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Abstract. We consider an age-structured model of a harvested population.

This model is a discrete-time system that includes a nonlinear stock-recruitment
relationship. Our purpose is to estimate the stock state. To achieve this goal,

we built an observer, which is an auxiliary system that uses the total number
of fish caught over each season and gives a dynamical estimation of the number

of fish by age class. We analyse the convergence of the observer and we show

that the error estimation tends to zero with exponential speed if a condition
on the fishing effort is satisfied. Moreover the constructed observer (dynam-

ical estimator) does not depend on the poorly understood stock-recruitment

relationship. This study shows how some tools from nonlinear control theory
can help to deal with the state estimation problem in the field of renewable

resource management.

1. Introduction. The problem of natural stock management has received great
attention during the last decades. Developers of management policies in the ex-
ploitation of renewable resource stocks need to have a good estimate of the avail-
able resource. Current mathematical models together with computer simulations
are useful in describing the evolution of complex systems. One of the important
problems in control theory is to reconcile the available data with the used math-
ematical model. This problem is known as the observability problem, and it is
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related to the construction of “observers”(called some times software sensors) for
dynamical systems. In this paper, we show how to apply this theory to address the
stock estimation problem for an exploited fish population. The biological model we
use is the standard fisheries age-structured model (see for instance [8, 7, 16]):

x1(k + 1) = f
( n∑

i=1

bixi(k)
)

x2(k + 1) = x1(k)e−M1−q1τE(k)

...
...

xn−1(k + 1) = xn−2(k)e−Mn−2−qn−2τE(k)

xn(k + 1) = xn−1(k)e−Mn−1−qn−1τE(k) + xn(k)e−Mn−qnτE(k)

(1)

where
• n is the number of age-classes,
• xi(k) is the number of individuals in the ith class at time k,
• bi is the fecundity rate of class i,
• Mi is the natural mortality rate of class i,
• qi is the catchability coefficient of individuals of the ith class,
• E(k) is the fishing effort at time k,
• τ is the length of harvesting season,
• f is the stock-recruitment function.

We suppose that the number of fish harvested over each period [k, k+1) is available
for measurement. This number can be expressed as follows (see [7] pp. 146-148, for
instance):

y(k) =
n∑

i=1

qiτE(k)
qiτE(k) + Mi

(
1− e−Mi−qiτE(k)

)
xi(k). (2)

The goal of this paper is to give a simple tool that would allow us to give a dynamical
estimation of the state (x1(k), . . . , xn(k)) of the stock using the available information
which is the value of the captures. To achieve this goal we shall build an observer
for system (1).

To fix the ideas let us take a peculiar three-dimensional numerical example of

model (1) with the depensatory stock-recruitment function f(x0) =
x2

0

1 + βx2
0

:
x1(k + 1) = f

( 3∑
i=1

bixi(k)
)

=
(
∑3

i=1 bixi(k))2

1 + β(
∑3

i=1 bixi(k))2
,

x2(k + 1) = x1(k)e−M1−q1τE(k),

x3(k + 1) = x2(k)e−M2−q2τE(k) + x3(k)e−M3−q3τE(k)

(3)

with the following parameters:

Depensation recruitment function parameter β = 0.6
Fecundity parameters b = [2 3 3],
Catchability coefficients q = [0.12 0.24 1],
Natural mortality rates M = [0.8 0.8 0.8],
Length of harvesting season τ = 1,
Fishing effort E(k) = 10.
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The variables xi(k) give the number in millions of individuals of the class i at time
k. If we can measure the state of (3) at some time k0, then the equation (3) allow
us to compute the values of x1(k), x2(k) and x3(k) for all time k ≥ k0. Suppose,
for instance, that the real state of the stock at time k = 0 is known and it is given
by x1(0) = 0.181, x2(0) = 0.021 and x3(0) = 0.015 (in millions of individuals); then
by (3), the state of the stock will be (for instance) at time k = 19 :

x1(19) = 27.1× 10−3, x2(19) = 8.37× 10−3, and x3(19) = 0.55× 10−3.

