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Abstract

In many models of working memory, transient stimuli are
encoded by feature-selective persistent neural activity.
Such stimuli are imagined to induce the formation of
a spatially localised bump of persistent activity which
coexists with a stable uniform state. As an example,
Camperi and Wang [3] have proposed and studied a
network model of visuo-spatial working memory in pre-
fontal cortex adapted from the ring model of orientation
of Ben-Yishai and colleagues [1]. It is therefore natural
to study the emergence of spatially localised bumps
for the structure tensor model. This modelization was
introduced by Chossat and Faugeras in [4] to describe
the representation and the processing of image edges
and textures in the hypercolumns of the cortical area
V1. The key entity, the structure tensor, intrinsically
lives in a non-Euclidean, in effect hyperbolic, space.
Its spatio-temporal behaviour is governed by nonlinear
integro-differential equations defined on the Poincaré disc
model of the two-dimensional hyperbolic space. In this pa-
per, we present an original study, based on non-Euclidean,
hyperbolic, analysis, of a spatially localised bump solution.

Keywords: Neural fields; nonlinear integro-differential
equations; functional analysis; stability analysis; hyperge-
ometric functions; bumps.

1 Introduction

Chossat and Faugeras in [4] have introduced a new and
elegant approach to model the processing of image edges
and textures in the hypercolumns of area V1 that is based
on a nonlinear representation of the image first order
derivatives called the structure tensor. They assumed
that this structure tensor was represented by neuronal
populations in the hypercolumns of V1 that can be

described by equation similar to those proposed by Wilson
and Cowan [10].

We recall that the structure tensor is a way of represent-
ing the edges and textures of a 2D image I(x, y) [2, 9].
Moreover, a structure tensor can be seen as a 2 × 2 sym-
metric positive matrix.
We assume that a hypercolumn of V1 can represent the
structure tensor in the receptive field of its neurons as the
average membrane potential values of some of its mem-
brane pouplations. Let T be a structure tensor. The av-
erage potential V (T , t) of the column has its time evolu-
tion that is governed by the following neural mass equation
adapted from [4] where we integrate over the set SPD(2),
the set of 2 × 2 symmetric definite-positive matrices:

∂tV (T , t) = −αV (T , t)+

∫

SPD(2)

W (T , T ′)S(V (T ′, t))dT ′

+ I(T , t) ∀t > 0 (1)

The nonlinearity S is typically taken to be a sigmoidal
function which may be expressed as:

S(x) =
1

1 + e−µ(x−κ)

with gain µ and threshold κ. I is an external input.
In this study, we only deal with the reduced case of struc-
ture tensors with determinant equal to one. We recall that
SL(2, R) is the set of 2 × 2 invertible matrices with de-
terminant 1. So in equation (1), the integral is only over
SSPD(2) = SPD(2)∩SL(2, R), the set of special symmetric

positive definite matrices. Furthermore, SSPD(2)
isom
= D,

where D is the Poincare Disk, see e.g. [4]. It is well-known
[8] that D (and hence SSPD(2)) is a two-dimensional Rie-
mannian space of constant sectional curvature equal to -1
for the distance noted d2 defined by

d2(z, z′) = arctanh
|z − z′|

|1 − z̄z′|
.
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It is possible to express the volume element dT in (z1, z2)
coordinates with z = z1 + iz2:

dT =
dz1dz2

(1 − |z|2)2
def
= dm(z)

We rewrite (1) in (z) coordinates:

∂tV (z, t) = −αV (z, t) +

∫

D

W (z, , z′)S(V (z′, t))dm(z′)

+ I(z, t)

In order to construct exact bump solutions, we consider
the high gain limit µ → ∞ of the sigmoid function S such
that S(x) = H(x − κ), where H is the Heaviside function
defined by H(x) = 1 for x ≥ 0 and H(x) = 0 otherwise.
Equation (1) is rewritten as:

∂tV (z, t) = −αV (z, t)+

Z

D

W (z, z
′)H(V (z′

, t)−κ)dm(z′)+I(z, t)

(2)

= −αV (z, t) +

∫

{z′∈D|V (z′,t)≥κ}

W (z, z′)dm(z′) + I(z)

We make the assumption that the external input I does
not depend upon the variables t and the connectivity func-
tion depends only on the hyperbolic distance between two
points of D: W (z, z′) = W (d2(z, z′)).

