
HAL Id: hal-00553431
https://hal.archives-ouvertes.fr/hal-00553431

Submitted on 16 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-cost hardware implementations for discrete-time
spiking neural networks

Horacio Rostro-Gonzalez, Jose Hugo Barron-Zambrano, Cesar Torres-Huitzil,
Bernard Girau

To cite this version:
Horacio Rostro-Gonzalez, Jose Hugo Barron-Zambrano, Cesar Torres-Huitzil, Bernard Girau. Low-
cost hardware implementations for discrete-time spiking neural networks. Cinquième conférence
plénière française de Neurosciences Computationnelles, ”Neurocomp’10”, Aug 2010, Lyon, France.
�hal-00553431�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50024788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00553431
https://hal.archives-ouvertes.fr

Low-cost hardware implementations for discrete-time

spiking neural networks

Horacio Rostro-Gonzalez1, Jose H. Barron-Zambrano2, Cesar Torres-Huitzil2 and Bernard Girau3

1NeuroMathComp project team (INRIA, ENS Paris, UNSA LJAD), Sophia Antipolis, France
2Cinvestav Tamaulipas, Information Technology Laboratory, Victoria, Mexico

3LORIA/University Nancy 1, Cortex Group, Campus Scientifique, Vandoeuvre-les-Nancy, France

E-mail: hrostro@sophia.inria.fr · jhbarronz@tamps.cinvestav.mx · ctorres@tamps.cinvestav.mx · Bernard.Girau@loria.fr

1 ABSTRACT

In this paper, both GPU (Graphing Processing Unit)
based and FPGA (Field Programmable Gate Array)
based hardware implementations for a discrete-time
spiking neuron model are presented. This generalized
model is highly adapted for large scale neural network
implementations, since its dynamics are entirely repre-
sented by a spike train (binary code). This means that
at microscopic scale the membrane potentials have a
one-to-one correspondence with the spike train, in the
asymptotic dynamics. This model also permit us to
reproduce complex spiking dynamics such as those ob-
tained with general Integrate-and-Fire (gIF) models.
The FPGA design has been coded in Handel-C and
VHDL and has been based on a fixed-point reconfig-
urable architecture, while the GPU spiking neuron ker-
nel has been coded using C++ and CUDA.

Numerical verifications are provided.

KEYWORDS

Spiking neuron models · FPGA · GPU

2 Introduction

The aims of this work is to present two low-cost alter-
natives in the field of neural networks hardware imple-
mentations. Hardware technologies have some capabil-
ities to reproduce realistic neuron models (or biologi-
cally plausible neuron models, focusing in spiking neu-
ron models [3]) and in other cases to reproduce large
scale neural networks [13, 6]. In this direction analog
hardware implementations [15, 12, 14] have demon-
strated to be a powerful tool to reproduce complex
models such as the Hodking-Huxley model [16]. This
kind of implementations also offer us real time process-
ing (contrary to digital implementations, which nor-
mally run much faster than in the real word), it because
in the design process the electronic components are
chosen with the adequate values. However analog im-
plementations induce certain problems such as, design
time, development costs and non re-programability ,
it last crucial, since models evolve constantly in the
scientific world. On the other hand digital implemen-
tations based on a FPGA have limited power to repro-
duce realistic models, because real values can not be

directly handled by a FPGA due to its internal struc-
ture, which is based in logic blocks. However architec-
tures based on FPGA present important advantages,
such as a faster time-to-market, low non-recurring en-
gineering costs, design time, and the most important
reprogrammability, which permit us to redefine our ar-
chitecture when the model has evolved. In [9, 10] au-
thors show that FPGA is widely used in large scale
neural implementations, though with simplified neuron
models. Here using generalized discrete-time spiking
neuron models allow us to reproduce complex dynam-
ics even on such restricted hardware.

In recent years GPUs [5] have been frequently used
to solve complex mathematical problems. GPU use an
heterogeneous programming scheme, which allows us
to use different programming language in order to sim-
ulate the related mathematical model. This means that
a GPU programming language can easily interact with
other programming languages permitting us to have a
programming scheme more flexible and optimal. The
programmable GPU has evolved into a highly parallel,
multithreaded, multi-core processor with tremendous
computational power and very high memory band-
width far beyond the graphical applications they have
been designed for. More specifically, the GPU is es-
pecially well-suited to address problems that can be
expressed as data-parallel computations, the same pro-
gram being executed on many data elements in paral-
lel. In this direction, Spiking Neural Networks could
take profit of this powerful technology, since a Spiking
Neuron Model could be coded as a GPU kernel and
reproduced several times to build a neural network,
therefore executed in parallel. In order to implement
kernels into a GPU, NVIDIA has introduced a general-
purpose parallel computing architecture, called CUDA,
which is a new parallel programming language.