It can moreover be shown that the above initial condition leads to the extinction of
the considered population; that is, xi(k) tends toward zero as time k tends toward
infinity. In practice, the stock will vanish as soon as k becomes larger than 20.
However, in practice we do not have access to the values of x1(0), x2(0) and x3(0).
All we can measure is the output of the system. Here it is the value of the captures
defined by equation (2). For (3) associated to the above parameters values, its
expression is given by:

y(k) = 0.518799 x1(k) + 0.719428 x2(k) + 0.925907 x3(k).

Therefore, at time k = 0 we know only that y(0) = 0.122899. This value of the
output corresponds to the real unknown initial condition, but it also corresponds to
the following possible values: x̄1(0) = 0.16, x̄2(0) = 0.05, x̄3(0) = 0.0042336, since
0.518799 × 0.16 + 0.719428 × 0.05 + 0.925907 × 0.0042336 = 0.122899. Hence, one
can take (x̄1(0), x̄2(0), x̄3(0)) as an initial condition for system (3), and in this case
the state of the stock will be at time k = 19 :

x̄1(19) = 1474× 10−3, x̄2(19) = 199× 10−3, and x̄3(19) = 8.13× 10−3.

These values are different from the values obtained for the real initial condition.
Moreover, the simulations show that the solution of (3) corresponding to the initial
condition (x̄1(0), x̄2(0), x̄3(0)) will converge to a positive steady state whose coor-
dinates are (1.474, 0.199, 0.008), while the real state will tend toward (0, 0, 0). To
summarize, the dynamical model (3) does not suffice to compute the value of the
state at a given time k nor to predict the behavior of the system, because one needs
to know the value of the real initial condition, which is unavailable for measure-
ment. To overcome this difficulty we shall use a tool from control theory called an
observer. That is, we shall construct another dynamical system whose state x̂ will
provide an estimate of the real unmeasured state of the considered model, and this
will be true regardless of the observer’s initial condition: we need not care about
the choice of the initial condition of the observer. For (3), the state of the observer
will converge rapidly to the real state of the system (issued from the supposed real
initial condition x(0) = (0.181, 0.021, 0.015)), even if we take as an initial condition
for the observer the false one x̄(0) = (0.16, 0.05, 0.0042336). This is shown in Table
1, which compares the values obtained at different times by system (3) initialized
respectively at the true initial condition x(0) and at the false one x̄(0), as well
as the values obtained by the observer also initialized at the false initial condition
x̄(0). For lack of space we only give the values of the first component, but the
same observations are valid for the second and the third component of the state.
It can be seen that the values provided by the observer are practically equal to the
values of the real state as soon as time k becomes larger than 3. The simulations
summarized in the table below have been done with SCILAB.
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Table 1. Simulation values for system (3).

k x1(k)× 103 x̄1(k)× 103 x̂1(k)× 103

0 181.0000 160.0000 160.0000
1 195.0483 204.4220 196.8801
2 192.2349 202.3581 192.0978
3 192.6023 210.1368 192.6010
4 192.4746 221.8007 192.4745

10 189.0404 990.8104 189.0404
15 152.3006 1471.1720 152.3006
17 99.0640 1473.7021 99.0640
19 27.1224 1473.9699 27.1224
20 6.5337 1473.9912 6.5337
21 0.6299 1473.9981 0.6299
24 0.0000 1474.0014 0.0000

Now we briefly recall the definition of an observer in control theory. Suppose that
the dynamical evolution of some phenomena is modelled by the following system:{

x(k + 1) = G(x(k),u(k))
y(k) = O(x(k),u(k)) (4)

where x(k) ∈ Rn is the state of the system at time k, and u(k) ∈ U ⊂ Rm is
the input or the control. We usually do not have access to the whole state: we
can observe or measure only a part (or some function) of the actual state of the
system. Therefore we introduce another variable, y(k) ∈ Rq, which is called the
measurable output of the system. For instance, the state of the fishery model (1) is
given by the number of fish in each class, the control is the fishing effort E or the
fishing mortality qiE, and the measurable output corresponds to the captures. The
expression of the function O is given by (2).
An observer for the the system (4) is a dynamical system whose inputs are the
inputs and outputs of the system (4), which produces an estimate x̂(k) of the state
x(k) such that the estimation error x(k) − x̂(k) tends to zero as time k goes to
infinity and must remain small if it starts small (see [23],[9]). The observer will be
said to be an exponential observer if there exists ρ < 1 such that, for all k ≥ 0 and
if for all initial conditions (x(0), x̂(0)), one has

