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A ROBBINS-MONRO PROCEDURE FOR ESTIMATION IN

SEMIPARAMETRIC REGRESSION MODELS

BERNARD BERCU AND PHILIPPE FRAYSSE

Université Bordeaux 1

Abstract. This paper is devoted to the parametric estimation of a shift together
with the nonparametric estimation of a regression function in a semiparametric
regression model. We implement a Robbins-Monro procedure very efficient and
easy to handle. On the one hand, we propose a stochastic algorithm similar to that
of Robbins-Monro in order to estimate the shift parameter. A preliminary evalua-
tion of the regression function is not necessary for estimating the shift parameter.
On the other hand, we make use of a recursive Nadaraya-Watson estimator for the
estimation of the regression function. This kernel estimator takes in account the
previous estimation of the shift parameter. We establish the almost sure conver-
gence for both Robbins-Monro and Nadaraya-Watson estimators. The asymptotic
normality of our estimates is also provided.

1. INTRODUCTION

Our purpose is to investigate the parametric estimation of a shift parameter θ
together with the nonparametric estimation of a regression function f in the semi-
parametric regression model given, for all n ≥ 0, by

(1.1) Yn = f(Xn − θ) + εn

where (Xn) and (εn) are two independent sequences of independent and identically
distributed random variables. First of all, we implement a Robbins-Monro procedure
in order to estimate the unknown parameter θ without any preliminary evaluation
of the regression function f . Our approach is very easy to handle and it performs
very well. Moreover, our approach is totally different from the one recently proposed
by Dalalyan, Golubev and Tsybakov [6] in the Gaussian white noise case. Firstly, a
penalized maximum likelihood estimator of θ is proposed in [6] with an appropriately
chosen penalty based on a Fourier series approximation of the function f . Secondly,
the asymptotic behavior of the mean square risk of this estimator is investigated.
One can observe that our estimator is much more easy to calculate. In addition, we
do not require any assumption on the derivatives of the function f . In the situation
where the parameter θ is random, Castillo and Loubes [3] propose a plug-in version of
the Parzen-Rosenblatt density estimator of θ. The construction of this estimate also
relies on the penalized maximum likelihood estimator of θ given in [6]. Furthermore,
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in the case where one observe several Gaussian functions differing from each other by
a translation parameter, Gamboa and Loubes [10] propose to transform the starting
model by using a discrete Fourier transform. Hence, from the resulting model, they
estimate the shift parameters by minimizing a quadratic functional. This approach
is very interesting by the few assumptions made on the regression function. Our
alternative approach to estimate θ is associated to a stochastic recursive algorithm
similar to that of Robbins-Monro [26], [27].

Assume that one can find a function φ, free of the parameter θ, such that φ(θ) = 0.
Then, it is possible to estimate θ by the Robbins-Monro algorithm

(1.2) θ̂n+1 = θ̂n + γnTn+1

where (γn) is a positive sequence of real numbers decreasing towards zero and (Tn)
is a sequence of random variables such that

E[Tn+1|Fn] = φ(θ̂n)

where Fn stands for the σ-algebra of the events occurring up to time n. Under
standard conditions on the function φ and on the sequence (γn), it is well-known

[9], [18] that θ̂n tends to θ almost surely. The asymptotic normality of θ̂n together
with the quadratic strong law may also be found in [12], [20] and [25]. A randomly
truncated version of the Robbins-Monro algorithm is also given in [4], [19].

Our second goal is the estimation of the unknown regression function f . A wide
range of literature is available on nonparametric estimation of a regression function.
We refer the reader to [8], [22], [30], [32] for some excellent books on density and re-
gression function estimation. Here, we focus our attention on the Nadaraya-Watson
estimator of f . The almost sure convergence of the Nadaraya-Watson estimator [21],
[33] without the shift θ was established by Noda [23], see also Härdle et al [14], [15]
for the law of iterated logarithm and the uniform strong law. A nice extension of the
previous results may be found in [16]. The asymptotic normality of the Nadaraya-
Watson estimator was proved by Schuster [29]. Moreover, Choi, Hall and Rousson
[5] propose three data-sharpening versions of the Nadaraya-Watson estimator in or-
der to reduce the asymptotic variance in the central limit theorem. Furthermore,
in the situation where the regression function is monotone, Hall and Huang [13]
provide a method for monotonizing the Nadaraya-Watson estimator. For n large
enough, their alternative estimator coincides with the standard Nadaraya-Watson
estimator on a compact interval where the regression function f is monotone. In
our situation, we propose to make use of a recursive Nadaraya-Watson estimator [9]
of f which takes into account the previous estimation of the shift parameter θ. It is
given, for all x ∈ R, by

(1.3) f̂n(x) =

∑n
k=1Wk(x)Yk∑n
k=1Wk(x)

with

Wn(x) =
1

hn

K
(Xn − θ̂n−1 − x

hn

)
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where the kernel K is a chosen probability density function and the bandwidth
(hn) is a sequence of positive real numbers decreasing to zero. The main difficulty

arising here is that we have to deal with the additional term θ̂n inside the kernel K.
Consequently, we are led to analyse a double stochastic algorithm with, at the same

time, the study of the asymptotic behavior of the Robbins-Monro estimator θ̂n of θ,

and the Nadaraya-Watson estimator f̂n of f .

