the
I behaviours enable a user to navigate through the system. It
is an abstraction of available behaviours (each state represents
the behaviours of the pmodel with the same name) and defines
the meanings of I behaviours by visualising their effects from
each state they are available within.

Figure 3. Presentation Interaction Model (PIM)

PMR

S updateData 7→ UpdateOp
S plantNotification 7→ NotifyOp
S confirmAction 7→ ActionPerformedOp
S showFullDetail 7→ NotifyOp
S showHistory 7→ OutputFullOp

The PMR relates each S-behaviour in the models to op-
erations in the formal specification, thereby giving formal
meanings for the S-behaviours. Note that at this level of
abstraction we are not considering connectivity and dataflow
between sensors and the cloud service, while these are im-
portant aspects they are considered separately from the design
models and therefore do not form part of our discussions here.

The Z specification describes the functional behaviour of
the system. In its simplest state we consider the system as a
collection of sensors with associated data, described as:

WaterMeSystem
sensors : Id 7→ Data



Each of the operations described in the PMR (right-hand
side of the pairs in the relation) are also described in the
specification, along with any other relevant operations and
predicates. For example, the ‘UpdateOp’ would be described
as:

UpdateOp
∆WaterMeSystem
np? : Id → Data

sensors′ = sensors⊕ np?

where a new reading from a sensor (again described as a
function from id to data) overrides the existing sensor id/data
pair in the system. It is not our intention to describe Z spec-
ifications here, rather we provide these snippets as examples
to demonstrate how the PMR enables formal meaning to be
given to the S-behaviours from the pmodels.

A. Benefits of the Approach

Although the pmodel approach was designed for the de-
scription of interactive systems in general, rather than IoT
applications, we can see from the example above that it
is possible to model IoT applications in this way. Now
we consider the benefits of doing so. Once we have initial
design ideas for an IoT application we want to ensure that
the proposed system will do what is required. Note we are
not addressing requirements engineering here, other research
has investigated the use of design specifications, such as
behavioural specifications, within model-based engineering
approaches [35], [36]. Such research could be integrated with
the work we propose in this paper, but here, for simplicity, we
assume a known set of requirements. The properties we want
to consider, therefore are:
• Can we gather the required data?

1) Use the pmodel to ensure we have the necessary
sensors in the system.

• Can we evaluate the data as required?
2) Use the PMR to find the specified operations related

to sensor behaviours.
3) Ensure the operations in the specification describe

correct behaviour (e.g. through model-checking).
• Do we provide the necessary information back to the

user?
4) Use the pmodel to ensure we have the required data

outputs.
5) Use the UI design to ensure usability of the system

required for user to access and comprehend the data
outputs.

6) Ensure the operations in the specification provide
required data.

7) Use the PMR to find the outputs connected to the
Z operations.

Details of how to undertake each of these steps (via model-
checking and refinement for example) have been described in
other works [25], [37], [38]. While we discuss these further

in Section VII, our intention in describing them here is to
motivate the use of the pmodel approach and demonstrate the
benefits of the model-generation approach we present next.

IV. IOT IDEATION CARDS

In this work we made use of the Tiles IoT Toolkit Cards
in order to design IoT applications. Mora et al. describe these
as “a set of 110 cards which consist of 6 different types and
a workshop activity, utilising a booklet and board, to help
teams come up with IoT innovations” [31]. The purpose of
the cards is to engage non-experts in idea creation of an IoT
application via object augmentation. The cards consist of the
following categories:
• Things: everyday objects that could be enhanced using

technology (e.g. fridge, pens, shoes).
• Sensors: used to connect to everyday objects to collect

data.
• Services: ways to provide or store information (e.g.

internet services, social networks).
• Human Actions: how a human can physically affect an

object.
• Feedback: how the object communicates to the end user.
• Missions: goals to spark ideas that give purpose and value

to the product.
• Criteria: reflect and evaluate the design.
• Scenarios: problems and challenges that the IoT solution

may attempt to address.
• Personas: potential users of your system who are in the

target audience.
The “Mission” booklet is an instruction manual which de-
scribes how cards should be used. First, a mission or scenario
is selected, followed by personas which are in the target
audience of the application. Next, things, sensors and services
are selected followed by human actions and feedback to
describe how the things and services are used. In addition to
the cards, ideas can be discussed and sketched. Lastly, criteria
cards are chosen to find ways to improve the idea.