2 Stationary pulses

Our aim is to construct a hyperbolic radially symmetric
stationary pulse. Let us first consider a general stationary
pulse:

αV (z) =

∫

{z′∈D|V (z′)≥κ}

W (z, z′)dm(z′) + I(z)

We assume that the set K = {z ∈ D|V (z) ≥ κ} ⊂ D is com-
pact. We note M(z, K) the integral

∫
K

W (z, z′)dm(z′).
The relation V (z) = κ holds for all z ∈ ∂K.

2.1 Helgason Fourier transform

Let b be a point on the circle ∂D. For z ∈ D, we define the
“inner product” < z, b > to be the algebraic distance to the
origin of the (unique) horocycle based at b through z (see
[4]). Note that < z, b > does not depend on the position
of z on the horocycle. The Helgason Fourier transform in
D is defined as (see [7]):

h̃(λ, b) =

∫

D

h(z)e(−iλ+1)<z,b>dm(z) ∀(λ, b) ∈ R × ∂D

for a function h : D → C such that this integral is well-
defined.

We define W(z)
def
= W (d2(z, O)).

Lemma 2.1. The Fourier transform in D, W̃(λ, b) of W

does not depend upon the variable b ∈ ∂D.

In order to calculate M , we use the Fourier transform.
First we rewrite M as a convolution product:

M(z, K) =

∫

K

W (z, z′)dm(z′) =

∫

D

W (z, z′)1K(z′)dm(z′)

= W ∗ 1K(z)

In [7], Helgason proves an inversion formula for the hy-
perbolic Fourier transform and we apply this result to W.
Let Φλ(z) =

∫
∂D

e(iλ+1)<z,b>db then:

W(z) =
1

4π

Z

R

fW(λ)Φλ(z)λ tanh(
π

2
λ)dλ (3)

Then,

M(z, K) =
1

4π

∫

R

W̃(λ)Φλ ∗ 1K(z)λ tanh(
π

2
λ)dλ

2.2 Study of M(z, K) when K = Bh(0, ω)

We now consider the special case where K is a hyperbolic
disk centered at the origin of hyperbolic radius ω, noted
Bh(0, ω).

Lemma 2.2. For all ω > 0 the following formula holds:

∫

Bh(0,ω)

Φλ(z)dm(z) = π sinh(ω)2 cosh(ω)2Φ
(1,1)
λ (ω)

where Bh(0, ω) is the hyperbolic ball and:

Φ
(α,β)
λ (ω) = F (

1

2
(ρ + iλ),

1

2
(ρ − iλ);α + 1;− sinh(ω)2),

where α + β + 1 = ρ and F is the hypergeometric function

of first kind.

Proposition 2.1. If K = Bh(0, ω) and z = tanh(r)eiθ ∈
K, M(z, K) is given by the following formula:

M(z, Bh(0, ω))
def
= M(r, ω)

=
1

4π

∫

R

W̃(λ)Φλ(tanh(r))Ψλ(ω)λ tanh(
π

2
λ)dλ (4)

where

Ψλ(ω)
def
=

∫

Bh(0,ω)

e(iλ+1)<z′,1>dm(z′) (5)

We are now in a position to obtain an analytic form for
M(r, ω). It is given in the following theorem.

Theorem 2.1. For all (r, ω) ∈ R
+ × R

+:

M(r, ω) =
1

4
sinh(ω)2 cosh(ω)2

×

∫

R

W̃(λ)Φ
(0,0)
λ (r)Φ

(1,1)
λ (ω)λ tanh(

π

2
λ)dλ (6)
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2.3 Discussion

Let us point out that our result can be linked to the work
of Folias and Bressloff in [6]. They constructed a two-
dimensional pulse for a general, radially symmetric synap-
tic weight function. They obtain a similar formal represen-
tation of the integral of the connectivity function w over
the disk B(O, a) centered at the origin O and of radius a.
Using their notations,

M(a, r) =

∫ 2π

0

∫ a

0

w(|r − r′|)r′ dr′ dθ

= 2πa

∫ ∞

0

w̆(ρ)J0(rρ)J1(aρ) dρ

where Jν(x) is the Bessel function of the first kind and w̆

is the real Fourier transform of w. In our case, instead of

the Bessel function, we find Φ
(ν,ν)
λ (r) which is linked to the

hypergeometric function of the first kind, as explained in
lemma 2.2.