The paper is organized as follows. Section 2 is devoted to the parametric estimation

of θ. We establish the almost sure convergence of θ̂n as well as a law of iterated
logarithm and the asymptotic normality. Section 3 deals with the nonparametric
estimation of f . Under standard regularity assumptions on the kernel K, we prove

the almost sure pointwise convergence of f̂n to f . In addition, we also establish the

asymptotic normality of f̂n. The proofs of the parametric results are given is Section
4, while those concerning the nonparametric results are postponed in Section 5.

2. ESTIMATION OF THE SHIFT

First of all, we focus our attention on the estimation of the shift parameter θ in the
semiparametric regression model given by (1.1). We assume that (εn) is a sequence
of independent and identically distributed random variables with zero mean and
positive variance σ2. Moreover, it is necessary to make several hypothesis similar to
that of [6].

(H1) The sequence (Xn) is independent and identically distributed with symmetric
probability density function g, positive on its support [−1/2, 1/2]. In addition,
the function g is continuous, twice differentiable with bounded derivatives.

(H2) The function f is symmetric, bounded, periodic with period 1.

Let X be a random variable sharing the same distribution as (Xn). In all the sequel,
the auxiliary function φ defined, for all t ∈ R, by

(2.1) φ(t) = E

[sin(2π(X − t))

g(X)
f(X − θ)

]

will play a prominent role. More precisely, it follows from the periodicity of f that

φ(t) =

∫ 1/2

−1/2

sin(2π(x− t))f(x− θ) dx =

∫ 1/2

−1/2

sin(2π(y + θ − t))f(y) dy,

= sin(2π(θ − t))

∫ 1/2

−1/2

cos(2πy)f(y) dy+ cos(2π(θ − t))

∫ 1/2

−1/2

sin(2πy)f(y) dy.

Consequently, the symmetry of f leads to

(2.2) φ(t) = sin(2π(θ − t))f1

where f1 is the first Fourier coefficient of f

f1 =

∫ 1/2

−1/2

cos(2πx)f(x) dx.
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Throughout the paper, we assume that f1 6= 0. Obviously, φ is a continuous and
bounded function such that φ(θ) = 0. In addition, one can easily verify that for
all t ∈ R such that |t − θ| < 1/2, the product (t − θ)φ(t) has a constant sign. It
is negative if f1 > 0, while it is positive if f1 < 0. Therefore, we are in position
to implement our Robbins-Monro procedure [26], [27]. Let K = [−1/4, 1/4] and
denote by πK the projection on the compact set K defined, for all x ∈ R, by

πK(x) =





x if |x| ≤ 1/4,

1/4 if x ≥ 1/4,

−1/4 if x ≤ −1/4.

Let (γn) be a decreasing sequence of positive real numbers satisfying

(2.3)

∞∑

n=1

γn = +∞ and

∞∑

n=1

γ2
n < +∞.

For the sake of clarity, we shall make use of γn = 1/n. We estimate the shift
parameter θ via the projected Robbins-Monro algorithm

(2.4) θ̂n+1 = πK

(
θ̂n + sign(f1)γn+1Tn+1

)

where the initial value θ̂0 ∈ K and the random variable Tn+1 is defined by

(2.5) Tn+1 =
sin(2π(Xn+1 − θ̂n))

g(Xn+1)
Yn+1.

Our first result concerns the almost sure convergence of the estimator θ̂n.

Theorem 2.1. Assume that (H1) and (H2) hold and that |θ| < 1/4. Then, θ̂n
converges almost surely to θ. In addition, the number of times that the random

variable θ̂n + sign(f1)γn+1Tn+1 goes outside of K is almost surely finite.

In order to establish the asymptotic normality of θ̂n, it is necessary to introduce
a second auxiliary function ϕ defined, for all t ∈ R, by

ϕ(t) = E

[sin2(2π(X − t))

g2(X)
(f 2(X − θ) + σ2)

]
,(2.6)

=

∫ 1/2

−1/2

sin2(2π(x− t))

g(x)
(f 2(x− θ) + σ2) dx.

As soon as 4π|f1| > 1, denote

ξ2(θ) =
ϕ(θ)

4π|f1| − 1
.

Theorem 2.2. Assume that (H1) and (H2) hold and that |θ| < 1/4. In addition,

suppose that (εn) has a finite moment of order > 2 and that 4π|f1| > 1. Then, we

have the asymptotic normality

(2.7)
√
n(θ̂n − θ)

L−→ N (0, ξ2(θ)).
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Remark 2.1. In the particular case where 4π|f1| = 1, it is also possible to show

that √
n

log(n)
(θ̂n − θ)

L−→ N (0, ϕ(θ)).

