
HAL Id: inria-00552081
https://hal.inria.fr/inria-00552081

Preprint submitted on 5 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intriguing Patterns in the Roots of the Derivatives of
some Random Polynomials

André Galligo

To cite this version:
André Galligo. Intriguing Patterns in the Roots of the Derivatives of some Random Polynomials.
2010. �inria-00552081�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50026072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00552081
https://hal.archives-ouvertes.fr


Intriguing Patterns in the Roots of the Derivatives of some
Random Polynomials
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ABSTRACT
Our observations show that the sets of real (respectively
complex) roots of the derivatives of some classical families
of random polynomials admit a rich variety of patterns look-
ing like discretized curves. To bring out the shapes of the
suggested curves, we introduce an original use of fractional
derivatives. Then we set several conjectures and outline a
strategy to explain the presented phenomena. This strategy
is based on asymptotic geometric properties of the corre-
sponding complex critical points sets.
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1. INTRODUCTION
Computer algebra systems are powerful tools for performing
experiments and simulations in Mathematics. They serve
to illustrate known properties, already rigorously proved, or
conjectures; to find examples, to show that a bound is sharp,
to estimate some values or behaviors. Once in a blue moon,
experiments reveal unexpected patterns or phenomena. Af-
ter the surprise, the repetition of experiments and variations
to test robustness, comes the time to share the observations
and the quest for explanations.

This paper relates my experiments, relying on the computer
algebra system Maple, on the roots sets of univariate poly-
nomials of medium degrees, and of their iterated derivatives.
Generations of mathematicians studied these basic objects,
so it seemed unlikely that simple graphics should uncover
any surprising feature. The originality of the presented ap-
proach was to choose random polynomials, compute roots of
a great number of derivatives and consider averaged objects
and phenomena. I started observing the real roots and then
looked at the complex ones, as they are more amenable to
algebraic interpretations.

Random matrices are matrix-valued random variables. Their
study have encountered a great deal of interest in the last
decades, since many important properties of disordered phys-
ical systems can be represented mathematically using eigen-
vectors and eigenvalues of matrices with elements drawn
randomly from statistical distributions. Their characteris-
tic polynomials form a special class of random polynomials.
See [14], or for a first insight the article Random matrix
in Wikipedia . Random polynomials is a classical field of
interest in Mathematics and Statistics; several families of
random polynomials have been described in great details,
see [8]. The number and distribution of real and complex
roots of random polynomial present regular structures (see
section 2 below) which are statistical consequences of the
properties of their coefficients distributions. This is also the
case for eigenvalues of random matrices, see [5].

For a fixed degree n, we consider several bases gi(x) of
polynomials of degree at most n. We form the polynomial
f :=

Pn
i=0 aigi(x), the set of coefficients ai being instances

of n + 1 independent normal centered standard distribu-
tions. In our experiments, we also consider characteristic
polynomials of matrices whose entries are independent nor-
mal centered standard distributions.



A critical point of a polynomial f(x) is a root of its derivative
f ′(x). As random polynomials are generic, they admit only
critical points that are not root of f ; in the sequel we will
only be interested by these critical points. By Rolle theorem,
between two roots of f there is at least a root of f ′ while
in the complex plane, by Gauss-Lucas theorem, the critical
points of f are contained in the convex hull of the roots of
f . There are several improved versions of this theorem, see
the excellent book [16] which contains many fine results and
enlightening historical notes.

Our general project is to concentrate on some families of ran-
dom polynomials and set new conjectures, on the set of their
critical points, suggested by experiments, observations and
numerical evidences. It extends our previous works [11], [7],
[9], [10]. Our conjectures, hopefully transformed into theo-
rems, could then act as an oracle and indicate the estimated
number and locations of the roots of a random polynomial
and of its derivatives. This information could be used to
derive better average complexity bounds for roots isolation
algorithms.