| x̂(k)− x(k) |≤ ρk | x̂(0)− x(0) | .
For linear systems

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k),
x(k) ∈ Rn,u(k) ∈ Rm,y(k) ∈ Rp,
A is a n× n square matrix ,B is a m× n matrix and C is a p× n matrix,

(5)
the observer design has been completely solved by the Luenberger observer [15]
which is simply given by

x̂(k + 1) = Ax̂(k) + Bu(k) + K(y(k)−Cx̂(k)).

The Luenberger observer converges; that is, | x̂(k) − x(k) | tends to zero expo-
nentially if it is possible to find a matrix K in such a way that the eigenvalues
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of the matrix A−KC are all with modulus less than one. It has been proved
that such a matrix K exists if the pair (C,A) is observable or at least detectable.
The system (5) (or the pair (C,A)) is observable if any two distinct initial con-
ditions produce two distinct outputs; that is, x(0) 6= x̄(0) =⇒ Cx(k) 6≡ Cx̄(k),
where x(k) (respectively x̄(k)) is the solution of system (5) emanating from the
initial condition x(0) (respectively from x̄(0)). This is equivalent to the following:
Cx(k) ≡ 0 =⇒ x(k) ≡ 0. The pair (C,A) is detectable if the following holds :
Cx(k) ≡ 0 =⇒ limk→+∞ x(k) = 0. A simple algebraic criterion allows one to check
whether a pair of matrices (C,A) is observable. The pair (C,A) is observable if
and only if the matrix

O(C,A) =



C
CA
CA2

...
CAn−1



is of rank n. In this case, we say that the system (5) or the pair (C,A) satisfies the
Kalman rank condition for observability [23]. When the pair (C,A) (or the linear
system (5)) is not observable (i.e., rank O(C,A) = r < n), then there exists an in-

vertible matrix P such that PAP−1 =
(

A11 0
A21 A22

)
, and CP−1 =

(
C1 0

)
,

where A11 is a r × r matrix, C1 is a p × r matrix, and the pair (C1,A11) is ob-
servable. The pair (C,A) is detectable if all the eigenvalues λi of the matrix A22

satisfy |λi| < 1.
For nonlinear systems, there is unfortunately no “universal”solution. The ob-

server design problem for nonlinear systems is still a very active research area in
control theory. Several methods have been developed for some classes of systems,
especially for continuous-time systems [13, 14, 18, 12, 25, 6]. This is not an ex-
haustive list, because the literature on the subject is extensive (339 references in
MathScinet). Some applications of nonlinear observers to continuous biological
models have been done (see, for instance, [1, 6, 5]). However there are fewer re-
sults concerning nonlinear discrete-time systems. Among them, one can mention
[3, 22, 17, 11, 24, 4]. Most of the available results are local (the observer converges
only for small initial error) or involve the solvability of some nonlinear functional
equations. Moreover these results assume that the function G modeling the dynam-
ics of the system is completely and precisely known. Here we are interested in the
design of a global observer for the fishery system (1), which exhibits an additional
difficulty because the recruitment function f is poorly known. Many mathematical
expressions have been proposed for the stock-recruitment relationship in the liter-
ature. The widely-used recruitment functions [7, 2, 16, 20, 21] are (α, β and γ are
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positive parameters) as follows:

Beverton and Holt f(x0) = αx0/(1 + βx0) ;

Ricker f(x0) = αx0e
−βx0 ;

Powerfunction f(x0) = αx1−β
0 ;

Shepherd f(x0) = αx0/(1 + βxc
0) , (c > 0).