Asymptotic results are also available when 0 < 4π|f1| < 1. However, we have chosen
to focus our attention on the more attractive case 4π|f1| > 1.

Theorem 2.3. Assume that (H1) and (H2) hold and that |θ| < 1/4. In addition,

suppose that (εn) has a finite moment of order > 2 and that 4π|f1| > 1. Then, we

have the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2

(θ̂n − θ) = − lim inf
n→∞

(
n

2 log log n

)1/2

(θ̂n − θ)

= ξ(θ) a.s.(2.8)

In particular,

(2.9) lim sup
n→∞

(
n

2 log log n

)
(θ̂n − θ)2 = ξ2(θ) a.s.

In addition, we also have the quadratic strong law

(2.10) lim
n→∞

1

logn

n∑

k=1

(θ̂k − θ)2 = ξ2(θ) a.s.

Proof. The proofs are given in Section 4. �

3. ESTIMATION OF THE REGRESSION FUNCTION

This section is devoted to the nonparametric estimation of the regression function
f via a recursive Nadaraya-Watson estimator. On the one hand, we add the standard
hypothesis

(H3) The regression function f is Lipschitz.

On the other hand, we recall that under (H2), the function f is assumed to be
symmetric. Consequently, we follow the same approach as the one developed by
Stone [31] for the estimation of a symmetric probability density function replacing
the estimator (1.3) by its symmetrized version

(3.1) f̂n(x) =

∑n
k=1(Wk(x) +Wk(−x))Yk∑n
k=1(Wk(x) +Wk(−x))

where

Wn(x) =
1

hn
K
(Xn − θ̂n−1 − x

hn

)
.

The bandwidth (hn) is a sequence of positive real numbers, decreasing to zero, such
that nhn tends to infinity. For the sake of simplicity, we propose to make use of
hn = 1/nα with α ∈ ]0, 1[. Moreover, we shall assume in all the sequel that the
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kernel K is a positive symmetric function, bounded with compact support, twice
differentiable with bounded derivatives, satisfying

∫

R

K(x) dx = 1 and

∫

R

K2(x) dx = ν2.

Our next result deals with the almost sure convergence of the estimator f̂n.

Theorem 3.1. Assume that (H1), (H2) and (H3) hold and that the sequence (εn)
has a finite moment of order > 2. Then, for any x ∈ R,

(3.2) lim
n→∞

f̂n(x) = f(x) a.s.

The asymptotic normality of the estimator f̂n is as follows.

Theorem 3.2. Assume that (H1), (H2) and (H3) hold and that the sequence (εn)
has a finite moment of order > 2. Then, as soon as the bandwidth (hn) satisfies

hn = 1/nα with α > 1/3, we have for any x ∈ R with x 6= 0, the pointwise

asymptotic normality

(3.3)
√
nhn(f̂n(x)− f(x))

L−→ N
(
0,

σ2ν2

(1 + α)(g(θ + x) + g(θ − x))

)
.

In addition, for x = 0,

(3.4)
√

nhn(f̂n(0)− f(0))
L−→ N

(
0,

σ2ν2

(1 + α)g(θ)

)
.

Proof. The proofs are given in Section 5. �

4. PROOFS OF THE PARAMETRIC RESULTS

4.1. Proof of Theorem 2.1. We can assume without loss of generality that f1 > 0
inasmuch as the proof for f1 < 0 follows exactly the same lines. Denote by Fn the
σ-algebra of the events occurring up to time n, Fn = σ(X0, ε0, . . . , Xn, εn). First of
all, we shall calculate the two first conditional moments of the random variable Tn

given by (2.5). It follows from (1.1) that

E[Tn+1|Fn] = E

[sin(2π(Xn+1 − θ̂n))Yn+1

g(Xn+1)
|Fn

]
,

= E

[sin(2π(Xn+1 − θ̂n))(f(Xn+1 − θ) + εn+1)

g(Xn+1)
|Fn

]
.

On the one hand, as (Xn) is a sequence of independent random variables sharing
the same distribution as a random variable X , we have

(4.1) E

[sin(2π(Xn+1 − θ̂n))f(Xn+1 − θ)

g(Xn+1)
|Fn

]
= φ(θ̂n) a.s.
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where φ is the function given by (2.1). On the other hand, as (Xn) and (εn) are two
independent sequences and (εn) is a sequence of independent and square integrable
random variables with zero mean, we also have

E

[sin(2π(Xn+1 − θ̂n))εn+1

g(Xn+1)
|Fn

]
= E

[sin(2π(X − θ̂n))

g(X)

]
E[εn+1] = 0.

Hence, (4.1) leads to

(4.2) E[Tn+1|Fn] = φ(θ̂n) a.s.