Related work

Some previous works on hardware implementations
for spiking neurons has been proposed, a well-crafted
GPU-based implementation for large scale spiking
neural networks is presented in [11]. In this work the
authors combines powerful programming languages
to simulate the well-known Izikevich’s simple spiking
neuron model faster than a CPU, here the number of

neurons and synaptic connections is not a real problem
since the simulation is running on a PC. Another
interesting work is presented in [8], which offer us
a survey on artificial neural networks in hardware.
Existing SNN simulators such as NEST, PCSIM have
demonstrated a parallel version that runs on simple
clusters accelerating the computation time, others like
SpiNNaker [4] deploys an application specific parallel
processor interconnected by a network-on-chip, result-
ing in an approach that combines the performance an
ease of programmability for realizing SNNs. Our work
offers a new spiking neuron model, which is suitable
to be implemented in large-scale neural networks
on dedicated hardware. Another important point
compared with previous published works is that we
offer a solution for both technology GPU and FPGA.

The rest of the paper is organized as follows. Sec-
tion 3 introduce the neuron models: the discrete-
time spiking neuron model and the analog-spiking neu-
ron model. In section 4, optimal spiking neural net-
works hardware implementations (FPGA-based recon-
figurable architecture and GPU-based kernel) are pre-
sented, simulation parameters are also defined here. In
section 5 experimental results are presented. Finally,
section 6 presents the concluding remarks and some
perspectives.

3 The discrete-time spiking neu-

ron model

The following equations describe a discrete-time spik-
ing neuron model (see [1] for a rigorous mathemati-
cal study of this model), where synaptic transmission
has delays. This model has been derived from the gIF
model, and forms an efficient basis of spiking neural
networks [7]. The neural network has N neurons with
a fully-connected topology (it could be change depend-
ing on the application). The dynamics of the mem-
brane potential V and the firing state Z are given by
the following discrete-time equations respectively:

Vi[k]=γVi[k − 1](1 − Zi[k − 1]) +

+

N
∑

j=1

D
∑

d=1

WijdZj [k − d] + Ii[k] (1)

Zi[k] =

{

1 if Vi[k] ≥ θ

0 otherwise

The equation (1) give us the behavior of the mem-
brane potential for each neuron of index i in the net-
work at time k. If the membrane potential reaches a
firing threshold θ = 1 the neuron i fires a spike, thus
Zi[k] = 1, otherwise Zi[k] = 0. The constant γ ∈ [0, 1]
is the leak factor, D is the delay and Ii[k] is the ex-
ternal current for neuron i at time k. The synaptic
weights Wijd are mapped into a postsynaptic response
profile at different delays, d ∈ D (Figure 1).

��
����

�

������

Figure 1: An alpha profile α(t) = H(t) t
τ
e−

t
τ , which

represents the synaptic weights mapped at different de-
lays.

This corresponds to “current” synapses but it has
been shown in [2] that it efficiently approximates
“conductance” based synapses.

A step further, the following equations can describe
a new formalism, which is an extension of Equation
(1) and permits us to consider more realistic spiking
neuron models, since the neuron is seen as both an
analog unit and/or a spiking unit. In the former case,
the non-linearity is defined by an analog function i.e.
sigmoid profile. This allows us for instance to consider
2D neuron models. The equation writes:

Vi[k]=γi[k]Vi[k − 1]ρ(Vi[k − 1]) +

+

N
∑

j=1

D
∑

d=1

Wijd σ (Vj [k − d]) + Ii[k] (2)

where σ(Vi[k]) ∈ [0, 1] defines the non-linear trans-
form (firing rate, spiking, etc.) and ρ(Vi[k]) ∈ 0, 1 is
the reset mechanism. Constants have been previously
defined.

In the next section we present a description of the
different hardware implementations for the discrete-
time spiking neural model of equation (1). While the
extension to equation (2) is straight-forward, only look-
up tables have to be added.