The paper is organized as follows. In section 2, different fam-
ilies of random polynomials are examinated; some of their
properties will be recalled and illustrated. Section 3 is de-
voted to our experiments on the sets of real roots of these
polynomials and their derivatives; we organize them in a
Variation diagram. Then we point out intriguing patterns
and set a conjecture to try to express formally a part of the
observed phenomena. Section 4 introduces our definition of
a polynomial bivariate factor P of the fractional derivatives
of a polynomial f , P induces a continuation between the
roots sets of f and xf ′. With this tool, we define an alge-
braic spline curve we call the “stem” of the polynomial f ; it
is of particular interest for random polynomials, In addition,
section 4 describes experimental results on the stems, points
out another intriguing phenomenon and poses some conjec-
tures which leads to analyze the influence of the complex
roots of f . Section 5 concentrates on the relative locations
of the complex roots of f and f ′. For some random polyno-
mials, an interesting pairing is observed and its consequences
explored. Finally we conclude discussing a tentative analysis
and synthesis of our observations based on the symmetries
of the limit distribution of the complex roots of f .

2. RANDOM POLYNOMIALS
The study of random polynomials is a classical and very ac-
tive subject in Mathematics and Statistics It is at the core
of extensive recent research and has also many applications
in Physics and Economics; two books [2] and [8] are dedi-
cated to it. Already in 1943, Mark Kac [13] gave an explicit
formula for the expectation of the number of roots of a poly-
nomial in a class that now bears his name (see below). The
subject is naturally related to the study of eigenvalues of
random matrices with its applications in Physics, see [5].

For a fixed degree n, we consider several bases gi(x) of poly-
nomial of degree at most n, then we form the polynomial

f :=

nX
i=0

aigi(x).

The coefficients ai being instances of n+1 independent nor-

mal centered standard distributions N(0, 1). We are con-
cerned with averaged asymptotic behaviors when n tends
to infinity, but in our experiments we chose n between 32
and 128. We also considered characteristic polynomials of
matrices with various shapes whose entries are independent
normal centered standard distributions.

Let’s start with the following methodological point. In statis-
tics, averaged properties are generally observed through a
series of realizations forming a sample. However in our set-
ting, some families of large degree random polynomials, the
uniformity of a distribution of roots, a symmetry or an in-
triguing regular shape shows up in almost each experiment.
A single large object is enough to represent the whole en-
semble, in other words a significant sample contains only
one element. This convenient behavior can be related to a
property of some disordered systems called “self-averaging”.
However, our situation is more complicated, since we did not
fix in advance any feature of the observed shapes; they are
extracted from the pictures.

We now list some classes of random polynomials, we specify
their names and the corresponding bases gi(x) (cf. the above
formula).

• Kac polynomials: the basis is gi(x) = xi.

• SO(2)-polynomials: gi(x) =
q`

n
i

´
xi.

• Weyl-polynomials: gi(x) =
q

1
i!
xi.

Then, the following less commonly studied families; in this
paper we give them the following names (NC stands for nor-
mal combination):

• NC-Bernstein : gi(x) =
`

n
i

´
(1 + x)i(1− x)n−i.

• NC-Chebyshev: the basis is made by the Chebyshev
polynomials of degree i, for i between 0 and n.

Then the characteristic polynomials of several classes of ran-
dom matrices

• matrices whose entries are instances of independent
standard normal distribution,

• symmetric matrices whose entries are instances of in-
dependent standard normal distribution,

• random unitary matrices obtained by taking the eigen-
vectors of a matrice of the previous class.

Sparse analog of these classes and other distributions of their
coefficients (or entries) are also very interesting; but the
listed classes are already rich enough to express our obser-
vations and conjectures.

Number of real roots and distribution of complex
roots

• The asymptotic number of real roots of a Kac polyno-
mial is about 2

π
ln n, the distribution of the complex

roots tends to a uniform distribution on the unit cir-
cle; Figure 1 shows the roots of a Kac polynomial of
degree 128.



Figure 1: Complex roots of a Kac polynomial

Figure 2: Complex roots of a SO(2) polynomial

• The asymptotic number of real roots of a SO(2)- poly-
nomial is about

√
n, the distribution of the complex

roots tends to a uniform distribution on the Riemann
sphere. Figure 2 shows their location on the complex
plane for a polynomial of degree 128.

• The asymptotic number of real roots of a Weyl poly-
nomial is about 2

π

√
n, the distribution of the complex

roots tends to a uniform distribution on the disc cen-
tered at the origin and of radius

√
n.

• The asymptotic number of real roots of the characteris-
tic polynomials of a general random matrix (as above)

is about
q

2
π

√
n, the distribution of the complex roots

tends to a uniform distribution on the disc centered at
the origin and of radius

√
n. Figure 3 shows them for

a matrix of size 128.