In a study by Sintoris et al., the Tiles IoT Toolkit was
used with groups of engineering students to aid ideation [39].
Results from the the study found that students concluded
that the tool supported fast development of new ideas and
elaboration of those ideas. This highlights the flexibility of
and ease of use for the Tiles IoT Toolkit, demonstrating its
applicability for our work.

V. C2M TOOL: GENERATING MODELS FROM A DESIGN

We created the C2M tool (Figure 4) to automate the process
of using a card design to generate pmodels, a PIM and PMR.
The Tiles IoT Toolkit cards were designed to be used in a
tangible process, this is useful for understanding and ideation,
but not ideal for model creation. This is because in order for
a design to be processed the card design must be digitised.
C2M allows existing designs to be added or new designs
created directly in the tool. Once the design is created, C2M
automatically generates the necessary models. In addition to



Figure 4. Screeenshot of C2M Tool

generating the models, the uploaded design is saved as an
image and can be reused.

In order to upload or create a design in C2M, users of the
tool must first select the ideation card deck that they wish to
use. Several different card sets have been included for use in
the tool, but full model-generation has so far only been defined
for the IoT Toolkit cards. The user can select different cards
from the chosen deck and place them in the digital design
space in the same way as they would place them on a surface
in a tangible process. Within the tool we use the cards listed
above, but exclude the criteria, scenario, persona and mission
cards as they are simply tools for sparking ideas or reflection
and do not describe meaningful properties of the designed
application. In addition, we provide an annotated version of
the “Service” card, which we call “HI Service” to indicate that
this is a service that the user will interact with (as opposed to
cloud storage for example). The ‘arrow tool’ allows the user
to define connections between each card in the design which
shows which items are connected to each other.

VI. CASE STUDY: MEDICINE REMINDERS

Figure 5. Medication Reminder

In order to describe how the tool converts the cards into
the presentation model we introduce an example which we
will use to demonstrate the process. We propose a simple IoT
application which uses a smart pill bottle to remind patients
to take their medication, see Figure 5. The medicine and time
to be taken are uploaded to a cloud service which populates

a calendar. When it is time to take the medicine, the smart
pill bottle will make a sound. When the patient opens the
bottle to take their medicine the cloud service is notified that
the appropriate action has occurred. While this application is
simple, it is an example of a safety critical system where
the use of validation and verification of a formal model is
important. If a patient takes too few or too many doses of
a medication, this could result in undesirable and potentially
life-threatening consequences.

The “thing” in this application is a smart pill bottle which is
connected to two services, cloud storage and calendar and time
service (which is an interactive service). The cloud storage
service will keep information relevant to the medication, such
as what type of medication is in the bottle. The calendar and
time service manages when to take the medication, including
dates and times. The calendar and time service sends a
notification when it is time to take the medication, this is
provided as feedback in the form of an audible sound coming
from the bottle. The only action that can be taken by the
end user is to open the bottle and take the medication, this
then triggers a response from the bottle to the calendar to
say that medication has been taken. Note that in this scenario
we consider a reasonable user who would not deliberately
avoid taking their medication. The calendar may be provided
as a mobile app or web page, and we imagine in a full
implementation that this would allow the user to manage the
notifications. However, in this example we simplify this and
assume that it provides only a visual guide to the user (where
the initial data may be populated by the pharmacist when a
prescription is filled for example). Figure 6 displays the Tiles
IoT Toolkit card design for this particular application.