Deriso− Schnute f(x0) = αx0 (1− βx0)1/γ ;

Saila− Lorda f(x0) = αxγ
0e−βx0 .

Here x0 =
∑n

i=1 bixi represents the number of newborns.
Therefore, to use model (1) to estimate the stock for a given population or

to use it for fisheries management, one must choose the appropriate recruitment
function. This is not an easy task because criteria for making the “good”choice
are not generally available. Here we shall build an estimator (observer) which is
independent of the recruitment function f . The observer we built will actually work
even in the case where the stock-recruitment relationship is stochastical. More
precisely, the observer will give a dynamical estimate x̂(k) of the state x(k) of
the model (1) without using the recruitment function f . The convergence of the
observer will be guaranteed if the minimal value of the fishing effort is larger than
some positive constant. Previous tentatives to solve this problem have been done
in [10] for n = 3 (three age classes) and for n age classes in [19]. However the
constructions made in [10] and [19] were done with the following output y(k) =∑n

i=1 xi(k) e−Mi(1− e−qiτE(k)), which was assumed to be the number of harvested
fish. Unfortunately, this is not correct. Moreover, our sufficient condition for the
convergence of the observer is weaker than that of [19].

2. Stock estimation with an observer. Our aim is to propose an observer for
system (1) considered with the output given by equation (2). To this end we
introduce the following notations:

Emin ≤ E(k) ≤ Emax ∀k ≥ 0,

qmin ≤ qi ≤ qmax for i = 1...n,

m ≤ Mi ≤ M for i = 1...n,

and we assume that q1 6= 0.
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Now let us consider the following candidate observer:

x̂1(k + 1) =
M1 + q1τE(k + 1)

q1τE(k + 1)
(
1− v1(k + 1)

) y(k + 1)

−
n−1∑
i=1

qi+1

(
M1 + q1τE(k + 1)

)(
1− vi+1(k + 1)

)
q1

(
Mi+1 + qi+1τE(k + 1)

)(
1− v1(k + 1)

) vi(k)x̂i(k)

−
qn

(
M1 + q1τE(k + 1)

)(
1− vn(k + 1)

)
q1

(
Mn + qnτE(k + 1)

)(
1− v1(k + 1)

) vn(k)x̂n(k),

x̂2(k + 1) = v1(k)x̂1(k),

...
...

x̂n−1(k + 1) = vn−2(k)x̂n−2(k),

x̂n(k + 1) = vn−1(k)x̂n−1(k) + vn(k)x̂n(k),
(6)

where vi(k) = e−Mi−qiτE(k). This system can be written in a condensed form as

x̂(k + 1) = A(k)x̂(k) + y(k + 1)F(k), (7)

where the matrix A(k) is given in the proof of Proposition 1 and

F(k) =


M1+q1τE(k+1)

q1τE(k+1)(1−v1(k+1))

0
...
0

 .

The main result can then be stated as follows

Proposition 1. There exists η > 0 such that if Emin > η, then the system (6) is
a global exponential observer for system (1).

Proof. We have

y(k + 1) =
n∑

i=1

qiτE(k + 1)
Mi + qiτE(k + 1)

(
1− vi(k + 1)

)
xi(k + 1)

=
q1τE(k + 1)

M1 + q1τE(k + 1)

(
1− v1(k + 1)

)
x1(k + 1)

+
n∑

i=2

qiτE(k + 1)
Mi + qiτE(k + 1)

(
1− vi(k + 1)

)
xi(k + 1)

=
q1τE(k + 1)

M1 + q1τE(k + 1)

(
1− v1(k + 1)

)
x1(k + 1)

+
n−1∑
i=1

qi+1τE(k + 1)
Mi+1 + qi+1τE(k + 1)

(
1− vi+1(k + 1)

)
xi+1(k + 1) .
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Thanks to (1), we have{
xi+1(k + 1) = vi(k)xi(k), for i = 1, ..., n− 2,
and xn(k + 1) = vn−1(k)xn−1(k) + vn(k)xn(k).