Figure 3: Complex eigenvalues of a random matrix

Figure 4: Complex roots of a NC Chebyshev

In the three previous pictures we notice that the limit dis-
tribution is almost uniform in angles around the origin, (ro-
tational symmetric) this property is completed by an axial
symmetry over the real axis due to complex conjugation.
This observation can be quantified: [17] computed for Kac
polynomials the density function hn(x, y) of the number of
complex roots near a complex point x+iy, completing Kac’s
computation of the density function of the number of real
roots near a real point x.

For the two other classes, NC-Bernstein and NC-Chebyshev,
we have ”only“ a limit central symmetry.

• The asymptotic number of real roots of a polynomial
in NC-Bernstein is about

√
2n, [7].

• Figures 4 shows, for a NC-Chebyshev polynomial of
degree 128, the distribution of the complex roots, they
concentrate along a segment of the real axis and two
ovals centered at −1 and 1.

3. VARIATION DIAGRAM (VD)
We consider a polynomial f(x) with real coefficients of de-

gree n and its i-th derivative F [i] = f (i)(x) for i = 0..n− 1.
The sets of real roots of the n polynomials F [i], appears
in what, in French high schools is called “tableau de varia-
tions”. In the 19-th century, the number of sign variations
were used by Budan and by Fourier to estimate the number
of roots of f in an interval, see [16], chapter 10. In the 20-th

century, R. Thom relied on the signs of f (i) to distinguish
and label the different roots of f , see [3].

We chose to organize all these roots with a 2D diagram, that
we call Variation diagram (VD):

V D := ∪i {fsolve(F [i], x)} × {n− i}
Note that the second coordinate indicates the degree of the
polynomial F [i]. As the iterated derivatives of a generic
polynomial do not have multiple roots, they change sign at
each root.

Example:

f := (x−5).(x2−x+4) ; f ′ = 3(x−1).(x−3) ; f ′′ = 6(x−2).

These polynomials have respectively 1, 2, 1 real roots:

V D = {[5, 3], [1, 2], [3, 2], [2, 1]}.



Figure 5: VD of a Kac polynomial of degree 64

Figure 6: (Truncated) VD of a SO(2) polynomial

Our first experiments with Kac polynomials found that their
VD admit unexpected structured patterns. The roots of the
successive derivatives present almost curved alignments. To
our best knowledge, this phenomenon has not been explored
before.

We made more experiments with different instances of Kac
polynomials and got very similar patterns, then we repeated
the experiments with the different bases defined in the pre-
vious section. See Figures 5 to 8.

As illustrated by these pictures and many more, for the cited
families of random polynomial the observed feature (almost
alignments along lines or ovals) seems robust. In particular
following our observation we conjecture:

Figure 7: VD of a Weyl polynomial of degree 64

Figure 8: (Truncated) VD of a CN Bernstein

Conjecture 1. For Kac, SO(2) or Weyl random poly-
nomials the external real roots (i.e. biggest or smallest) of
all derivatives of f tend to be almost surely aligned along a
line, when n tends to infinity.

In order to strengthen these observations, we looked for a
method to connect the points in coherence with our visual
intuition. A natural strategy is to view the integer orders of
derivation as discretized steps; hence to look for generalized
derivatives with continuous orders.

4. FRACTIONAL DERIVATIVES
The attempt to introduce and compute with derivatives or
antiderivatives of non-integer orders goes back to the 17-th
century. In their fine book [15] dedicated to this subject, the
authors relate that an integral equation, the tautochrone,
was solved by Abel in 1823 using a semi derivative attached
to the integral

R x

0

√
x− tf(t)dt. In 1832 Liouville expanded

functions in series of exponentials and defined q-th deriva-
tives of such a series by operating term-by-term for q a real
number. Riemann proposed another approach via a defi-
nite integral. The cited book provides in its introduction a
nice presentation of the historical progression of the concept
from 1695 to 1975 through a hundred citations.

An important property is that two such fractional derivation
commute. However for non-integer orders of derivation, the
fractional derivative at a point x of a function f does not
only depend on the graph of f very near x; fractional deriva-
tion does not commute with the translations on the variable
x. The traditional adjective “fractional“, corresponding to
the order of derivation, is misleading since it needs not be
rational.