The medication card is connected to both the cloud storage
and custom sensor card “Bottle Lid”. The connection to
the cloud storage card indicates that the thing card sends
information to the storage service, while the sensor card
connection indicates that the thing controls and/or responds to
the “Bottle Lid” sensor. The cloud storage service is connected
to the calendar and time service, indicating that data from the
storage service is passed to the calendar and time service.
The calendar and time service is connected to the sound
feedback card which demonstrates that the feedback card
requires information from the calendar and time service in
order to notify the user at the right time. The sound card is
connected to the medication card as the sound is made by the
bottle to notify the user. The “Open bottle” and “Close bottle”
action cards describe the actions that the “Bottle Lid” sensor
responds to. The “Bottle Lid” sensor sends information to the
calendar and time service to indicate whether or not the bottle
has been opened by the user. This illustrates that the cards
and their connections can have different meanings depending
on how they are placed in the design. These will need to be
correctly interpreted when we construct the model.

Next we describe how the C2M tool generates the pmodels,
PIM and the PMR from the design. The types of the selected
cards (indicated by different colours in Figure 6) and the
connections between them are important when defining the



Figure 6. Medication Reminder IoT application in C2M Tool

pmodels, as these define different behaviours and states in the
IoT application.

For each of the types of cards and connections we define
how they will be modelled.

• Thing - pmodel and widget
• Sensors - widget
• Service - behaviour
• HI Service - behaviour
• Action - behaviour
• Feedback - widget and behaviour

In the design for the smart medication application shown in
Figure 6, we have seven cards and eight connections which are
used to create the models as described below. To give names to
the pmodels, widgets and behaviours the tool takes the names
from the cards (given by the user). The name of the overall
system being modelled is taken from the name of the saved
design file given in the ‘Application name’ input on the tool
interface.

The “Medication” card is a Thing card and will therefore be
modelled as a pmodel. The “Cloud Storage” card is a Service
card and will be specified as the behaviour “S CloudStorage”.
The “Calendar and Time” card is an HI Service and will
become a behaviour called “S UpdateCalendar”. The “Sound”
card is a feedback card and will be turned into a widget with
the behaviour “S Sound”. The “Bottle Lid” card is a sensor
card and will be turned into a widget. Lastly, the “Open bottle”
and “Close bottle” are both action cards, they will therefore
become the behaviours “S OpenBottle” and “S CloseBottle”
respectively.

We use the above information to create pmodels by investi-
gating the connections between each of the cards. Firstly, we
determine which widgets to include in the pmodel, these are

determined by the connections between cards. In this example
there is only one pmodel, the “Medication” pmodel and
associated widget “Medication”. The thing card is connected
directly to both the custom sensor “Bottle Lid” and feedback
card “Sound”, therefore these widgets are included in the
Medication pmodel. Note that widgets which are associated
with the pmodel or feedback cards are categorised as respon-
ders, while sensors are categorised as action controls. This is
because any card which is to become a widget may only be
an action control if it is connected to associated action cards,
otherwise we assume it is a responder.

Next, we determine which behaviours are associated with
which widgets. A behaviour is associated with a widget if there
is an incoming transition from that widget, with the exception
of the feedback card (as its behaviour is directly associated
with its widget). Therefore, in our example: the medication
widget has exactly one associated behaviour from the “Cloud
Storage” service card; the bottle lid widget has three associated
behaviours, two from the action cards “Open Bottle” and
“Close Bottle”, and another from the “Calendar and Time”
HI Service card; lastly, the sound widget is associated in this
example only with its direct behaviour (“S Sound”) as it has
no outgoing transitions.