On the other hand,

T 2
n+1 =

sin2(2π(Xn+1 − θ̂n))Y
2
n+1

g2(Xn+1)
,

=
sin2(2π(Xn+1 − θ̂n))(f

2(Xn+1 − θ) + 2εn+1f(Xn+1 − θ) + ε2n+1)

g2(Xn+1)
.

Consequently, as the function f is bounded, the density g is positive on [−1/2, 1/2],
and E[ε2n+1|Fn] = E[ε2n+1] = σ2, we obtain that

(4.3) E[T 2
n+1|Fn] = E

[sin2(2π(X − θ̂n))

g2(X)
(f 2(X − θ) + σ2)

]
= ϕ(θ̂n)

where ϕ is given by (2.6). Therefore, as f is bounded and g does not vanish on its
support [−1/2, 1/2], we deduce from (4.3) that for some constant M > 0

(4.4) sup
n≥0

E[T 2
n+1|Fn] ≤ M a.s.

Furthermore, for all n ≥ 0, let Vn = (θ̂n − θ)2. We clearly have

Vn+1 = (θ̂n+1 − θ)2,

= (πK(θ̂n + γn+1Tn+1)− θ)2,

= (πK(θ̂n + γn+1Tn+1)− πK(θ))
2

as we have assumed that θ belongs to K. Since πK is a Lipschitz function with
Lipschitz constant 1, we obtain that

Vn+1 ≤ (θ̂n + γn+1Tn+1 − θ)2,

≤ Vn + γ2
n+1T

2
n+1 + 2γn+1Tn+1(θ̂n − θ).

Hence, it follows from (4.2) and (4.4) that

E[Vn+1|Fn] ≤ Vn + γ2
n+1E[T

2
n+1|Fn] + 2γn+1(θ̂n − θ)E[Tn+1|Fn],

≤ Vn + γ2
n+1M + 2γn+1(θ̂n − θ)φ(θ̂n) a.s.(4.5)

In addition, as θ̂n ∈ K, |θ̂n| < 1/4, |θ̂n−θ| < 1/2 which implies that (θ̂n−θ)φ(θ̂n) <
0. Then, we deduce from (4.5) together with Robbins-Siegmund Theorem, see Duflo
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[9] page 18, that the sequence (Vn) converges a.s. to a finite random variable V and

(4.6)
∞∑

n=1

γn+1(θ − θ̂n)φ(θ̂n) < +∞ a.s.

Assume by contradiction that V 6= 0 a.s. Then, one can find 0 < a < b < 1/2 such

that, for n large enough, a < |θ̂n − θ| < b. However, on this annulus, one can also

find some constant c > 0 such that (θ − θ̂n)φ(θ̂n) > c which, by (4.6), implies that

∞∑

n=1

γn < +∞

This is of course in contradiction with assumption (2.3). Consequently, it follows

that V = 0 a.s. leading to the almost sure convergence of θ̂n to θ.

It remains to show that θ̂n + γn+1Tn+1 goes almost surely outside of K a finite
number of times. For all n ≥ 1, denote

Nn =
n−1∑

k=0

I{|θ̂k+γk+1Tk+1|>1/4}.

The random sequence (Nn) is nondecreasing. Assume by contradiction that Nn goes
to infinity a.s. Then, one can find a subsequence (nk) such that (Nnk

) is increasing.
Consequently, for all nk > 0,

|θ̂nk
+ γnk+1Tnk+1| >

1

4
a.s.

which implies that |θ̂nk+1| = 1/4 a.s. Hence,

lim
nk→∞

|θ̂nk
| = |θ| = 1

4
a.s.

leading to a contradiction as |θ| < 1/4. Finally, (Nn) converges to a finite limiting
value a.s. which completes the proof of Theorem 2.1.

4.2. Proof of Theorem 2.2. We assume without loss of generality that f1 > 0.
Our goal is to apply Theorem 2.1 of Kushner and Yin [18] page 330. The only
assumption that is not immediate to check is that the sequence (Wn) given by

Wn =
(θ̂n − θ)2

γn

is tight. It follows from (4.5) that for some constant M > 0 and for all n ≥ 1,

(4.7) E[Wn+1|Fn] ≤ (1 + γn)Wn + γn+1M + 2(θ̂n − θ)φ(θ̂n).

Moreover, we have for all x ∈ R, φ(x) = 2πf1(θ − x) + f1(θ − x)v(x) where

v(x) =
sin(2π(θ − x))− 2π(θ − x)

(θ − x)
.
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By the continuity of the function v, one can find 0 < ε < 1/2 such that, if |x−θ| < ε,

(4.8)
q

2f1
< v(x) < 0.