Let us emphasize that nowadays in Mathematics, fractional
derivatives are mostly used for the study of PDE in Func-
tional analysis. They are presented via Fourier or Laplace
transforms. Fractional derivatives are seldom encountered
in Polynomial algebra.

4.1 A polynomial factor
In order to interpolate the previous dotted curves, we con-
sider a polynomial factor of the fractional derivatives of the
polynomial f . We rely on Peacock’s rule (1833) for mono-
mials:

Diffa(xn, x) :=
n!

(n− a)!
xn−a; for a > 0, n integer.



which immediately implies the following key fact.

Lemma 1. Let f(x) be a polynomial of degree n, then

xaΓ(−a)Diffa(f)

is a polynomial in x and a rational fraction in a with de-
nominator (n− a)(n− a− 1)...(−a).

To interpolate the non vanishing roots of the successive
derivatives of a polynomial f , only fractional derivatives
with 0 < a < 1, up to a power of x are needed. So we
set the following definition and notation.

Definition 1. Let f =
P

aix
i be a degree n polynomial.

We call (monic) polynomial factor of a fractional derivative

of order a of f ,the polynomial xa (n−a)!
n!

Diffa(f, x)). It is a
polynomial of total degree n in x and a, which writes

Pa(f) := anxn +

n−1X
i=0

(

nY
j=i+1

1− a

j
)aix

i.

4.2 Stem
Definition 2. We call Stem of a polynomial f of degree

n, the union of the real curves formed by the roots of all the
monic polynomial factors of the derivatives f (i) of f , for i
from 0 to n − 1 and 0 ≤ a < 1. A stem is a C0 spline of
algebraic curves.

Here is a simple example to illustrate the regularity of the
join between two successive curves forming the stem of f :

f = (x− 1)(x− 3) = x2 − 4x + 3 ; f ′ = 2(x− 2).

Hence,

Pa(f) = x2 − 2x(2− a) + 3(2− a)(1− a)/2,

Pb(f
′/2) = x− 2(1− b).

This shows that when a tends to 1, and b tends to zero,
there is (only) a C0 continuity between the adjacent pieces.

In a joint work (in preparation) with D. Bembe, we consider
another curve associated to f which is regular but does not
have the same shape: the real algebraic curve in the plane
(x, a) defined by the bivariate polynomial of degree n that
we denoted above by Pa(f). We study the relation between
this curve and the so-called virtual roots of f introduced in
[12] and [4].

4.3 From discrete to continuous
I made several experiments, and noticed that the patterns
exhibited by the stems of most of our random polynomials
presented common features:

• Long quasi lines joining the external real roots of f to
the axis (x = 0),

• Curves (of smaller size) joining the inner real roots to
the axis (x = 0),

Figure 9: Stem of a SO(2) polynomial of degree 128

Figure 10: Stem of a NC Chebyshev of degree 64

• Closed curves, often shaped like an ear, starting and
ending at (x = 0).

• Stems of a same family of random polynomials share
more similarities.

Remark: In our pictures, the line x = 0 is a singularity
and an axis of almost symmetry of the patterns. This is
coherent with the considered random polynomials with cen-
tered distribution of coefficients. Our choice of fractional
derivatives respects this symmetry.

4.4 Similarity of graphs
The graph of a (random) polynomial bears interesting fea-
tures. Algebraically and visually its shape is corelated to
the roots of f and its derivatives through extrema, inflec-
tion points, and generalized inflections. We compared the

Figure 11: Stem attached to a random matrix



Figure 12: Graphs of f , xf ′ for a Kac polynomial

graphs of f and f ′ or xf ′, for our random polynomials, ex-
pecting that randomness acts as a filter: details are blurred
and similarities are magnified.

We made several experiments with Maple for polynomials f
of medium degrees. For a Kac polynomials of degree 64, we
rescaled f , and xf ′, restricted the graphs to x ∈ [−1.2, 1.2]
and y ∈ [−1, 1]. As illustrated in Figure 12 we found that,
very often, the graph of xf ′ is similar to the graph of f but
shrunk towards the origin. This is coherent with the pattern
exhibited by the variation diagram of f . The problem is how
to quantify the observed transformation.