We next adapt the results proved by Folias and Bressloff
in [6] to the hyperbolic case.

3 A hyperbolic radially symmetric

stationary-pulse

We note V (r) a hyperbolic radially symmetric stationary-
pulse solution of (2) where V depends only upon the vari-
able r and is such that:

V (r) > κ, r ∈ [0, ω[,

V (ω) = κ,

V (r) < κ, r ∈]ω,∞[,

and
V (∞) = 0.

Substituting into (2) yields:

αV (r) = M(r, ω) + I(r) (7)

where M(r, ω) is defined in equation (6) and I(r) = Ie−
r
2

2σ2

is a Gaussian input.
The condition for the existence of a stationary pulse is
given by:

ακ = M(ω) + I(ω)
def
= N(ω) (8)

where

M(ω)
def
= M(ω, ω) =

1

4
sinh(ω)2 cosh(ω)2

×

∫

R

W̃(λ)Φ
(0,0)
λ (ω)Φ

(1,1)
λ (ω)λ tanh(

π

2
λ)dλ

The function N(ω) is plotted in figure 1 for a range of the
input amplitude I. The horizontal dashed lines indicate
different values of ακ, the points of intersection determine
the existence of stationary pulse solutions.
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Figure 1: Plot of N(ω) defined in (8) as a function of the
pulse width ω for several values of the input amplitude I
and for a fixed input width σ = 0.05. The connectivity
function has been set to W (r) = e−

r

b , with b = 0.2.

3.1 Monotony of the pulse

We now show that for a general monotonically decreas-
ing weight function W , the function M(r, ω) is necessarily
a monotonically decreasing function of r. This will ensure
that the hyperbolic radially symmetric stationary-pulse so-
lution (7) is also a monotonically decreasing function of r

in the case of a Gaussian input.

For r > ω: Differentiating M with respect to r yields
to ∂M

∂r
(r, ω) < 0 for r > ω, since W ′ < 0 (hypothesis on

the monotony of the weight function).

For r < ω: To see that it is also negative for r < ω, we
differentiate equation (6) with respect to r and we deduce
that:

sgn(
∂M

∂r
(r, ω)) = sgn(

∂M

∂r
(ω, r)).

Consequently, ∂M
∂r

(r, ω) < 0 for r < ω.

Hence, we have the following Lemma:

Lemma 3.1. V is monotonically decreasing in r for any

monotonically decreasing synaptic weight function W .

3.2 Linear stability analysis

We now analyse the evolution of small time-dependent
perturbations of the hyperbolic stationary-pulse solution
through linear stability analysis.
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3.2.1 Spectral analysis of the linearized operator

Equation (2) is linearized about the stationary solution
V (r) by introducing the time-depndent perturbation:

v(z, t) = V (r) + φ(z, t)

This leads to the linear equation:

∂tφ(z, t) = −αφ(z, t)+

∫

D

W (z, z′)H ′(V (r′)−κ)φ(z′, t)dm(z′).

We separate variables by setting φ(z, t) = φ(z)eβt to obtain
the equation:

(β + α)φ(z) =

∫

D

W (z, z′)H ′(V (r′) − κ)φ(z′)dm(z′)

Introducing the hyperbolic polar coordinates z =
tanh(r)eiθ and using the result:

H ′(V (r) − κ) = δ(V (r) − κ) =
δ(r − ω)

|V ′(ω)|

we obtain:

(β + α)φ(z) =
1

2

∫ ω

0

∫ 2π

0

W (tanh(r)eiθ, tanh(r′)eiθ′

)

×
δ(r′ − ω)

|V ′(ω)|
φ(tanh(r′)eiθ′

) sinh(2r′)dr′dθ′

=
sinh(2ω)

2|V ′(ω)|

∫ 2π

0

W (tanh(r)eiθ, tanh(ω)eiθ′

)

× φ(tanh(ω)eiθ′

)dθ′

With a slight abuse of notation we are led to study the
solutions of the integral equation:

(β + α)φ(r, θ) =
sinh(2ω)

2|V ′(ω)|

∫ 2π

0

W(r, ω; θ′ − θ)φ(ω, θ′)dθ′

(9)
where:

W(r, ω;ϕ)
def
= W ◦ tanh−1

(
Gϕ

r,ω

)

with:

Gϕ
r,ω

def
=

√
tanh(r)2 + tanh(ω)2 − 2 tanh(r) tanh(ω) cos(ϕ)

1 + tanh(r)2 tanh(ω)2 − 2 tanh(r) tanh(ω) cos(ϕ)

3.2.2 Essential spectrum

If the function φ satisfies the condition

∫ 2π

0

W(r, ω; θ′)φ(ω, θ − θ′)dθ′ = 0 ∀r,

then equation (9) reduces to:

β + α = 0

yielding the eigenvalue:

β = −α < 0

This part of the essential spectrum is negative and does
not cause instability.

3.2.3 Discrete spectrum

If we are not in the previous case we have to study the
solutions of the integral equation (9).
This equation shows that φ(r, θ) is completely determined
by its values φ(ω, θ) on the circle of equation r = ω. Hence,
we need only to consider r = ω, yielding the integral equa-
tion:

(β + α)φ(ω, θ) =
sinh(2ω)

2|V ′(ω)|

∫ 2π

0

W(ω, ω; θ′)φ(ω, θ − θ′)dθ′

The solutions of this equation are exponential functions
eγθ, where γ satisfies:

(β + α) =
sinh(2ω)

2|V ′(ω)|

∫ 2π

0

W(ω, ω; θ′)e−γθ′

dθ′

By the requirement that φ is 2π-periodic in θ, it follows
that γ = in, where n ∈ Z. Thus the integral operator with
kernel W has a discrete spectrum given by:

(βn + α) =
sinh(2ω)

2|V ′(ω)|

∫ 2π

0

W(ω, ω; θ′)e−inθ′

dθ′

Lemma 3.2. The following properties hold:

1. ∀n ∈ N, βn is real,

2. ∀n ∈ N, βn ≤ β0

If we set:

W0(ω)
def
=

sinh(2ω)

2

∫ 2π

0

W(ω, ω; θ′)dθ′

then we have the reduced stability condition:

W0(ω)

|V ′(ω)|
< α (10)

3.2.4 Rewriting of (10)

From (7) we have:

V ′(ω) =
1

α
(−Mr(ω) + I ′(ω))

where

Mr(ω)
def
= −

∂M

∂r
(ω, ω)

We have previously established that Mr(ω) > 0 and I ′(ω)
is negative by definition. Hence, letting D(ω) = |I ′(ω)|, we
have

|V ′(ω)| =
1

α
(Mr(ω) + D(ω)).

By substitution we obtain another form of the reduced sta-
bility condition:

D(ω) > W0(ω) −Mr(ω) (11)

We also have:

M′(ω) =
d

dω
M(ω, ω) =

∂M

∂r
(ω, ω) +

∂M

∂ω
(ω, ω)

= W0(ω) −Mr(ω),
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and

N ′(ω) = M′(ω) + I ′(ω) = W0(ω) −Mr(ω) −D(ω),

showing that the stability condition (11) is satisfied when
N ′(ω) < 0 and is not satisfied when N ′(ω) > 0.

4 Numerical simulations

The aim of this section is to numerically solve (2) for dif-
ferent values of the parameters. This implies developing a
numerical scheme that approaches the solution of our equa-
tion, and proving that this scheme effectively converges to
the solution.
Since equation (2) is defined on D, computing the solu-
tions on the whole hyperbolic disk has same the complexity
as computing the solutions of usual Euclidean neural field
equations defined on R

2.

4.1 Numerical schemes

Let us consider the modified equation of (2):





∂tV (z, t) = −αV (z, t) +
R

B(0,a)
W (z, z′)

×H(V (z′, t) − κ)dm(z′) + I(z)
V (z, 0) = V0(z)

(12)

We express z in (Euclidean) polar coordinates such that
z = reiθ, V (z, t) = V (r, θ, t) and W (z, z′) = W (r, θ, r′, θ′).
The integral in equation (12) is then:

∫

B(0,a)

W (z, z′)S(V (z′, t))dm(z′) =

∫ a

0

∫ 2π

0

W (r, θ, r′, θ′)

× H(V (r′, θ′, t) − κ)
r′dr′dθ′

(1 − r′2)2

We define R to be the rectangle R
def
= [0, a] × [0, 2π].