4 Implementations

We propose three different hardware implementations
for the discrete-time spiking neuron model presented
in section 3, where two of them use Hardware Descrip-
tion Languages (HDLs), Handel-C and VHDL to map
the model onto a FPGA. A fixed-point arithmetic has
been used to design the reconfigurable architecture for
the proposed model. In the third case, we propose a
GPU-based implementation, where the data handling
is easier than in HDL ones, since GPU Kernel can use
all data types.

Parameters used in the implementations

The following neural network parameters have been
defined to test the hardware implementations.

For these implementations we use a leak rate
γ = 0.98, a constant external current I = 0.2, a
maximum inter-neural delay D = 2, size Net-
work N = 100 with a fully-connected topology
(it is 10000 synapses, each modeled with D
parameters), where 80% of total connections
are excitatory and the rest 20% are inhibitory.

Synaptic weights Wijd, are randomly chosen
from a truncated normal distribution, which is
defined as follow:

Suppose X ∼ N (µ, σ2) has a normal distri-
bution and lies within the interval X ∈ (a, b),
−∞ ≤ a < b ≤ ∞. Then X conditional
a < X < b has a truncation normal distribution
with probability density function

f(x;µ, σ, a, b) =
1

σ
φ(x−µ

σ
)

Φ(b−µ
σ

)−Φ(a−µ
σ

)
,

where a = −1, b = 1, µ = 0, σ2 = 0.2, φ(·) is
the probability function of the standard normal
distribution and Φ(·) its cumulative distribution
function.

Fixed-point arithmetic

Now that networks parameters have been defined,
we have to manage the fact that real values can not be
mapped directly onto a FPGA, since it is composed
of logic blocks, which use binary logic to perform
complex combinational functions. In order to create
a bridge between software and hardware, fixed-point
and floating-point arithmetic are proposed. In this
work we focus on a 16 bits fixed-point arithmetic, since
floating point demands more computational resources.

The defined parameters are described by a 16 bits
representation, where 4 bits are used by the integer
part and the 12 bits remaining are considered for the
fractional part. If we want a bigger neural network we
can adjust the architecture to 6 bits for the integer part
and 10 for the fractional one, losing some precision in
the results.

In terms of implementations, the way to pass the
networks parameters to a 16 bits fixed-point represen-
tation relies on the next equation:

Fixed-point data = (int)(real value ∗ 2f)

where f represents the number of fractional bits.

4.1 A GPU based implementation for a

Spiking Neural Network

In this section we present a GPU-based implemen-
tation for a spiking neural network, where GPU
programming is based in heterogeneous programming,
mixing different programming languages, C/C++ and

CUDA. Sequential code is computed on the CPU via
C/C++, and parallel code is computed on the GPU
via CUDA. In order to differentiate between the code
that will be executed on the CPU from there that will
be executed on a GPU, we refers them as host and
device respectively.

GPU implementation

The GPU based implementation can be described by
the next steps:

1. Initialization consists in a sequential process
where γ, I, N , D and W are defined, we also re-
serve the space memory to allocate V and Z in the
host.

2. Allocating kernel memory here the device re-
serves memory space for V , Z and W . The mem-
ory space for V and Z is smaller than in the host,
since we only need to know the value at the last
time k − 1 for V , as for Z, since only the last
D spiking dynamics from the actual time k are
necessary to compute the new membrane poten-
tial V [k]. In the case of the weights W , the space
memory is the same than in the host, since we
have a fully-connected network and all the synap-
tic connections must be computed.

3. Invoking the GPU kernel, at the moment to in-
voke our GPU kernel, which compute the discrete-
time spiking neural network, we need to define
two parameters, which variate depending on the
graphic card that will be used to compute the
implemented model. The parameters are: the
number of blocks and the number of threads per
block. In this work the parameters have been cho-
sen from the size of the network (100 spiking neu-
rons) and the PC graphic card (NVIDIA Quadro
NVS 160 M). The architecture of this graphic card
is designed to support 256 threads per block, this
means that we need only 1 block to compute all
the proposed spiking neural network.

4. The GPU kernel has been designed to run un-
der a parallel scheme. In this sense the kernel
has been divided in three parts that permit us to
have optimal performance. In the main kernel we
define the equation (1), where the connectivity is
estimated by another kernel, which manage the
behavior of the synaptic connections between the
neuron of index i with the other neurons in the
network at the last D times. Finally in the third
kernel, we compare the membrane potential of all
neurons with the threshold θ = 1 determining the
firing state of the network (spike train).