We also deduce from (4.7) that for all n ≥ 1,

(4.9) E[Wn+1|Fn] ≤ Wn + 2γnWn(q − f1v(θ̂n)) + γnM

with 2q = 1 − 4πf1 which means that q < 0. Moreover, let An and Bn be the sets

An = {|θ̂n − θ| ≤ ε} and

Bn =
n⋂

k=m

Ak

with 1 ≤ m ≤ n. Then, it follows from (4.8) that

(4.10) 0 < −f1v(θ̂n)IBn
< −

(q
2

)
IBn

.

Hence, we deduce from the conjunction of (4.9) and (4.10) that for all n ≥ m,

E[Wn+1IBn
|Fn] ≤ WnIBn

+ 2γnWnIBn

(
q − q

2

)
+ γnM,

≤ WnIBn
(1 + qγn) + γnM.(4.11)

Since Bn+1 = Bn ∩ An+1, Bn+1 ⊂ Bn, and we obtain by taking the expectation on
both sides of (4.11) that for all n ≥ m,

(4.12) E[Wn+1IBn+1
] ≤ (1 + qγn)E[WnIBn

] + γnM.

From now on, denote αn = E[WnIBn
]. We infer from (4.12) that for all n ≥ m,

(4.13) αn+1 ≤ βnαm +Mβn

n∑

k=m

γk
βk

where βn =
n∏

k=m

(1 + qγk).

As γn = 1/n, it follows from straightforward calculations that βn = O(nq) and

n∑

k=1

γk
βk

= O(n−q).

Consequently, (4.13) immediately leads to

(4.14) sup
n≥m

αn < +∞.

We are now in position to prove the tightness of the sequence (Wn). Indeed, it was

already proved in Theorem 2.1 that θ̂n converges to θ a.s. Consequently, if

Cn =
⋃

k≥n

Ak,

then P(Cn) converges to zero as n tends to infinity. Moreover, for n ≥ m, Bn ⊂ Cm

which implies that as m,n tend to infinity, P(Bn) goes to zero. For all ξ,K > 0 and
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for all n ≥ m with m large enough,

P(Wn > K) ≤ P(WnIBn
> K/2) + P(WnIBn

> K/2),

≤ 2

K
E[WnIBn

] + P(Bn).(4.15)

We deduce from (4.14) that one can find K depending on ξ such that the first term
on the right-hand side of (4.15) is smaller than ξ/2. It is also the case for the second
term as P(Bn) goes to zero. Finally, for all ξ > 0, it exists K > 0 such that for m
large enough,

sup
n≥m

P(Wn > K) < ξ

which implies the tightness of (Wn) and completes the proof of Theorem 2.2.

4.3. Proof of Theorem 2.3. As the number of times that the random variable
θ̂n + γn+1Tn+1 goes outside of K is almost surely finite, the sequence (θ̂n) shares the
same almost sure asymptotic properties than the classical Robbins-Monro algorithm.
Consequently, we deduce the law of iterated logarithm given by (2.8) from Theorem
1 of [11], see also Hall and Heyde [12] page 240, and the quadratic strong law given
by (2.10) from Theorem 3 of [25].

5. PROOFS OF THE NONPARAMETRIC RESULTS

5.1. Proof of Theorem 3.1. In order to prove the almost sure pointwise conver-
gence of Theorem 3.1, we shall denote for all x ∈ R

ĥn(x) =
1

n

n∑

k=1

Wk(x)Yk and ĝn(x) =
1

n

n∑

k=1

Wk(x).

We obtain from (1.1) the decomposition

nĥn(x) = Mn(x) + Pn(x) +Qn(x) + nĝn(x)f(x),(5.1)

nĝn(x) = Nn(x) +Rn(x) + ng(θ + x)(5.2)

where

(5.3) Mn(x) =
n∑

k=1

Wk(x)εk,

(5.4) Nn(x) =

n∑

k=1

Wk(x)− E[Wk(x)|Fk−1],

and

Pn(x) =
n∑

k=1

Wk(x)(f(Xk − θ̂k−1)− f(x)),(5.5)

Qn(x) =
n∑

k=1

Wk(x)(f(Xk − θ)− f(Xk − θ̂k−1)),(5.6)

Rn(x) =

n∑

k=1

(E[Wk(x)|Fk−1]− g(θ + x)).(5.7)
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On the one hand,

E[Wn(x)|Fn−1] =

∫

R

1

hn

K
(xn − θ̂n−1 − x

hn

)
g(xn) dxn.

After the change of variables z = h−1
n (xn − θ̂n−1 − x), as the density function g is

continuous, twice differentiable with bounded derivatives, we infer from the Taylor
formula that

E[Wn(x)|Fn−1] =

∫

R

K(z)g(θ̂n−1 + x+ hnz) dz,(5.8)

=

∫

R

K(z)
(
g(θ̂n−1 + x) + hnzg

′(θ̂n−1 + x)

+
h2
nz

2

2
g′′(θ̂n−1 + x+ hnzξ)

)
dz,

= g(θ̂n−1 + x) +
h2
n

2

∫

R

z2K(z)g′′(θ̂n−1 + x+ hnzξ)dz

where 0 < ξ < 1. Consequently, for all n ≥ 1,

(5.9) |E[Wn(x)|Fn−1]− g(θ̂n−1 + x)| ≤ Mgτ
2h2

n a.s.

where Mg = sup
x∈R

|g′′(x)| and

τ 2 =
1

2

∫

R

x2K(x)dx.