4.5 Rolle theorem
Generically, there are an odd number of roots of f ′ between
two successive positive roots x1 and x2 of f . We aim to
analyze the pairing between the roots established by the
stem of f , the previous figures suggest that for our random
polynomials, almost surely the stem connects the root x2 of
f to one of the roots of f ′. Stems of random polynomials
may have points with horizontal tangents, but we observed
that at these points the graph is convex. With other words,
we propose this property as a conjecture.

Conjecture 2. For the chosen families of random poly-
nomials, almost surely the stem between the roots of f and
xf ′ does not connect two roots of f . But it may connect two
roots of f ′.

Another interesting task would be to quantify the ratio de-
fined by the consecutive roots of f and f ′. Such estimates
were given obtained by P. Andrews [1] for hyperbolic poly-
nomials.

Figures 13 and 14 show the detail of a “good” (with respect
to the conjecture) example of the stem of a polynomial of
degree 6, and the corresponding deformation between the
graphs of f and xf ′, formed by the fractional derivatives. In
contrast, Figure 15 and 16 show the corresponding pictures
for an example which does not correspond to the situation
encountred with our random polynomials. More precisely,
in the “bad” example the continuation between the inner
roots of f and xf ′ does not remain on the real line but passes
through the complex plane, this is pictured by the dotted
curve. So, an explanation of the connection between real
roots of f and f ′ might be found exploring what happens in
the complex plane.

Figure 13: detail of a Stem

Figure 14: a “good” homotopy between f and xf ′

Figure 15: detail of a “bad” Stem

Figure 16: a “bad” homotopy between f and xf ′



Figure 17: Roots of f and f ′

5. COMPLEX CRITICAL POINTS
There is an important bibliography on the location of the
critical points of a polynomial with respect to the location
of its roots, going back to Gauss with Gauss-Lucas theorem.
Several recent works concentrate on the following conjecture
of Sendov, which has been proved for small degrees and in
several special cases. Their main tools rely either on the
implicit function theorem or on extremal polynomials, or on
refinements of Gauss-Lucas theorem. See the book [16].

Sendov Conjecture: Let f be a polynomial having all its
roots in the disk D. If z is a root of f , then the disk z + D
contains a root of f ′.

I did not found mention in these researches, developed in
analysis and approximation theory, of the case of polynomi-
als with random coefficients.

5.1 Observations
I made experiments with the first classes (see section 2) of
random polynomials, they exhibit interesting behaviors:

- for almost each root of f smaller disks z+εD, with ε << 1,
contain a critical point; in such a way that they describe a
bijection between the roots of f and the roots of xf ′,

- one can restrict these disks to small sectors, which indicates
a direction towards the real axis or towards the origin.

Figures 17 to 19 illustrate the relation between roots and
critical points for an SO(2) random polynomial of degree
32. Fractional derivatives are used to construct (as for real
roots) an homotopy between the zero sets of f and xf ′. The
color chart is: the roots of f are blue, the roots of f ′ are red
and the roots of the fractional derivatives are green. Figure
19 shows the “top” part of a complex analog of the variation
diagram, notice the regular alignments towards the origin (it
is slightly noised near the real axis).

5.2 Electrostatic attraction
The interpretation of the position of each critical point of f
as an equilibrium of a logarithmic potential, where the roots
of f are viewed as positively charged particles (or rods), goes
back to F. Gauss. As reported in [16], the following equality
to zero provides a quick proof of Gauss-Lucas theorem.

Denote by xj the complex roots of the polynomial f assumed

Figure 18: Pairing via fractional derivatives

Figure 19: Truncated SO(2) complex VD

two by two distinct and distinct from z, another complex
number. Then by logarithmic derivation and conjugation
we deduce:

f ′(z) = 0 ⇒
X z − xj

|z − xj |2 = 0.

The vector in the complex plane
−z+xj

|z−xj |2 is viewed as a force

applied to z directed towards xj proportional to the recip-
rocal of the distance. Summing these forces, the point z
(viewed as an electron) is attracted by the roots system of
f (viewed as positively charged particles). When the limit
distribution of the roots of f is uniform in angles (also called
rotational symmetric, i.e. only depends on the radius), the
resulting electrostatic force on a point z inherits a limit sym-
metry, and tends to be directed towards the origin.

