
HAL Id: hal-00554322
https://hal.archives-ouvertes.fr/hal-00554322

Submitted on 12 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Module Language for Typing SIGNAL Programs by
Contracts

Yann Glouche, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin

To cite this version:
Yann Glouche, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin. A Module Language for Typing
SIGNAL Programs by Contracts. Sandeep K. Shukla and Jean-Pierre Talpin. Synthesis of Embedded
Software, Springer, pp.147-171, 2010, �10.1007/978-1-4419-6400-7_5�. �hal-00554322�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50024011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00554322
https://hal.archives-ouvertes.fr

Chapter 1

A Module Language for Typing SIGNAL

programs by Contracts

Yann Glouche⋆, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

1.1 Introduction

Methodological guidelines for the design of real-time embedded systems advise the

validation of specifications as early as possible. Moreover, in a refinement-based de-

velopment methodology of large embedded systems, an iterative validation of each

refinement or modification made to the initial specification, until the implementation

of the system is finalized, is highly desirable. Additionally, cooperative component-

based development requires to use and to assemble components, which have been

developed by different suppliers, in a safe and consistent way [11, 17]. These com-

ponents have to be provided with their conditions of use and guarantees that they

have been validated when these conditions are satisfied. These conditions of use

and guarantees represent a notion of contract. Contracts are now often required as

a useful mechanism for validation in robust software design. Design by Contract,

as advocated in [26], is being made available for usual languages like C++ or Java.

Assertion-based contracts express program invariants, pre- and post-conditions, as

Boolean type expressions that have to be true for the contract being validated. We

adopt here a different paradigm of contract to define a component-based validation

technique in the context of a synchronous modeling framework. In our theoretical

model, a component is represented by an abstract view of its behaviors. It has a fi-

nite set of input/output variables to cooperate with its environment. Behaviors are

viewed as multi-set traces on the variables of the component. The abstract model of

a component is thus a process, defined as a set of such behaviors.

A contract is a pair (assumptions, guarantees). Assumptions describe properties

expected by a component to be satisfied by the context (the environment) in which

INRIA, centre INRIA de Rennes - Bretagne-Atlantique, Campus de Beaulieu, Rennes,

France, e-mail: Yann.Glouche@inria.fr, Thierry.Gautier@inria.fr, Paul.LeGuernic@inria.fr, Jean-

Pierre.Talpin@inria.fr

⋆ Partially funded by the EADS Foundation.

1

2 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

this component is used; on the opposite, guarantees describe properties that are sat-

isfied by the component itself when the context satisfies the assumptions. Such a

contract may be documentary; however, when a suitable formal model exists, con-

tracts can be supplied to some formal verification tool. We want to provide designers

with such a formal model allowing “simple” but powerful and efficient computation

on contracts. Thus, we define a novel algebraic framework to enable formal reason-

ing on contracts.

The assumptions and guarantees of a component are defined as process-filters:

assumptions filter the processes (sets of behaviors) a component may accept and

guarantees filter the processes a component provides. A process-filter is the set of

processes, whatever their input and output variables are, that are compatible with

some property (or constraint) expressed on the variables of the component. Fore-

most, we define a Boolean algebra to manipulate process-filters. This yields an al-

gebraically rich structure that allows us to reason about contracts (to abstract, refine,

combine and normalize them). This algebraic model is based on a minimalist model

of execution traces, allowing one to adapt it easily to a particular design framework.

A main characteristic of this model is that it allows one to precisely handle the

variables of components and their possible behaviors. This is a key point. Indeed,

assumptions and guarantees are expressed, as usual, by properties constraining or

relating the behaviors of some variables. What has to be considered very carefully

is thus the “compatibility” of such constraints with the possible behaviors of other

variables. This is the reason why we introduce partial order relations on processes

and on process-filters. Moreover, having a Boolean algebra on process-filters al-

lows one to formally, unambiguously and finitely express complementation within

the algebra. This is, in turn, a real advantage compared to related formalisms and

models.

We put this algebra to work for the definition of a general purpose module sys-

tem whose typing paradigm is based on the notion of contract. The type of a module

is a contract holding assumptions made on and guarantees offered by its behaviors.

It allows to associate a module with an interface which can be used in varieties

of scenarios such as checking the composability of modules or efficiently support-

ing modular compilation. The corresponding module language is generic in that

processes and contracts may be expressed in some external target language. In the

context of real-time, safety-critical applications, we consider here the synchronous

language SIGNAL to specify processes.