The continuity of g together with the fact that θ̂n converges to θ a.s. leads to

(5.10) lim
n→∞

1

n

n∑

k=1

E[Wk(x)|Fk−1] = g(θ + x) a.s.

which immediately implies that for all x ∈ R

(5.11) Rn(x) = o(n) a.s.

On the other hand, (Nn(x)) is a square integrable martingale difference sequence
with predictable quadratic variation given by

<N(x)>n =
n∑

k=1

E[(Nk(x)−Nk−1(x))
2|Fk−1],

=
n∑

k=1

E[W 2
k (x)|Fk−1]− E

2[Wk(x)|Fk−1].

It follows from the same calculation as in (5.8) that

E[W 2
n(x)|Fn−1] =

1

hn

∫

R

K2(z)g(θ̂n−1 + x+ hnz) dz,

=
ν2

hn
g(θ̂n−1 + x) +

hn

2

∫

R

z2K2(z)g′′(θ̂n−1 + x+ hnzξ)dz
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where 0 < ξ < 1, which leads to

(5.12) |E[W 2
n(x)|Fn−1]−

ν2

hn
g(θ̂n−1 + x)| ≤ Mgµ

2hn a.s.

with

ν2 =

∫

R

K2(x)dx and µ2 =
1

2

∫

R

x2K2(x)dx.

Hence, since

lim
n→∞

1

n1+α

n∑

k=1

h−1
k =

1

1 + α

we deduce from (5.9) and (5.12) together with Toeplitz lemma and the almost sure

convergence of g(θ̂n + x) to g(θ + x) that

(5.13) lim
n→∞

<N(x)>n

n1+α
=

ν2g(θ + x)

1 + α
a.s.

Consequently, we obtain from the strong law of large numbers for martingales given
e.g. by Theorem 1.3.15 of [9] that for any γ > 0, (Nn(x))

2 = o(n1+α(log n)1+γ) a.s.
which ensures that, for all x ∈ R,

(5.14) Nn(x) = o(n) a.s.

Therefore, it follows from (5.2), (5.11) and (5.14) that for all x ∈ R

(5.15) lim
n→∞

ĝn(x) = g(θ + x) a.s.

Moreover, the kernel K is compactly supported which means that one can find a
positive constant A such that K vanishes outside the interval [−A,A]. Thus, for all
n ≥ 1 and all x ∈ R,

Wn(x) =
1

hn
K
(Xn − θ̂n−1 − x

hn

)
I{|Xn−θ̂n−1−x|≤Ahn}.

In addition, the function f is Lipschitz, so it exists a positive constant Cf such that
for all n ≥ 1

|f(Xn − θ̂n−1)− f(x)| ≤ Cf |Xn − θ̂n−1 − x|.
Consequently, we obtain from (5.5) that for all x ∈ R

|Pn(x)| ≤ Cf

n∑

k=1

Wk(x)|Xk − θ̂k−1 − x|,

≤ ACf

n∑

k=1

hkWk(x).(5.16)

Hence, it follows from convergence (5.10) together with (5.14) and (5.16) that for
all x ∈ R

(5.17) Pn(x) = o(n) a.s.
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Furthermore, we obtain from (5.6) that for all x ∈ R

(5.18) |Qn(x)| ≤ Cf

n∑

k=1

Wk(x)|θ̂k−1 − θ|.

Then, it follows from the Cauchy-Schwarz inequality that

(5.19) Q2
n(x) ≤ C2

f

n∑

k=1

W 2
k (x)

n∑

k=1

|θ̂k−1 − θ|2.

We can split the first sum at the right-hand side of (5.19) into two terms,

n∑

k=1

W 2
k (x) = In(x) + Jn(x)

where

In(x) =
n∑

k=1

W 2
k (x)− E[W 2

k (x)|Fk−1],

Jn(x) =
n∑

k=1

E[W 2
k (x)|Fk−1].

Following the same lines as in the proof of (5.14), it is not hard to see that

In(x) = o(n1+α) a.s.

We also deduce from convergence (5.13) that

Jn(x) = O(n1+α) a.s.

Consequently, we obtain that for all x ∈ R

(5.20)

n∑

k=1

W 2
k (x) = O(n1+α) a.s.

Therefore, we infer from the quadratic strong law given by (2.10) together with
(5.19) and (5.20) that Q2

n(x) = O(n1+α logn) a.s. which implies that for all x ∈ R

(5.21) Qn(x) = o(n) a.s.