Let us denote by L1 the real line joining the origin to a root
xk and by L2 the real line orthogonal to L1 through the ori-
gin. The number and distribution of roots below and above
L1 (respectively L2) are asymptotically ”almost” balanced.
So, with a good probability, an equilibrium zk can be found
“near” L1 with the vector xkzk oriented towards the origin.
One can expect as well that the more xk is far from the
origin, the smallest the vector xkzk should be. This is what
we observed in our experiments as illustrated with Figures
17 and 18.

The previous balanced count of forces is noised when we ap-
proach the real axis, because there is another axial symme-
try due to complex conjugation, and a positive probability
of real roots. This breaks the rotational symmetry, conse-



Figure 20: Higher derivatives, CN Chebyshev

quently the resulting electrostatic force is now also directed
towards the real axis. The attraction toward the real axis is
magnified when we consider the set of roots of a NC Cheby-
shev polynomial (see Figure 4), since it contains many real
points and “only” a central limit symmetry. In this case, we
observe that through successive pairing and after a rather
small number of derivations, most complex roots of f give
rise to a real root of a higher derivative of f . This process
is illustrated in Figure 20 with a CN Chebyshev polynomial
of degree 50, The colors (red, green, black, blue, orange,
brown) correspond to the derivation orders (0,1,2,3,4,5).

Conjecture 3. For f a Kac, SO(2), Weyl random poly-
nomial or the characteristic polynomial of a random matrix
as in section 2, the presented continuation process realizes
a bijection such that each critical point zk of f is attached
to a root xk. Moreover in the limit distribution of (xk, zk)
when n tends to infinity, almost surely the vectors xkzk point
towards the origin.

For the other random cases with only a limit central symme-
try, we also conjecture a pairing but the limit orientation of
the xkzk will be dependant on the point xk. Our intuition is
as follows. Consider all the roots of f except xk, the result-
ing electrostatic force will be regular in a small disc around
xk, the average of these forces in the disc is a good candidate
for the researched direction, then zk will be positioned on
the corresponding line to realize the equilibrium.

6. TENTATIVE EXPLANATIONS
Let us summarize. In section 3 we described intriguing align-
ments of points, observed on the collection of all roots of a
real polynomial f and its derivatives, organized in a 2D di-
agram (VD).

Trying to explain the curved parts of this phenomena, we
presented in section 4 an original use of fractional deriva-
tives. It allows an interpolation of the discrete set into a 2D
curve which we called the stem. This construction gave rise
to experiments, to other intriguing observations and to two
questions: Why does the C0 interpolation look so regular ?
Is there any correlation between the distribution of the com-
plex roots of f and its stem ? These question lead us to new
observations on the location of critical points of our random
polynomials and again to new questions and conjectures.

To stop this flow of questions, we rely on the interpretation
of a critical point as an equilibrium position under electro-
static forces. Indeed this viewpoint allows the use of the
density functions of complex and real roots of a random
polynomial f . Such density functions have been studied by

several authors for classical families of random polynomials,
e.g. for Kac polynomials we already cited [17].

The strategy is to perform a mean field approximation to
establish as follows a pairing between a root of f and a root
of f ′. One can estimate an equilibrium zk near a fixed root
xk, relying on the density functions to average the attraction
corresponding to the other roots of f . If the root xk is real,
complex conjugation obliges its image zk to be real. Notice
that the continuation curve between xk and zk, defined by
the homotopy, needs not be real, we only conjectured this
property with a good probability for some random polyno-
mials.

This process will allow for random polynomials at each deriva-
tion step to “get down” towards the real axis and at least
for rotational symmetric limit distribution of complex roots,
towards the origin. Note that in order to prove that the con-
tinuation defined via fractional derivatives follows the same
dynamic, we need to develop a generalized attraction inter-
pretation. When a couple of conjugate complex roots of a
fractional derivative reach the real axis they form a double
root: in the stem of f , this event corresponds to a summit
of an ear shaped curve.

We are still far from a rigorous presentation of our inter-
pretation and all its consequences. Improvements of Gauss-
Lucas, use of majorization techniques, images of uniform
distributions laws, might eventually explain the features ex-
hibited by the variation diagrams, but it is a long way.

As a conclusion, I experimented, introduced new tools, pre-
sented pictures, observed phenomena. I sketched a possible
strategy, which opens several problems and an exploratory
research project.
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