Organization

We start with a highlight on some key features of our module system by considering

the specification of a protocol for Loosely Time-Triggered Architectures, Section 2.

This example is used in this article to illustrate our approach. We give an outline

of our contract algebra, Section 3, and demonstrate its capabilities for logical and

compositional reasoning on the assumptions and guarantees of component-based

embedded systems. This algebra is used, Section 4, as a foundation for the defi-

1 A Module Language for Typing SIGNAL programs by Contracts 3

nition of a strongly-typed module system: contracts are used to type components

with behavioral properties. Section 5 demonstrates the use of our module system by

considering the introductory example and by illustrating its contract based specifi-

cation.

1.2 A case study

We illustrate our approach by considering a protocol that ensures a coherent system

of logical clocks on the top of Loosely Time-Triggered Architectures (LTTA). This

protocol has been presented in [7]. We define contracts to characterize properties of

this protocol.

1.2.1 Description of the protocol

In general, a distributed real-time control system has a time-triggered nature just

because the physical system for control is bound to physics. A LTTA features a

quasi-periodic and non-blocking bus access and independent read-write operations.

The LTTA is composed of three devices, a writer, a bus, and a reader (Figure 1.1).

Each device is activated by its own, approximately periodic, clock.

writer reader

❄ ❄

❄ ❄

· (xb, bb) ✲ ·bus

xw

tw

(xw, bw)

xr

tr

(xr, br)

tb

Fig. 1.1: The three devices of the LTTA.

At the nth clock tick (time tw(n)), the writer generates the value xw(n) and an

alternating flag bw(n) s.t.:

bw(n) =

{
false if n = 0
not bw(n − 1) otherwise

Both values are stored in its output buffer, denoted by yw. At any time t, the writer’s

output buffer yw contains the last value that was written into it:

4 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

yw(t) = (xw(n), bw(n)) , where n = sup{n′ | tw(n′) < t} (1.1)

At tb(n), the bus fetches yw to store in the input buffer of the reader, denoted by yb.

Thus, at any time t, the reader input buffer is defined by:

yb(t) = yw(tb(n)) , where n = sup{n′ | tb(n
′) < t} (1.2)

At tr(n), the reader loads the input buffer yb into the variables x(n) and b(n):

(x(n), b(n)) = yb(tr(n))

Then, the reader extracts x(n) iff b(n) has changed. This defines the sequence m of

ticks:

m(0) = 0 , m(n) = inf{k > m(n − 1) | b(k) 6= b(k − 1)}

xr(k) = x(m(k)) (1.3)

In any execution of the protocol, the sequences xw and xr must coincide, i.e., ∀n·
xr(n) = xw(n). In [7] it is proved that this is the case iff the following conditions

hold:

w ≥ b and
⌊w

b

⌋
≥

r

b
, (1.4)

where w, b and r are the respective periods of the clocks of the writer, the bus and

the reader (for x ∈ R, ⌊x⌋ denotes the largest integer less or equal to x). Condi-

tions (1.4) are abstracted by conditions on ordering between events. The first condi-

tion, w ≥ b, is abstracted by the predicate:

w ≥ b ↔ never two tw between two tb. (1.5)

The abstraction of the second condition, ⌊w/b⌋ ≥ r/b requires the following defini-

tion of the first instant (of the bus) τb(n) = min{tb(p) | tb(p) > tw(n)} where the

bus can fetch the nth writing. The second condition is then restated as the require-

ment (1.6) that no two successive τb can occur between two successive tr:

⌊w

b

⌋
≥

r

b
↔ never two τb between two successive tr. (1.6)

Under the specific conditions (1.5) and (1.6), the correctness of the protocol re-

duces to the assumption:

∀n ∈ N, ∃k ∈ N, s.t. τb(n) < tr(k) ≤ τb(n+1)

It guarantees that all written values are actually fetched by the bus (τb(n) always

exists, and τb(n+1) 6= τb(n) since there is at least one instant tr(k) which occurs

in between them), and all fetched values are actually read by the reader (τb(n) <
tr(k) ≤ τb(n+1)): see Figure 1.2.

1 A Module Language for Typing SIGNAL programs by Contracts 5

Fig. 1.2: Correctness of the protocol.

1.2.2 Introduction to the module language

Considering first the writer and the bus, the protocol will be correct only if w ≥ b,

so that the data flow emitted by the bus is equal to the data flow emitted by the writer

(∀n · xb(n) = xw(n)).
In the module language, a specification is designated by the keyword contract.

