
HAL Id: inria-00551070
https://hal.inria.fr/inria-00551070

Submitted on 2 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Parallelization and Locality Optimization of
Beamforming Algorithms

Albert Hartono, Nicolas Vasilache, Cédric Bastoul, Allen Leung, Benoît
Meister, Richard Lethin, Peter Vouras

To cite this version:
Albert Hartono, Nicolas Vasilache, Cédric Bastoul, Allen Leung, Benoît Meister, et al.. Automatic
Parallelization and Locality Optimization of Beamforming Algorithms. High Performance Embedded
Computing Workshop (HPEC), Sep 2010, MIT Lincoln Laboratory, Lexington, Massachusetts, United
States. �inria-00551070�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50026995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00551070
https://hal.archives-ouvertes.fr


Automatic Parallelization and Locality Optimization of Beamforming 
Algorithms1 

Albert Hartono†, Nicolas Vasilache†, Cédric Bastoul†, Allen Leung†, Benoît Meister†, Richard Lethin†, Peter Vouras‡   
{hartonoa, vasilache, bastoul, leunga, meister, lethin}@reservoir.com, peter.vouras@nrl.navy.mil   

†Reservoir Labs, Inc., New York, NY 
‡Naval Research Laboratory, Radar Division, Washington, DC 

 
Abstract1 
This paper demonstrates the benefits of a global 
optimization strategy using a new automatic parallelization 
and locality optimization methodology for high 
performance embedded computing algorithms that occur in 
adaptive radar systems, for modern multi-core computing 
chips. As a baseline, the resulting performance was 
compared against the performance that could be obtained 
using highly optimized math libraries.   
Adaptive Beamforming Algorithms 
Adaptive beamforming algorithms eliminate interference 
and clutter in a phased array antenna. Typically, for a small 
number N of array elements, the weight vector application 
to the incoming sensor stream represents the majority of the 
computation.  However, with the introduction of solid state 
transceiver elements and the transition to conformal arrays, 
the number of antenna elements may go into the tens of 
thousands.  This means that the computational challenge of 
weight computation algorithms with O(N2) and O(N3) 
complexities (versus weight applications with O(N) 
complexity) will dominate and require high performance 
computation. 

Many different beamforming algorithms exist to perform 
the task of signal detection [1]. Traditional methods, such 
as direct inversion to determine the covariance, have more 
trivial parallelism, but in terms of operation count, they are 
not scalable to larger number of sensors. Iterative 
algorithms are more efficient on an operation count basis, 
but present a more difficult optimization challenge. The 
focus of this paper is on improving parallel performance of 
three different iterative beamforming algorithms: Minimum 
Variance Distortionless Response using Sequential 
Regression method (MVDR-SER), Coherent Sidelobe 
Cancellation using Least Mean Square algorithm (CSLC-
LMS), and Coherent Sidelobe Cancellation using Robust 
Least Square algorithm (CSLC-RLS). Sequential 
implementations of these algorithms are available in the 
radar simulation framework developed by Reservoir Labs 
for the purpose of high performance benchmarking. The 
framework is constructed in such a way that the most 
computationally intensive parts (i.e., the kernels) of the 
beamforming algorithms can be optimized separately using 
external optimization tools. Kernel implementations based 
on the leading industry math library (the Intel MKL) are 
also included in the radar simulation framework. 

                                                
1 This work was funded in part by US Army Space and Missile Defense 
Command, Code: W9113M, P.O. 1500, Huntsville, AL 35807. 

Integrated Optimization Framework for 
Parallelism and Locality 
Achieving high performance and efficient operation on 
emerging processors requires finding significant 
parallelism. However, this is not the only requirement.  
Locality of reference – through the memory hierarchy, 
feeding bandwidth starved functional units, is also critical 
[2].  Parallelization can come at the expense of locality. We 
have developed optimization modules in the R-Stream 
compiler [3] that allow for fine tradeoffs between 
parallelism and locality. We illustrate the importance of this 
optimization for a classic beamforming algorithm below.  

R-Stream is a source-to-source compiler that takes as input 
a sequential C code and automatically generates optimized 
parallel code for several different architectures including 
SMPs (using OpenMP), FPGAs, Tilera, ClearSpeed, STI 
Cell, and GPUs. The core component of the R-Stream 
compiler is the polyhedral mapper that uses the polyhedral 
model to precisely represent loop programs and to compute 
complex sequences of loop transformations (interchange, 
fusion, fission, skewing, tiling, etc.) while preserving the 
original program semantics. The polyhedral mapper 
exposes parallelism via affine scheduling transformation. It 
also simultaneously augments data locality using loop 
fusion. Its analytical model employs a unified formulation 
of parallelism and fusion/distribution profitability to obtain 
an optimal trade-off between parallelism and locality. The 
model computes cost function parameters to estimate the 
performance benefits coming from applying fusion and 
parallel execution.  

 
Figure 1: Trade-off between parallelism and locality.