Therefore,

y(k + 1) =
q1τE(k + 1)

M1 + q1τE(k + 1)

(
1− v1(k + 1)

)
x1(k + 1)

+
n−1∑
i=1

qi+1τE(k + 1)
Mi+1 + qi+1τE(k + 1)

(
1− vi+1(k + 1)

)
vi(k)xi(k)

+
qnτE(k + 1)

Mn + qnτE(k + 1)

(
1− vn(k + 1)

)
vn(k)xn(k) .

Let e(k) = x(k) − x̂(k) be the error. Then, taking into account the dynamical
equations of the system (1) and of the observer (6), we can write

e1(k + 1) = x1(k + 1)− x̂1(k + 1)

= −
n−1∑
i=1

qi+1

(
M1 + q1τE(k + 1)

)(
1− vi+1(k + 1)

)
q1

(
Mi+1 + qi+1τE(k + 1)

)(
1− v1(k + 1)

)vi(k)ei(k)

−
qn

(
M1 + q1τE(k + 1)

)(
1− vn(k + 1)

)
q1

(
Mn + qnτE(k + 1)

)(
1− v1(k + 1)

)vn(k)en(k),

and

ei(k + 1) = vi−1(k)xi−1(k)− vi−1(k)x̂i−1(k) = vi−1(k)ei−1(k) for i = 2...n− 1,

and
en(k + 1) = vn−1(k)en−1(k) + vn(k)en(k).

We denote by αi the following functions:

αi(k) = −
qi+1

(
M1 + q1τE(k + 1)

)(
1− vi+1(k + 1)

)
q1

(
Mi+1 + qi+1τE(k + 1)

)(
1− v1(k + 1)

) vi(k), for i = 1 . . . n− 1

and

αn(k) = −
qn

(
M1 + q1τE(k + 1)

)(
1− vn(k + 1)

)
q1

(
Mn + qnτE(k + 1)

)(
1− v1(k + 1)

) vn(k).

With these notations we can write

e(k + 1) = A(k)e(k), (8)

where the time-varying matrix A(k) is defined as follows:

A(k) =


α1(k) α2(k) α3(k) . . . αn(k)
v1(k) 0 0 . . . 0

0 v2(k) 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 vn−1(k) vn(k)

 .
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We shall use the following matrix norm: ‖A(k)‖1 = maxj

∑n
i=1 |aij(k)|. To prove

that system (6) is a global exponential observer for system (1), it is sufficient to
prove that ‖A(k)‖1 ≤ δ < 1.

For i = 1...n, let: si(k) =
αi(k)

vi(k)

. We have

for i = 1...n− 1, si(k) =
M1qi+1

(
1− vi+1(k + 1)

)
q1

(
Mi+1 + qi+1τE(k + 1)

)(
1− v1(k + 1)

)
+

qi+1q1τE(k + 1)
(
1− vi+1(k + 1)

)
q1

(
Mi+1 + qi+1τE(k + 1)

)(
1− v1(k + 1)

) .

Since
qi+1q1τE(k + 1)

q1

(
Mi+1 + qi+1τE(k + 1)

) < 1, we can write

si(k) ≤
M1qi+1

(
1− vi+1(k + 1)

)
q1

(
Mi+1 + qi+1τE(k + 1)

)(
1− v1(k + 1)

) +
1− vi+1(k + 1)
1− v1(k + 1)

.

The map x 7→ 1− e−x

x
is decreasing; hence

1− vi+1(k + 1)
Mi+1 + qi+1τE(k + 1)

=
1− e−Mi+1−qi+1τE(k+1)

Mi+1 + qi+1τE(k + 1)
≤ 1− e−m−qminτEmin

m + qminτEmin
.

So we obtain

si(k) ≤ Mqmax

q1

(1− e−m−qminτEmin)
m + qminτEmin

1
1− v1(k + 1)

+
1− vi+1(k + 1)
1− v1(k + 1)

.

Since 0 < vi+1(k + 1) = e−Mi+1−qi+1τE(k+1) ≤ 1, we have 1 − vi+1(k + 1) ≤ 1.
Therefore, we have for i = 1 . . . n− 1,

si(k) ≤ Mqmax

q1

(1− e−m−qminτEmin)
m + qminτEmin

1
1− v1(k + 1)

+
1

1− v1(k + 1)
.