5. Loading results in the host , finally the spike
train Z and the membrane potentials V are read
from the kernel and saved in the host in order to
be analyzed or displayed.

FPGA hardware implementations are described in
the next section.

4.2 A FPGA implementation for a

discrete-time spiking neural net-

work using Hadel-C

Handel-C is a high level programming language, which
permits to pass rapidly from a software to a hardware
implementation, especially if it has been coded in C
or C++, since both languages are similar. As for
VHDL programming we need to define the number of
bits used to represent the data. Handel-C proposes
also a set of libraries such as fixed-point and floating
point libraries that can be used to perform complex
combinational functions but that in some cases can
not be synthesizables onto the FPGA. The main
problem in Handel-C is that we have no control on
its internal design process, since Handel-C is a high
level programming language. However parallelism
and synchronization are possibles in Handel-C. In
terms of simulation, before to design a complex VHDL
architecture, it is interesting to test the models with
this software.

Handel-C implementation

The Handel-C implementations can be described in
three simple steps:

1. Handel-C is used here to perform a HDL code
to design a reconfigurable architecture for a spik-
ing neural network. Defined optimized functions
are not used in this implementation, since they
present problems at the synthesis process. The
architecture use a 16 bits fixed-point arithmetic,
defining 4 bits for integer part and the 12 bits
resting for the fractional one. Bits repartition has
been though to guaranty high precision and to
avoid a wrong spike estimation.

2. The next step is to simulate the implemented
code with the fixed parameters. If the simulation
throws some errors we need to correct them, oth-
erwise we can go to the synthesis of the network
into the FPGA.

3. Finally the spiking neural network is synthesized
onto a Xilinx Spartan-3 FPGA.

4.3 A FPGA implementation for a

discrete-time spiking neural net-

work network using VHDL

A reconfigurable architecture for a FPGA based
spiking network implementation is presented, with
three main modules: the input module, the spiking
neuron module and the output module. An auxiliary
module is also used for general control in the network.

Input Module

The input data model consists of two internal blocks:
a Gaussian Random Number Generator and a RAM
memory. In the first block synaptic connection weights

are estimated from a truncated normal distribution
between −1 and 1 and then represented in a 16 bits
fixed point arithmetic. Other way to generate the
synaptic connection weights is via C/C++, where are
directly mapped into a 16 bits fixed-point arithmetic
and stored in a file, which further are loaded in
the network. Finally weights, constants (γ and I)
and initial conditions (Z[D]) are stored into a RAM
memory.

Neuron Module

The neuron model architectures for equation 1 has
been designed using combinational logic and made use
of 16 bits fixed-point arithmetic to represent variables
and constants, yielding a maximum performance.

Figure 2: Block diagram of individual discrete-time
spiking neuron

In the figure 2 we present the internal structure of
a discrete-time spiking neuron model described by
equation (1). Observing the diagram we can identify
two multiplexers (Mux 1 and Mux 2) each one of
them with only two inputs and both controlled by the
state in Z, one adder (

∑

) and one voltage comparator
(≥ θ); Mux 1 selects between the state “zero” (reset)
if Zi[k − 1] = 1 and γ ∗ Vi[k − 1] if Zi[k − 1] = 0.
Mux 2 selects between the state “zero” (there are
not effects of W on the neuron i at time k − d) and
the contribution of all synapses ij at the time k − d.
Here it is important to make a remark: all synaptic
weights are charged at the same time (combinational
process). The next step is to sum all, Mux1 output,
Mux2 ouput and external current, the result is stored
in Vi[k] and compared with a firing threshold (θ = 1).
Vi[k] is not a vector but only a variable which stores
the last value of the membrane potential, once Vi[k]
has been compared with the threshold it is sent to
the input by a flip-flop element and a binary value is
assigned to Zi[k], 1 if the threshold has been reached,
otherwise 0.

Further in order to implement the model described
by the equation (2) we use a look-up-table to char-
acterize the sigmoid function σ(Vj [k − d]) and to
minimize the computational costs.