It defines a set of input and output variables (interface) subject to a contract. The

interface defines the way the component interacts with its environment through its

variables. In addition, it embeds properties that are modeled by a composition of

contracts. For instance, the specification of a bus controller could be defined by the

assumption w ≥ b and the guarantee ∀n · xb(n) = xw(n). An implementation of

the specification, designated by the keyword process, contains a compatible imple-

mentation of the above contract.

module type WriterBusType =

contract input real w, b;

boolean xw

output boolean xb;

assume w >= b

guarantee xb = xw

end;

module WriterBus : WriterBusType =

process input real w, b;

boolean xw

output boolean xb;

(|

...

|)

end;

The specification of the properties we consider for the whole LTTA consists of

two contracts. Each contract applies to a given component (bus or reader) of the

LTTA. It is made of a clock relation as assumption and an equality of flows as guar-

antee. Instead of specifying two separate contracts, we define them as two instances

of a generic one. To this end, we define an encapsulation mechanism to generically

represent a class of specifications or implementations sharing a common pattern of

behavior up to that of the parameters. In the example of the LTTA, for instance, we

have used a functor to parameterize it with respect to its clock relations.

6 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

module type LTTAProperty =

functor(real c1, c2)

contract input boolean xwb

output boolean xbr;

assume c1 >= c2

guarantee xbr = xwb

end;

module type LTTAClockConstraints =

contract input real w, b, r;

boolean cw

output boolean xr;

LTTAProperty(w, b)(xw, xb) and

LTTAProperty(floor(w/b), r/b)(xb, xr)

end;

The generic contract, called LTTAProperty, is parameterized with two clocks.

When the clock constraint associated with the context of the considered component

(bus or reader) of the LTTA is respected, the preservation of the flows is ensured

by this component. The contract of the LTTA is defined by the composition “and”

of two applications of the generic LTTAProperty contract. Each application de-

fines a property of the LTTA with its appropriate clock constraint. The composi-

tion defines the greatest lower-bound of both contracts. Each application of the

LTTAProperty functor produces a contract which is composed with the other

ones in order to produce the expected contract.

A module is hence viewed as a pair M : I consisting of an implementation M
that is typed by (or viewed as) a specification I of satisfiable contract. The semantics

of the specification I , written [[I]], is a set of processes (in the sense of section

1.3) whose traces satisfy the contract associated with I . The semantics [[M]] of the

implementation M is a process contained in [[I]].

1.3 An algebra of contracts for assume-guarantee reasoning

Section 1.3.1 introduces a suitably general algebra of processes. A contract (A,G)

is viewed as a pair of logical devices filtering processes: the assumption A filters

processes to select (accept or conversely reject) those that are asserted (accepted or

conversely rejected) by the guarantee G. Process-filters are defined in Section 1.3.2

and contracts in Section 1.3.3. The proofs of properties presented in this Section are

provided in [12]. Section 1.3.4 discusses some related approaches for contracts.

1.3.1 An algebra of processes

We start with the definition of a suitable algebra for behaviors and processes. We

deliberately choose an abstract definition of behavior as a function from a set of

variable names to a domain of typed values. These typed values may be themselves

functions of time to some domain of data values: it is the case, for instance, when

we consider the SIGNAL language, where a behavior describes the trace of a discrete

process.

1 A Module Language for Typing SIGNAL programs by Contracts 7

Definition 1 (Behavior). Let V be an infinite, countable set of variables, and D a

set of values; for Y a nonempty finite set of variables included in V , a Y-behavior is

a function b : Y → D .

The set of Y-behaviors is denoted by BY = Y →D ; B∅ = ∅ denotes the set of

behaviors (which is empty) on the empty set of variables. The notation c|X is used

for the restriction of a Y-behavior c on X, a (possibly empty) subset of Y.

In Figure 1.3, the x, y-behavior b1 is a function from the variables x, y to a func-

tion that denotes signals. Behavior b1 is a discrete sampling mapping a domain of

time represented by natural numbers to values.

Fig. 1.3: Example of behavior.

A process is defined as a set of behaviors on a given set of variables.

Definition 2 (Process). For X a finite set of variables, an X-process p is a nonempty

set of X-behaviors.

The unique ∅-process, on the empty set of variables, is denoted by Ω = {∅}. It

can be seen as the universal process; it has no effect when composed with other

processes. The empty process, which is defined by the empty set of behaviors, is

denoted by ℧ = ∅. It can be seen as the null process; when composed (intersected)

with other processes, it always results in the empty process.