   
(a) MVDR-SER (b) CSLC-LMS (c) CSLC-RLS 

Figure 2: Performance results of radar codes on a dual Intel Xeon E5405 machine (theoretical peak performance: 128 Gflops). 

To illustrate the trade-off between parallelism and locality, 
consider the code in Fig. 1 (top left), a simplified version 
(for illustration purposes) of CSLC-LMS. The code 
fragment on the bottom left of the figure is the 
corresponding code restructured by R-Stream for maximum 
parallelism with no fusion consideration. The original loop 
body is fissioned into distinct loop nests, where each loop 
nest contains only a single statement. R-Stream performs 
array expansion optimization that expands the dimension of 
array z to introduce another level of parallelism. As a result, 
the code now has two levels of parallelism. However, 
increasing parallelism by solely using loop fission with no 
fusion may lead to inferior performance because of poor 
data reuse, especially for codes where many references to 
the same array elements exist. Hence, when transforming 
codes for parallelism, loop fusion must also be considered 
in a unified manner. The top right of Fig. 1 shows the code 
optimized by R-Stream with a strong bias toward fusion. 
Application of fusion in this example is too aggressive as it 
destroys an extra level of parallelism that may be important 
for some highly parallel architecture in which more than 
one degree of parallelism is needed. On the contrary, fusion 
that can significantly enhance locality may sometimes be 
favored over an additional degree of parallelism, if 
sufficient degrees of parallelism to fill the hardware 
resources are already achieved. An example of loop fusion 
that does not decrease the available degree of parallelism is 
shown in the bottom right portion of Fig. 1. The parallel 
code still has the maximum two degrees of parallelism, and 
the reuse distances of references to elements of array z_e 
are minimized by partial fusion. 

Table 1: R-Stream performance with different mapping 
strategies for CSLC-LMS for 4K channels (in Gflops). 

Low-level 
compiler 

Max. 
fusion 

Max. parallelism 
with no fusion 

Parallelism with 
partial fusion 

GCC 3.1 3.3 7.3 
ICC 1.4 28.7 33.0 

 

We experiment with the actual CSLC-LMS code to show 
the performance of different mapping strategies. The same 
experimental setup described in the next section was used 
here. The results are presented in Table 1. The code with 
maximum fusion loses a significant amount of parallelism 
as its most compute-intensive loop nest becomes 
completely sequential. The code that balances parallelism 
and locality has the best performance. The code that 
maximizes parallelism with no fusion performs worse than 
the version using partial fusion, caused by lack of locality.  

Parallel Performance Results 
The performance of the three beamforming algorithms 
mentioned earlier was evaluated on an eight-core Intel 
Xeon machine with dual quad-core E5405 Xeon processors 
clocked at 2.0 GHz with 9 GB memory, running Linux 
kernel 2.6.25 (x86-64). The codes were compiled with R-
Stream 3.1.2 with the unified parallelism/locality model 
enabled. The used low-level compilers were GCC 4.3.0 
(with “-O6 -fno-trapping-math -ftree-vectorize -msse3 -
fopenmp” flags) and ICC 11.0 (with “-fast -openmp” flags). 
The implementations based on math libraries used Intel 
MKL 10.2.1. To utilize all available computing cores, the 
number of OpenMP threads was set to eight. Single 
precision floating point matrices were used. All 
experiments were run ten times and then averaged. 

For each beamforming algorithm, we set the total number 
of radar iterations to 400. The CLSC-LMS and CSLC-RLS 
algorithms compute for 3 radar sidelobes. The performance 
results for the three beamforming algorithms are provided 
in Fig. 2. The performance of ICC and GCC is low since 
they are unable to parallelize the codes. R-Stream 
performance is better than MKL for most of problem 
instances. R-Stream enables us to attain very good speedup 
over MKL. In particular, the performance of CSLC-LMS 
optimized using R-Stream and ICC is seven times better 
than MKL. This is because R-Stream is able to parallelize 
the outermost loop iterating over CSLC-LMS computation, 
whereas in the MKL version, such an outermost loop 
cannot be parallelized due to loop-carried dependences. For 
MVDR-SER and CSLC-RLS, effective exploitation of data 
locality dominates the performance of R-Stream as the 
outermost loops of the most compute-intensive parts must 
be executed sequentially because of loop-carried 
dependences. 

References 
[1] P. Vouras and B. Freburger. “Application of adaptive 

beamforming techniques to HF radar,” In IEEE Radar 
Conference, pages 1-6, Rome, May 2008. 

[2] M. Wolf and M. Lam, “A Data Locality Optimizing 
Algorithm,” In Proceedings of ACM SIGPLAN 1991 
Conference on Programming Language Design and 
Implementation, pages 30-44, Toronto, Canada, June 1991.  

[3] R. Lethin, A. Leung, B. Meister, P. Szilagyi, N. Vasilache, 
and D. Wohlford, “Final report on the R-Stream 3.0 compiler 
DARPA/AFRL Contract #F03602-03-C-0033, DTIC AFRL-
RI-RS-TR-2008-160,” Technical report, Reservoir Labs, Inc., 
May 2008. 