Using the process described above, the C2M tool generates
the following presentation model and PMR for this design:

Presentation model

MedicationReminder is Medication

Medication is
(Medication, Responder, (S_CloudStorage))
(BottleLid, ActCtrl, (S_OpenBottle,
S_CloseBottle, S_UpdateCalendar))
(Sound, Responder, (S_Sound))

PMR

S CloudStorage 7→ CloudStorageOp
S Sound 7→ SoundOp
S OpenBottle 7→ OpenBottleOp
S CloseBottle 7→ CloseBottleOp
S UpdateCalendar 7→ UpdateCalendarOp

The models created are at a high level of abstraction and
act as a starting point within the modelling process. As the
design is further refined the models will be likewise refined to
match the more detailed information. If this includes details of
interactive parts of the application (e.g. the Calendar) which
includes I-behaviours then we can subsequently create the PIM
(which is already an automatic process from the presentation
model). As the design process moves beyond the high-level
ideas created from the design to more detailed considerations
(perhaps using sketches, prototypes, wireframes etc.) we can
use a refinement process (see [37] for details of this) to ensure
we capture the original intentions of the design. We discuss
this further in VII.



A. Using the Models

In Section III we outlined the properties of an IoT design
(in that case the smart bulb example) that we would like a
model-based approach to support, we return to these now and
discuss how these are supported with reference to the model
features described in Section III-A. While the properties we
described were specific to the plant sensor example, we can
generalise them to all IoT systems as follows:
• the proposed sensor(s) provide(s) required information
• the cloud service correctly analyses the data
• the cloud service generates required notifications
• the system/actuator(s) provides the functionality to in-

form user of notifications
• the system can provide updates to the cloud service

Where the IoT system includes a mobile app we consider this
within the system properties in the list above.

The first property we wanted to support was the ability
to ensure that the proposed sensor(s) provide(s) the required
information. There are two parts to this, firstly ensuring we
have the necessary sensors described; secondly ensuring the
sensors send data to the correct services/things. In our smart
pill bottle example we can identify from the presentation
model that the “BottleLid” sensor generates a behaviour
“S UpdateCalendar”. We can use the PMR to identify which
operation in the formal specification describes this behaviour.
We might then determine properties of the behaviours we
want to guarantee using model-checking. For example, when
the pill bottle is opened we want the calendar service to
check that there is a corresponding date and time that matches
(medication is due) and that we update the calendar to show
this has been satisfied. While a description of model-checking
Z specifications is outside of the scope of this paper, the
process of determining predicates of interest from the models
to match the sensors will typically follow these patterns:
Identify the sensors and their behaviours; use the PMR to find
the appropriate specified operations; create the predicate to
model-check the behaviour in the specification (this can be
done by creating invariants or using the linear temporal logic
option in Pro-B/Z, see [25] for a description of this).

The second property relates to the handling and manipula-
tion of any data by the cloud service. As we have a formal
specification describing this service it provides us with the
basis for reasoning about its behaviour (using any of the
standard formal methods techniques we wish to adopt). In
most cases, the behaviours will relate to the inputs from
sensors and outputs to actuators, which are captured in the first
property (above) and the third property (following). However,
having a full specification also allows us to consider any
other behaviours of the cloud service which may otherwise
be hidden within such a design process. For example, if a
medication regime includes a monthly dosage then we must
ensure that calculations around months with different numbers
of days (including leap years) are handled correctly.

The third property, ensuring the cloud service generates re-
quired notifications follows a similar pattern. Within the formal

specification we identify the behaviours of the cloud service,
and we use the PMR to identify which sensors/actuators
respond to any of these behaviours. In our example the
medication system as a whole responds to the calendar cloud
storage and the sound actuator responds to the SoundOp.
Again, detailed requirements for these behaviours can be
model-checked.

The fourth property is the the same as the first, but we
consider the actuators (responders) in the pmodel in this
instance and check the behaviours they respond to. This may
include displays and notifications in mobile apps in some
instances, but for our example is related just to the “Sound”
actuator which responds to the “S Sound” behaviour. We can
use this information to check properties of the operations in
the specification which are responsible for describing how and
when the notification is generated.

