A Stream-Computing Extension to OpenMP

Antoniu Pop and Albert Cohen

Centre de Recherche en Informatique, MINES ParisTech, France
INRIA Saclay and LRI, Paris-Sud 11 University, France

pos

e 1N RIA

Why a Streaming Extension ?

Performance
- hide memory/communication latency
- bypass global memory with on-chip communication

Expressiveness
- fill the gap in the sharing clauses
- data can be shared or private
- data should be able to flow
- sometimes pipelining is the only way to go [1]

[1] V. Pankratius, A. Jannesari, and W. F. Tichy. Parallelizing Bzip2: A Case Study in
Multicore Software Engineering. I[EEE Software, 26(6):70-77, 2009.

Performance results

Opteron: 4-socket AMD quad-core Opteron 8380 (Shanghai) with 16 cores at 2.5GHz
Xeon: 4-socket Intel hexa-core Xeon E7450 (Dunnington) with 24 cores at 2.4GHz
FMradio: 12.6x speedup on Opteron and 18.8x on Xeon
802.11a: 13x speedup on Opteron and 14.9x on Xeon
FFT: 6.5x speedup on Opteron and 4.8x on Xeon

FFT data-flow graph - Data-parallelism available in
B BB F each stage (vertical sllice)
S I By 6
/] __ﬁ_/_\ - Pipelining allows wavefront
_ /:%:_ v parallelization
N P
IR - Maximum speedup (PRAM):

Reorder stages DFT stages roughly Log2 (FFT size) / 2

FFT performance on Opteron

B Mixed pipeline W Pipeline parallelism ® Cilk
and data-parallelism
M Data-parallelism OpenMP3.0 tasks

OpenMP3.0 loops

oo RO AR

Speedup vs. sequential
w

Log2 (FFT size)

A Simple yet Powerful Extension

Minor language extension
- only two sharing clauses: input and output
- simple and intuitive semantics

Seamless integration
- no impact on current semantics

Highly expressive
- as expressive as the Streamlt language

Implementation

- Public branch of GCC 4.5: streamization

For more details

- Poster
- Offline questions

For even more details

http://www.cri.ensmp.fr/classement/doc/A-416.pdf