The set of X-processes is denoted by PX = P(BX) \ {℧} and P⋆
X = PX ∪ {℧}.

The set of all processes is denoted by P = ∪(X ⊂V) PX and P⋆ = P ∪ {℧}. For an

X-process p, the domain X of its behaviors is denoted var(p), and var(℧) = V .

Complement, restriction and extension of a process have expected definitions:

Definition 3 (Complement, restriction and extension). For X a finite set of vari-

ables, the complement p̃ of a process p ∈ PX is defined by p̃ = (BX \ p). Also, ℧̃ =
BX. For X, Y, finite sets of variables such that X ⊆ Y ⊂V , q|X = {c|X / c ∈ q} is

the restriction q|X ∈ PX of q ∈ PY and p|Y = {c ∈ BY / c|X ∈ p} is the extension

p|Y ∈ PY of p ∈ PX. Also, ℧|X = ℧ and ℧|V = ℧.

Note that the extension of p in PX to Y ⊂V is the process on Y that has the same

constraints as p.

The set P⋆
X, equipped with union, intersection and complement, is a Boolean

algebra with supremum P⋆
X and infimum ℧.

The extension operator induces a partial order � on processes, such that p�q if

q is an extension of p to the variables of q; the relation �, used to define filters, is

studied below.

8 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

Definition 4 (Process extension relation). The process extension relation � is de-

fined by: (∀ p ∈ P) (∀ q ∈ P) (p�q) = ((var(p) ⊆ var(q)) ∧ (p|var(q) = q))

Thus, if (p�q), q is defined on more variables than p; on the variables of p, q has the

same constraints as p; its other variables are free. This relation extends to P⋆ with

(℧�℧).

Property 1. (P⋆,�) is a poset.

In this poset, the upper set of a process p, called extension upper set, is the set of

all its extensions; it is denoted by p↑� = {q ∈ P / p�q}.

To study properties of extension upper sets, we characterize semantically the set

of variables that are constrained by a given process: a process q ∈ P controls a given

variable y if y belongs to var(q) and q is not equal to the extension on var(q) of its

projection on (var(q)\{y}). Formally, a process q ∈ P controls a variable y, written

(q⊲ y), iff (y ∈ var(q)) and q 6= ((q|(var(q)\{y}))
|var(q)

). A process q ∈ P controls

a variable set X, written (q⊲ X), iff (∀ x ∈ X) (q⊲ x). Also, ⊲ is extended to P⋆

with ℧⊲ V .

This is illustrated in Figure 1.4 (left): there is some behavior b in q that has the

same restriction on (var(q)\{y}) as some behavior c in Bvar(q) such that c does not

belong to q; thus q is strictly included in (q|(var(q)\{y}))
|var(q)

.

Fig. 1.4: Controlled (left) and non-controlled (right) variable y in a process q.

We define a reduced process (the key concept to define filters) as being a process

that controls all of its variables.

Definition 5 (Reduced process). A process p ∈ P⋆ is reduced iff p⊲ var(p).

Reduced processes are minimal in (P,�). We denote by
▽

q, called reduction of q,

the (minimal) process such that
▽

q�q (p is reduced iff
▽

p = p).

Property 2. The complement p̃ of a nonempty process p strictly included in Bvar(p)

is reduced iff p is reduced; then p̃ and p control the same set of variables var(p).

1 A Module Language for Typing SIGNAL programs by Contracts 9

The extension upper set
▽

p↑� of the reduction of p is composed of all the sets

of behaviors, defined on variable sets that include the variables controlled by p,

as maximal processes (for union of sets of behaviors) that have exactly the same

constraints as p (variables that are not controlled by p are also not controlled in the

processes of
▽

p↑�). We also observe that var(
▽

q) is the greatest subset of variables

such that q⊲ var(
▽

q).

Then we define the inclusion lower set of a set of processes to capture all the

subsets of behaviors of these processes. Let R ⊆ P⋆, R↓⊆ is the inclusion lower set

of R for ⊆ defined by R↓⊆ = {p ∈ P⋆ / (∃ q ∈ R) (p ⊆ q)}.

1.3.2 An algebra of filters

In this section, we define a process-filter by the set of processes that satisfy a given

property. We define an order relation (⊑) on the set of process-filters Φ. With this

relation, (Φ,⊑) is a Boolean algebra. A process-filter R is a subset of P⋆ that filters

processes: it contains all the processes that are “equivalent” with respect to some

constraint or property, so that all processes in R are accepted or all of them but ℧

are rejected. A process-filter is built from a unique process generator by extending

it to larger sets of variables and then by including subprocesses of these “maximal

allowed behavior sets”.