The fifth property considers inputs to the system that are
not sensor-based (for example user-entry via a mobile app).
These are straightforward as they follow typical Model Based
Testing processes for mobile apps more generally and are not
specific to just IoT systems.

VII. DISCUSSION

The example we have given above demonstrates the feasi-
bility of generating the models from the design cards. It also
shows how the models may then be used to consider properties
of the design which may relate to requirements generally and
safety properties in particular. Of course there is much more to
say about the use of formal models for these types of activities.
While demonstrating examples of this is beyond the scope of
this paper it is worth revisiting the process of refinement of
the high-level design (such as that given by the cards) to more
substantive design artefacts such as prototypes. Translating a
design, such as that given by the cards, to an implemented
system, requires many steps. If we are dealing with design
by non-experts (we revisit this term shortly) then there is no
guarantee they have the technical knowledge or expertise to
select and combine the sensors and actuators of the system,
much less set up and program the cloud services. As such
the designs they propose may not be implementable in the
form given. In fact, this is another advantage of having formal
models derived from the cards, inconsistencies may be exposed
as part of the modelling, or model-checking process. Similarly,
as the design is refined towards the implementation, changes
will be made which may not preserve original properties of
the design. Having formal models with embedded refinement
processes (see [37], [38] for some examples) will support this
transition.

We use the term “non-experts” in different contexts within
this paper with different meanings. There are people who may
be hobbyists or makers with a desire to create IoT systems
who have no expertise in any of the technical skills typically
required (programming, soldering, selecting hardware compo-
nents and managing power differentials etc.) While the cards
enable them to articulate their design ideas, the subsequent
models will be of little interest (or benefit) to these users.



However, there are also designers who do have some of these
technical skills, but are non-experts in formal modelling. The
ability to work with end users (from the first group) via the
cards and then have formal models provides them with the
ability to include the structure that formal methods can provide
to their development. Thirdly there are technical experts with
experience in formal modelling, but they themselves may be
non-experts in design or user-centred processes. The work we
describe here gives them a shared vocabulary (via the design
to models process) with the rest of the design team and enables
them to validate the proposed systems.

The examples we have presented here are all necessarily
small with few components. As the size and complexity of
envisaged systems grows there is a danger that end-users will
not be able to use the cards to capture all of the complexity.
The models we have used here all have their own strategies for
managing size and complexity (reported in a range of litera-
ture) and some of these are suitable to tackle this problem. For
example, using partial models at different levels of abstraction
to focus on specific areas of systems rather than trying to
model everything in a monolithic fashion addresses many
of the concerns that arise (although this requires appropriate
mechanisms to combine different models within later parts of
the development process [27]). In the same way, using the
cards to design specific parts of a system in isolation provides
the same benefits, and also contributes to the creation of these
partial and more lightweight formal models.

VIII. CONCLUSIONS

In this paper we have presented a technique for using
informal design artefacts, in the form of ideation card decks,
to create formal models of an IoT application. We have
demonstrated that particular models can be adapted to describe
IoT systems, and that it is possible to generate these models
from a card design using an automated process within the C2M
tool. We have also given examples of some of the benefits this
provides and outlined others.

There are some limitations inherent in the work as proposed
here. The way in which models are generated from the card
design does place limitations upon what a designer should or
should not with the cards. While this is to be expected (in order
to generate a model, we need to be able to somewhat control
or define the format of that model) it may have implications
on the design process. This can also be addressed through a
“tidying up” or refinement of card-based designs as a prior
step to model-generation. It would be interesting to further
explore both of these options to identifying advantages or
disadvantages of either. At present the model-generation is
limited to one set of design cards only, however as we have
other card sets implemented within the tool extending the
transformation rules to include these is ongoing work.

So far our work has focused on the process from the de-
signers’ perspective, ensuring the tool can support the ideation
activities and then the models can be generated. The next steps
will be to look at the models and work with model-checking
experts to understand the implications of the types of models

that are generated to determine if further improvements are
required. This will then enable us to move to end-end testing
of the process.
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