The same thing can be done for sn(k), which gives

sn(k) ≤ Mqmax

q1

(1− e−m−qminτEmin)
m + qminτEmin

1
1− v1(k + 1)

+
1

1− v1(k + 1)
.

The map x 7→ 1
1− e−x

is decreasing, it follows that

1
1− v1(k + 1)

=
1

1− e−M1−q1τE(k+1)
≤ 1

1− e−m−qminτEmin
.

Therefore,

si(k) ≤ Mqmax

q1

1
m + qminτEmin

+
1

1− e−m−qminτEmin
, ∀ i = 1, ..., n.

And hence we have for all i = 1...n,

|αi(k)|+ |vi(k)| = si(k)vi(k) + vi(k) = (si(k) + 1)vi(k)

≤
(

Mqmax

q1

1
m + qminτEmin

+
1

1− e−m−qminτEmin
+ 1

)
e−m−qminτEmin .
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Therefore ‖A(k)‖1 ≤ δ(Emin), where

δ(Emin) =
(

Mqmax

q1

1
m + qminτEmin

+
1

1− e−m−qminτEmin
+ 1

)
e−m−qminτEmin .

We will show now that there exists η > 0 in such a way that Emin > η implies
δ(Emin) < 1.

Let X = e−m−qminτEmin and consider P (X) = −Mqmax X

q1 Log(X)
+

X

1−X
+ X − 1. One

can remark that P (X) = δ(Emin)− 1.
We have limX→0P (X) = −1 and limX→1−P (X) = +∞. So, there exists x1 ∈

]0, 1[ such that P (x1) = 0. Let x∗ = inf{x ∈]0, 1[/P (x) = 0}; then, we have
P (X) < 0 for all X satisfying 0 < X < x∗. Now, 0 < X < x∗ is equivalent to

Emin >
−Log(x∗)−m

qminτ
since X = e−m−qminτEmin . It is then sufficient to choose

η =
−Log(x∗)−m

qminτ
, and this completes the proof of Proposition 1.

Remark 1. When the natural mortality rates are all equal, it is possible to give a
weaker condition on the minimal value of the fishing effort that ensures the conver-
gence of the observer.

Proposition 2. Assume that q1 ≤ qi ∀i = 2, ..., n, and moreover that the natural
mortality coefficient is the same for all stages, that is, M1 = M2 = . . . = Mn = m.
Then, the system (6) is a global exponential observer for the system (1) if

Emin >
1

q1τ

(
Log

[
qmax

q1
+ 1

]
−m

)
.

Proof. We have

|αi(k)|+ |vi(k)| =qi+1

(
M1 + q1τE(k + 1)

)(
1− e−Mi+1−qi+1τE(k+1)

)
q1

(
Mi+1 + qi+1τE(k + 1)

)(
1− e−M1−q1τE(t+1)

) + 1

 e−Mi−qiτE(k)

=

qi+1

(
m + q1τE(k + 1)

)(
1− e−m−qi+1τE(k+1)

)
q1

(
m + qi+1τE(k + 1)

)(
1− e−m−q1τE(t+1)

) + 1

 e−m−qiτE(k)

=

qi+1

q1

1− e−m−qi+1τE(k+1)

m + qi+1τE(k + 1)
1− e−m−q1τE(t+1)

m + q1τE(k + 1)

+ 1

 e−m−qiτE(k).

Since q1 ≤ qi, we have

m + q1τE(k + 1) ≤ m + qi+1τE(k + 1),

and using the fact that the map x 7→ 1
1− e−x

is decreasing, we get

1− e−m−qi+1τE(k+1)

m + qi+1τE(k + 1)
≤ 1− e−m−q1τE(t+1)

m + q1τE(k + 1)
.
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Thus, |αi(k)| + |vi(k)| ≤
(

qi+1
q1

+ 1
)

e−m−qiτE(k) ≤
(

qi+1
q1

+ 1
)

e−m−q1τE(k). It fol-
lows that

‖A(k)‖1 ≤
(

qi+1

q1
+ 1

)
e−m−q1τE(k).