Output Module

The output module has two tasks. On one hand,
it saves in a file the firing state of each neuron at

time k. On the other hand, it sends at the same time
the N × D firing states from the actual time to each
neuron (which is necessary since we are considering
delays). The general control idxCtrl manages the
control of this module and of the Neuron Module.

idxCtrl Module

The idxCtrl module is a kind of master clock, it is ac-
tivated by a signal sent from the input module since all
the synaptic weights previously stored into the RAM
block are sent to each spiking neuron. Once the signal
is received, it sends the address where the output of
each neuron will be stored into the vector Z.

5 Results

Our main contribution is the implementation of a re-
configurable architecture (Figure 3) for a neural net-
work with discrete-time spiking neurons. The internal
components have a parallel design accelerating the neu-
ral processing. This scheme permits us to emulate large
scale spiking neural networks, since the spiking dynam-
ics is described by a spike train (binary code). In addi-
tion the precision analysis applied to the discrete-time
spiking neuron model guaranty us a good approxima-
tion in the reproduction of spiking dynamics like gIF
models. This is crucial since a wrong spike estimation
could change all the neural network dynamics.

In this work we have a fully-connected network
topology, where 80% of connections are excitatory and
20% inhibitory. We have chosen this topology in or-
der to evaluate the limitation of this implementation,
since the number of connections increase exponentially
when the network size is increased. Further depending
on the application different topologies can be applied,
leading to a smaller area mapping.

Spiking
Neuron

Input module

0 0 01 0 1 1 1 1

0

0
0

1

0
1

1
1

1

0
0

1

1
1
1

0
0
1

0

0
0

1

0
1

1
1

1

0
0

1

1
1
1

0
0
1

Output
(Spike dynamics)Network

Figure 3: Reconfigurable architecture overview

Numerical Results

In this section we present some numerical results. In
table 1 we show the processing time that takes each
implementation to simulate the defined spiking neural
network. Figure 4 shows a raster plot (spiking dynam-
ics), where the same raster has been calculated from
software and hardware implementations. Obviously if
we make a zoom on a specific neuron, we find that the
membrane potential in both hardware and software im-
plementations are not the same, since a 16 bits fixed-

point arithmetic has been employed in the design of
the hardware architecture. In this sense figure 5 shows
the membrane potential for neuron 10, where the blue
line corresponds to the membrane potential estimated
by software (C/C++), but also by hardware based on
GPU. The red line corresponds to the membrane po-
tential estimated with the implementations based on
FPGA.

C/C++ C++ and CUDA Handel-C VHDL

0.231 s 69 ms 50 ms 50 ms

Table 1: : Processing time for software and hardware
implementations.

Figure 4: A raster plot (spike train). The same raster
plot has been generated by software and hardware im-
plementations.

0 10 20 30 40 50 60 70 80 90 100
!1.5

!1

!0.5

0

0.5

1

1.5

2

2.5

Time (ms)

M
e
m

b
ra

n
e
 P

o
te

n
ti
a
l

Software (blue) vs Hardware (red) membrane potential estimation

Figure 5: The membrane potential for a specific neu-
ron i.e. neuron 10. The blue line corresponds to the
membrane potential estimated on a PC and the red
line corresponds to the membrane potential estimated
on a FPGA.

6 Conclusions and Perspectives

In summary this paper proposes two spiking neuron
models, which are well-suitable for large scale hardware
implementations, these models have been implemented
in 4 different languages, 2 of them in HDL (Handel-C
andVHDL), which have been synthesized in a Xilinx

Spartan 3 FPGA. Other hardware implementation
are based on GPU, which has been executed in a
PC with a NVIDIA Quadro NVS 160 M card, plus
another implementation in C/C++ not described
here but used to have a reference point in a software
programming language (C/C++) in order to verify
the results obtained in hardware implementations.

The number of spiking neurons that we can mapping
into the FPGA may seen relatively small because
this was just a feasibility study. Actually there exists
several FPGA with different capabilities, thus easily
yielding machine computations. The key point is
propose spiking neuron models that can be used in
large scale neural network implementations, since are
described for simple functions with parallel calcu-
lations and a reconfigurable architecture able to be
mapped onto any FPGA. In the case of the GPU
implementation the model has characteristics of fully
parallel computing since the state of the network is
updated at the same time for all neurons.

The hardware implementations proposed in this
work exploit the obvious parallel nature of spiking neu-
ral networks and, can easily be extended to more com-
plex models such as those with Synaptic Timing De-
pendent Plasticity (STDP), which is the next step of
the present work.