We discretize R in order to turn (12) into a finite number
of equations. For this purpose we introduce h1 = a

N
, N ∈

N
∗ = N\{0} and h2 = 2π

M
, M ∈ N

∗,

∀i ∈ J1, N + 1K ri = (i − 1)h1,

∀j ∈ J1, M + 1K θj = (j − 1)h2,

and obtain the (N + 1)(M + 1) equations:

dV

dt
(ri, θj , t) = −αV (ri, θj , t) +

∫

R

W (ri, θj , r
′, θ′)

× H(V (r′, θ′, t) − κ)
r′dr′dθ′

(1 − r′2)2
+ I(ri, θj)

which define the discretization of (12):

{
d Ṽ
d t

(t) = −αṼ (t) + W · H(Ṽ − κ)(t) + Ĩ t ∈ J

Ṽ (0) = Ṽ0

(13)

where Ṽ (t) ∈ MN+1,M+1(R) 1, Ṽ (t)i,j = V (ri, θj , t). Sim-

ilar definitions apply to Ĩ and Ṽ0. Moreover:

W · H(Ṽ − κ)(t)i,j =

∫

R

W (ri, θj , r
′, θ′)

× H(V (r′, θ′, t) − κ)
r′dr′dθ′

(1 − r′2)2

It remains to discretize the integral term. For this as in
[5], we use the rectangular rule for the quadrature so that
for all (r, θ) ∈ R we have:

∫ a

0

∫ 2π

0

W (r, θ, r′, θ′)H(V (r′, θ′, t) − κ)
r′dr′dθ′

(1 − r′2)2

∼= h1h2

N+1∑

k=1

M+1∑

l=1

W (r, θ, rk, θl)H(V (rk, θl, t)−κ)
rk

(1 − r2
k)2

We end up with the following numerical scheme, where
Vi,j(t) (resp. Ii,j) is an approximation of Ṽi,j(t) (resp.

Ĩi,j), ∀(i, j) ∈ J1, N + 1K × J1, M + 1K:

dVi,j

dt
(t) = −αVi,j(t)+h1h2

N+1∑

k=1

M+1∑

l=1

W̃
i,j
k,l H(Vk,l−κ)(t)+Ii,j

with W̃
i,j
k,l

def
= W (ri, θj , rk, θl)

rk

(1−r2

k
)2

.

4.2 Numerical simulation

We give a numerical solution of (2) in the case where the
connectivity function is an exponential function, W (x) =

e−
|x|
b , with b a positive parameter. Only excitation is

present in this case.We set α = 1, κ = 0.04, ω = 0.18.
We fix the input to be of the form:

I(z) = Ie
−

d2(z, 0)2

σ2

with I = 0.04 and σ = 0.05. Then the condition of
existence of a stationary pulse (8) is satisfied, see fig-
ure 1. We plot a bump solution according to (8) in figure 2.

5 Conclusion

We have presented a study of spatially localised bumps in
the context of the structure tensor model in the high-gain
limit of the sigmoid function. This study was based on non-
Euclidean functional analysis and Helgason Fourier trans-
form allowed us to write explicit formula for our bumps.
However, it is true that networks with Heaviside nonlin-
earities are not very realistic from the neurobiological per-
spective and lead to difficult mathematical considerations.
But, taking the high-gain limit is instructive since it allows
the explicit construction of stationary solutions which is

1Mn,p(R) is the space of the matrices of size n × p with real
coefficients.
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Figure 2: Plot of a bump solution of equation (7) for the
values α = 1, κ = 0.04, ω = 0.18 and for b = 0.2 for the
width of the connectivity, see text.

impossible with sigmoidal nonlinearities. We also devel-
opped a linear stability analysis adapted from [6] of what
we called hyperbolic radially symmetric stationary-pulse.
Finally, we illustrated our theoretical results with nu-
merical simulations based on rigorously defined numerical
schemes.
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