And hence, ‖A(k)‖1 < 1 if Emin > 1
q1τ

(
Log

[
qmax

q1
+ 1

]
−m

)
.

Remark 2. When it is possible to have the number of harvested individuals from
the first class (i = 1) (i.e., when the output

y1(k) =
q1τE(k)

q1τE(k) + M1

(
1− e−M1−q1τE(k)

)
x1(k)

is available for measurement), then the construction of the observer is simpler and
does not involve any condition on the fishing effort except that it does not vanish
during the harvesting season. The dynamical equation of the observer in this case
is given by the following:



x̂1(k + 1) =
q1τE(k + 1) + M1

q1τE(k + 1)
(
1− v1(k + 1)

)y1(k + 1)

x̂2(k + 1) = v1(k)x̂1(k)

...
...

x̂n(k + 1) = vn−1(k)x̂n−1(k) + vn(k)x̂n(k)

(9)

Remark 3. In general, the fishery’s literature provides the fishing mortality rates
instead of the catchability parameters. On the other hand the available catch data
usually gives the total weight of the fish caught during a season. Therefore, we will
consider that the measurable output is the seasonal biomass yield (i.e., the total
weight of harvested fishes over each period [k, k +1)) instead of their number. If we
denote by wi the mean weight of individuals of class i, then the seasonal biomass
yield is

Y (k) =
n∑

i=1

qiτE(k)
Mi + qiτE(k)

(1− e−Mi−qiτE(k))wixi(k). (10)

Let ϕi(k) = qiτE(k) be the fishing mortality rate of class i, then we can write:

Y (k) =
n∑

i=1

ϕi(k)
Mi + ϕi(k)

(1− e−Mi−ϕi(k))wixi(k).
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With these notations and defining vi(k) = e−Mi−ϕi(k), an observer for system (1)
whose output is the seasonal biomass yield Y (k) can be written as

x̂1(k + 1) =
Y (k + 1)

(
M1 + ϕ1(k + 1)

)
ϕ1(k + 1)

(
1− v1(k + 1)

)
w1

−
n−1∑
i=1

ϕi+1(k + 1)
(
M1 + ϕ1(k + 1)

)(
1− vi+1(k + 1)

)
vi(k) wi x̂i(k)

ϕ1(k + 1)
(
Mi+1 + ϕi+1(k + 1)

)(
1− v1(k + 1)

)
w1

−
ϕn(k + 1)

(
M1 + ϕ1(k + 1)

)(
1− vn(k + 1)

)
vn(k) wn x̂n(k)

ϕ1(k + 1)
(
Mn + ϕn(k + 1)

)(
1− v1(k + 1)

)
w1

,

x̂2(k + 1) = v1(k) x̂1(k),

...

x̂n−1(k + 1) = vn−2(k) x̂n−2(k),

x̂n(k + 1) = vn−1(k) x̂n−1(k) + vn(k) x̂n(k).

(11)

3. Numerical examples.

3.1. An oscillating system. To illustrate the efficiency of the observer, we give
a simulation that shows the observer works well even if the system (1) does not
have a stable steady state. To this end we consider a three-age-class system with a
Ricker stock-recruitment function f(x0) = x0 e−βx0 , with x0 =

∑3
i=1 bixi. We use

the following parameters:

Ricker function parameters α = 1, β = 0.003,
Fecundity parameters b = [15 20 20],
Catchability coefficients q = [0.24 0.36 0.42],
Natural mortality rates M = [0.2 0.2 0.2],
Length of harvesting season τ = 2/3,
Fishing effort E(k) = 8.33 + e−t.

With these parameters the model exhibits oscillations. The simulations have been
done with Scilab. The time evolutions of the state variables x1, x2 and x3, as well
as their estimates x̂1, x̂2 and x̂3, are drawn in Figures 1, 2, and 3. It can be seen
that the convergence of the estimate variable x̂i to the real state xi is quite fast.