It now remains to study the asymptotic behavior of Mn(x) given by (5.3). As (Xn)
and (εn) are two independent sequences of independent and identically distributed
random variables, (Mn(x)) is a square integrable martingale difference sequence with
predictable quadratic variation given by

<M(x)>n =
n∑

k=1

E[(Mk(x)−Mk−1(x))
2|Fk−1],

= σ2

n∑

k=1

E[W 2
k (x)|Fk−1].
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Then, it follows from convergence (5.13) that

(5.22) lim
n→∞

<M(x)>n

n1+α
=

σ2ν2g(θ + x)

1 + α
a.s.

Consequently, we obtain from the strong law of large numbers for martingales that
for any γ > 0, (Mn(x))

2 = o(n1+α(log n)1+γ) a.s. which leads to

(5.23) Mn(x) = o(n) a.s.

Therefore, we deduce from (5.1) and (5.15) together with the conjunction of (5.17),
(5.21) and (5.23) that for all x ∈ R

(5.24) lim
n→∞

ĥn(x) = f(x)g(θ + x) a.s.

Finally, we can conclude from the identity

(5.25) f̂n(x) =
ĥn(x) + ĥn(−x)

ĝn(x) + ĝn(−x)

and the parity of the function f that, for all x ∈ R,

(5.26) lim
n→∞

f̂n(x) = f(x) a.s.

5.2. Proof of Theorem 3.2. We shall now proceed to the proof of the asymptotic

normality of f̂n. It follows from (5.1), (5.2) and (5.25) that for all x ∈ R

f̂n(x)− f(x) =
Mn(x) + Pn(x) +Qn(x)

nGn(x)
(5.27)

where Gn(x) = ĝn(x) + ĝn(−x) and

Mn(x) = Mn(x) +Mn(−x),

Pn(x) = Pn(x) + Pn(−x),

Qn(x) = Qn(x) +Qn(−x),

with Mn(x), Pn(x) and Qn(x) given by (5.3), (5.5) and (5.6), respectively. We
already saw from (5.15) that for all x ∈ R

(5.28) lim
n→∞

Gn(x) = g(θ + x) + g(θ − x) a.s.

In order to establish the asymptotic normality, it is now necessary to be more precise
in the almost sure rates of convergence given in (5.17) and (5.21). It follows from
(5.16) that for all x ∈ R

(5.29) |Pn(x)| ≤ ACf (Ln(x) + Λn(x))

where

Ln(x) =
n∑

k=1

hk(Wk(x)− E[Wk(x)|Fk−1]),

Λn(x) =

n∑

k=1

hkE[Wk(x)|Fk−1].
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On the one hand, we infer from (5.9) that

(5.30) Λn(x) = O
( n∑

k=1

hk

)
= O(n1−α) a.s.

On the other hand, (Ln(x)) is a square integrable martingale difference sequence
with predictable quadratic variation given by

<L(x)>n=

n∑

k=1

h2
k(E[W

2
k (x)|Fk−1]− E

2[Wk(x)|Fk−1]).

We deduce from (5.9) and (5.12) together with Toeplitz lemma that

(5.31) lim
n→∞

<L(x)>n

n1−α
=

ν2g(θ + x)

1− α
a.s.

Consequently, we obtain from the strong law of large numbers for martingales
that for any γ > 0, (Ln(x))

2 = o(n1−α(logn)1+γ) a.s. which clearly implies that
(Ln(x))

2 = o(n1+α) a.s. Therefore, we find from (5.29) and (5.30) that, as soon as
α > 1/3,

(Pn(x))
2 = O(n2−2α) + o(n1+α) = o(n1+α) a.s.

which immediately leads to

(5.32) (Pn(x))
2 = o(n1+α) a.s.

Proceeding as in the proof of (5.32), we obtain from (5.18) that for all x ∈ R

(5.33) |Qn(x)| ≤ Cf(Sn(x) + Σn(x))

where

Sn(x) =

n∑

k=1

ℓk(Wk(x)− E[Wk(x)|Fk−1]),

Σn(x) =

n∑

k=1

ℓkE[Wk(x)|Fk−1]

with ℓn = |θ̂n−1 − θ|. We deduce from (5.9) together with the Cauchy-Schwarz
inequality and the quadratic strong law given by (2.10) that

(5.34) Σn(x) = O
( n∑

k=1

ℓk

)
= O(

√
n logn) a.s.

In addition, it follows from (5.12) that (Sn(x)) is a square integrable martingale
difference sequence with predictable quadratic variation satisfying

<S(x)>n= O(nα logn) a.s.

Consequently, we obtain from the strong law of large numbers for martingales that
for any γ > 0, (Sn(x))

2 = o(nα(logn)2+γ) a.s. so (Sn(x))
2 = o(n1+α) a.s. Hence, we

find from (5.33) and (5.34) that

(Qn(x))
2 = O(n logn) + o(n1+α) = o(n1+α) a.s.
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which obviously implies

(5.35) (Qn(x))
2 = o(n1+α) a.s.