Acknowledgements

Partially supported by the CorTex-Mex project and
the SEP and the CONACYT of Mexico.

Thanks to Thierry Vieville, Bruno Cessac and J.C.
Vasquez for scientific discussions.

References

[1] B. Cessac. A discrete time neural network model
with spiking neurons. rigorous results on the spon-
taneous dynamics. J. Math. Biol., 56(3):311–345,
2008.

[2] B. Cessac and T. Vieville. On dynamics of
integrate-and-fire neural networks with conduc-
tance based synapses. Front. Comput. Neurosci.,
2, 2008.

[3] Wulfram Gerstner and Werner Kistler, editors.
Spiking Neuron Models. Morgan Kaufmann, 2010.

[4] M.M. Khan, D.R. Lester, L.A. Plana, A. Rast,
X. Jin, E. Painkras, and S.B. Furber. Spin-
naker: Mapping neural networks onto a massively-
parallel chip multiprocessor. In IEEE interna-
tional joint conference on neural networks, pages
2849–2856, 2008.

[5] David B. Kirk and Wen mei W. Hwu, editors.
Programming Massivelly Parallel Processors: A
hands-on Approach. MIT Press, 2003.

[6] N. Lewis and S. Renaud. Spiking neural networks
in silico: from single neurons to large scale net-
works. In Fourth International Multi-Conference
on Systems, Signals and Devices, 2007.

[7] Wolfgang Maass and Christopher M. Bishop, edi-
tors. Pulsed Neural Networks. MIT Press, 2003.

[8] Janardan Misra and Indranil Saha. Artificial neu-
ral networks in hardware: A survey of two decades
of progress. Neurocomputing, 2010.

[9] M.J.Pearson, C.Melhuish, M.Nibouche A.G.Pipe,
I.Gilhesphy, and B.Mitchinson. Design and fpga
implementation of a embedded real-time biolog-
ically plausible spiking neural network proces-
sor. In Proc. Int. Field Programmable Logic Appl.
(FPL), 2005.

[10] M.J.Pearson, A.G. Pipe, B. Mitchinson, K. Gur-
ney, C.Melhuish, I.Gilhesphy, and M.Nibouche.
Implementing spiking neural networks for real-
time signal-processing and control applications: A
model-validated fpga approach. IEEE Transac-
tions on Neural Networks, 18:1472–1487, 2007.

[11] J. Moorkanikara Nageswaran, J. L. Krichmar
N. Dutt, A. Nicolau, and A. V. Veindenbaum. A
configurable simulation environment for the effi-
cient simulation of large-scale spiking neural net-
works on graphics processors. Neural Networks,
22:791–800, 2009.

[12] S. Renaud, J. Tomas, Y. Bornat, A. Daouzli, and
S. Säıghi. Neuromimetic ics with analog cores:
an alternative for simulating spiking neural net-
works. In Proceedings of the IEEE 2007 Inter-
nationaI Symposium on Circuits And Systems IS-
CAS, 2007.

[13] Kenneth L. Rice, Mohammad A. Bhuiyan,
Christopher N. Vutsinas Tarek M. Taha, and
Melissa C. Smith. Fpga implementation of izike-
vich spiking neural networks for character recog-
nition. In International Conference on Reconfig-
urable Computing and FPGAs, 2009.

[14] J. Schemmel, J. Fieres, and K. Meier. Realiz-
ing biological spiking network models in a config-
urable wafer-scale hardware system. In IEEE In-
ternational Joint Conference on Neural Networks
IJCNN, 2008.

[15] J. Tomas, Y. Bornat, S. Saighi, T. Levi, and
S. Renaud. Design of a modular and mixed neu-
romimetic asic. In Proceedings of the 13th IEEE
International Conference on Electronics, Circuits
and Systems ICECS, 2006.

[16] Q. Zou, Y. Bornat, J. Tomas, S. Renaud, and
A. Destexhe. Real-time simulations of networks
of hodgkin-huxley neurons using analog circuits.
Neurocomputing, 69:1137–1140, 2006.

	ABSTRACT
	Introduction
	The discrete-time spiking neuron model
	Implementations
	A GPU based implementation for a Spiking Neural Network
	A FPGA implementation for a discrete-time spiking neural network using Hadel-C
	A FPGA implementation for a discrete-time spiking neural network network using VHDL

	Results
	Conclusions and Perspectives