3.2. An example with a stable equilibrium. We now consider the system (1)
with the Beverton-Holt stock-recruitment function αx0/(1 + βx0) associated to the
following parameters:

Beverton-Holt function parameters α = 1, β = 0.0002,
Fecundity parameters b = [8 10 10],
Catchability coefficients q = [0.24 0.36 0.42],
Natural mortality rates M = [0.2 0.2 0.2],
Length of harvesting season τ = 2/3,
Fishing effort E = 8.
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The corresponding three-dimensional dynamical system has a globally asymptoti-
cally stable steady state whose coordinates are (4527, 1030, 135). Once again the
estimates x̂1, x̂2 and x̂3 delivered by the observer converge rapidly to the real states
x1, x2 and x3, as seen in Figures 4, 5, and 6.

4. Conclusion. An observer for a standard age-structured model has been pre-
sented and explicitly constructed. This observer is simple to use and to implement.
It allows one to obtain a dynamical estimate of the state of the stock by using
as the only available data the values of the captures. This means that if one can
measure the output y(k) (here, it is the total catch), then the observer will give
an estimation of the number of individuals by age classes x1(k), . . . xn(k) that are
not measurable in practice or are at least difficult or expensive (acoustic methods
for example) to measure. A good estimate of the stock is important, at least for
establishing management policies. The observer’s convergence is quite fast. It has
the advantage of not using the stock-recruitment function.

The estimator developed in this paper can not be used directly for prediction
when we do not know the analytical expression of the recruitment functionf , because
it uses the output at time k + 1; that is, to calculate the estimate x̂(k + 1), the
observer needs the value of the output at the same time k + 1. However, the
estimator can indirectly help in prediction when the expression of the recruitment
function and the map k 7→ E(k) are available in the following way. When the
observer allows recovery of a good estimate x̂(k0) (with the desired precision) of
the real unknown state x(k0) and then model (1) can be used for prediction for
k ≥ k0 by taking x̂(k0) as an initial condition (for instance in example (3.2)), one
can take k0 = 4, since for this value of time the values of x(k0) and x̂(k0) are
practically equal. In practice we do not have the values of x(k), and so we can not
compare with the values delivered by the observer in order to determine the value
k0 of time for which we have |x(k0)−x̂(k0)| < ε, where ε is the desired precision. To
determine k0, it is sufficient to simulate the observer with different initial conditions,
and then k0 is the first time for which the different curves coincide. We have done
this for example (3.2). Figure 7 gives the time evolution of the third coordinate
x̂3 corresponding to three different initial conditions for the observer dynamical
system (6). This shows that one can take k0 = 4, and the same conclusion can be
derived from the curves corresponding to the two other components x̂1 and x̂2.

The condition on the fishing effort that allows the convergence of the observer
can be weakened and the convergence can be made faster if we add a corrective term
to the observer dynamics (6) as follows: the output (2) can be written in a matrix
form y(k) = C(k)x(k) where the time varying matrix C(k) depends on E(k); the
new candidate observer is then

x̂(k + 1) = A(k)x̂(k) + y(k + 1)F(k) + L(k)
(
y(k)−C(k)x̂(k)

)
,

where the matrix L(k) has to be computed. A work in this direction is in progress.
Optimal control theory has been widely used in renewable resource management.

The present work indicates that the estimation problem can be investigated from
the point of view of control engineering.

Acknowledgments. We thank the anonymous referees for their valuable com-
ments and suggestions that have allowed to improve the presentation of this article.
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Figure 1. x1 (solid line) and its estimate x̂1 (dashed line)
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Figure 2. x2 (solid line) and its estimate x̂2 (dashed line)
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Figure 3. x3 (solid line) and its estimate x̂3 (dashed line)
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Figure 4. x1 (solid line) and its estimate x̂1 (dashed line)
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Figure 5. x2 (solid line) and its estimate x̂2 (dashed line)
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Figure 6. x3 (solid line) and its estimate x̂3 (dashed line)
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Figure 7. Time evolution of x̂3 corresponding to different initial
conditions for the observer.
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