It remains to establish the asymptotic behavior of the dominating term Mn(x).
We already saw that (Mn(x)) is a square integrable martingale difference sequence.
Consequently, (Mn(x)) is also a square integrable martingale difference sequence
with predictable quadratic variation given by

<M(x)>n= σ2

n∑

k=1

E[(Wk(x) +Wk(−x))2|Fk−1].

Hence, it is necessary to evaluate the cross-term E[Wn(x)Wn(−x)|Fn−1]. It follows
from the same calculation as in (5.8) that

E[Wn(x)Wn(−x)|Fn−1] =
1

hn

∫

R

K(z)K(z + 2h−1
n x)g(θ̂n−1 + x+ hnz) dz,

=
1

hn
g(θ̂n−1 + x)In(x) + g′(θ̂n−1 + x)Jn(x)

+
hn

2

∫

R

z2K(z)K(z + 2h−1
n x)g′′(θ̂n−1 + x+ hnzξ)dz

with 0 < ξ < 1. Consequently, we obtain that
∣∣∣∣E[Wn(x)Wn(−x)|Fn−1]−

1

hn
g(θ̂n−1+x)In(x)−g′(θ̂n−1+x)Jn(x)

∣∣∣∣≤MgHn(x)hn a.s.

where

In(x) =

∫

R

K(z)K(z + 2h−1
n x)dz,

Jn(x) =

∫

R

zK(z)K(z + 2h−1
n x)dz,

Hn(x) =

∫

R

z2K(z)K(z + 2h−1
n x)dz.

However, as the kernel K is compactly supported, we have for all x ∈ R with x 6= 0,

lim
n→∞

K(z + 2h−1
n x) = 0.

Then, we deduce from Lebesgue dominated convergence theorem that all the three
integrals In(x), Jn(x), and Hn(x) tend to zero as n goes to infinity, which implies
that for all x ∈ R with x 6= 0,

(5.36)

n∑

k=1

E[Wk(x)Wk(−x)|Fk−1] = o
( n∑

k=1

h−1
k

)
= o(n1+α) a.s.

Therefore, we find from (5.22) together with (5.36) that for all x ∈ R with x 6= 0,

(5.37) lim
n→∞

<M(x)>n

n1+α
=

σ2ν2

1 + α
(g(θ + x) + g(θ − x)) a.s.
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If x = 0, it immediately follows from (5.22)

(5.38) lim
n→∞

<M(0)>n

n1+α
=

4σ2ν2g(θ)

1 + α
a.s.

Furthermore, it is not hard to see that Lindeberg condition is satisfied. As a matter
of fact, we have assumed that the sequence (εn) has a finite moment of order a > 2.
If we denote ∆Mn(x) = Mn(x)−Mn−1(x), we have

E[|∆Mn(x)|a|Fn−1] = E[|εn|a]E[|Wn(x)−Wn(−x)|a|Fn−1],

which implies that

E[|∆Mn(x)|a|Fn−1] ≤ 2a−1
E[|εn|a]E[W a

n (x) +W a
n (−x)|Fn−1].

However, it follows from the same calculation as in (5.8) that

(5.39)
n∑

k=1

E[W a
k (x)|Fk−1] = O

( n∑

k=1

h1−a
k

)
= O(n1+α(a−1)) a.s.

In addition, for all ε > 0,

1

n1+α

n∑

k=1

E[(∆Mk(x))
2I|∆Mk(x)|≥ε

√
n1+α|Fk−1] ≤

1

εa−2nb

n∑

k=1

E[|∆Mk(x)|a|Fk−1]

where b = a(1 + α)/2. Consequently, it follows from (5.39) that for all ε > 0,

1

n1+α

n∑

k=1

E[(∆Mk(x))
2I|∆Mk(x)|≥ε

√
n1+α |Fk−1] = O(nc) a.s.

where c = (2 − a)(1 − α)/2. As c < 0, Lindeberg condition is clearly satisfied. We
can conclude from the central limit theorem for martingales given e.g. by Corollary
2.1.10 of [9] that for all x ∈ R with x 6= 0,

(5.40)
Mn(x)√
n1+α

L−→ N
(
0,

σ2ν2

1 + α
(g(θ + x) + g(θ − x))

)

while, for x = 0,

(5.41)
Mn(0)√
n1+α

L−→ N
(
0,

4σ2ν2

1 + α
g(θ)

)
.

Finally, it follows from (5.27) and (5.28) together with (5.32), (5.35), (5.40), (5.41)
and Slutsky lemma that, for all x ∈ R with x 6= 0,

√
nhn(f̂n(x)− f(x))

L−→ N
(
0,

σ2ν2

(1 + α)(g(θ + x) + g(θ − x))

)

while, for x = 0,

√
nhn(f̂n(0)− f(0))

L−→ N
(
0,

σ2ν2

(1 + α)g(θ)

)

which completes the proof of Theorem 3.2.
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