Definition 6 (Process-filter). A set of processes R is a process-filter iff (∃ r ∈ P⋆)

((r =
▽

r) ∧ (R = r↑�↓⊆)). The process r is a generator of R (R is generated by r).

The process-filter generated by the reduction of a process p is denoted by p̂ =
▽

p↑�↓⊆. The generator of a process-filter R is unique, we refer to it as
▽

R. Note that Ω
generates the set of all processes (including ℧) and ℧ belongs to all filters. Formally,

(∀ p,r,s ∈ P⋆), we have:

(p ∈ r̂) =⇒ (var(
▽

r) ⊆ var(p)) r̂ = ŝ ⇐⇒
▽

r =
▽

s Ω ∈ r̂ ⇐⇒ r̂ = P⋆

Figure 1.5 illustrates how a process-filter is generated from a process p (depicted

by the bold line) in two successive operations. The first operation consists of build-

ing the extension upper set of the process: it takes all the processes that are compat-

ible with p and that are defined on a larger set of variables. The second operation

proceeds using the inclusion lower set of this set of processes: it takes all the pro-

cesses that are defined by subsets of behaviors from processes in the extension upper

set (in other words, those processes that remain compatible when adding constraints,

since adding constraints removes behaviors).

We denote by Φ the set of process-filters. We call strict process-filters the

process-filters that are neither P⋆ nor {℧}. The filtered variable set of a process-

filter R is var(R) defined by var(R) = var(
▽

R).

10 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

Fig. 1.5: Example of process-filter.

We define an order relation on process-filters, that we call relaxation, and write

R ⊑ S to mean that S is a relaxation of R.

Definition 7 (Process-filter relaxation). For R and S, two process-filters, let Z =
var(R) ∪ var(S). The relation S is a relaxation of R, written R ⊑ S, is defined by:

(R ⊑ S ⇐⇒
▽

R
|Z

⊆
▽

S

|Z

) {℧}⊑ S (R ⊑{℧}) ⇐⇒ {℧}= R

The relaxation relation defines the structure of process-filters, which is shown to

be a lattice.

Lemma 1. (Φ,⊑) is a lattice of supremum P⋆ and infimum {℧}. Let R and S be two

process-filters, V = var(R) ∪ var(S), RV =
▽

R
|V

and SV =
▽

S

|V

. Conjunction R ⊓
S, disjunction R ⊔ S and complement R̃ are respectively defined by:

R ⊓ S =

▽

(
︷ ︸︸ ︷
RV ∩ SV)↑�↓⊆ {℧} ⊓ R = {℧}

R ⊔ S =

▽

(
︷ ︸︸ ︷
RV ∪ SV)↑�↓⊆ {℧} ⊔ R = R

R̃ =
▽̃

R↑�↓⊆ {̃℧} = P⋆ P̃⋆ = {℧}

Let us comment the definitions of these operators. Conjunction of two strict process-

filters R and S, for instance, is obtained by first building the extension of the gener-

ators
▽

R and
▽

S on the union of the sets of their controlled variables; then the intersec-

tion of these processes, which is also a process (set of behaviors) is considered; since

this operation may result in some variables becoming free (not controlled), the re-

duction of this process is taken; and finally, the result is the process-filter generated

by this reduction. The process-filter conjunction R ⊓ S of two strict process-filters

R and S is the greatest process-filter T = R ⊓ S that accepts all processes that are

accepted by R and by S. The same mechanism, with union, is used to define dis-

junction. The process-filter disjunction R ⊔ S of two strict process-filters R and S

is the smallest process-filter T = R ⊔ S that accepts all processes that are accepted

1 A Module Language for Typing SIGNAL programs by Contracts 11

by R or by S. And the complement of a strict process-filter R is the process-filter

generated by the complement of its generator
▽

R.

Finally, we state a main result for process-filters, which is that process-filters

form a Boolean algebra:

Theorem 1. (Φ,⊑) is a Boolean algebra with P⋆ as 1, {℧} as 0 and the complement

R̃.

1.3.3 An algebra of contracts

From process-filters, we define the notion of assume/guarantee contract and propose

a refinement relation on contracts.

Definition 8 (Contract). A contract C = (A,G) is a pair of process-filters. The

variable set of C = (A,G) is defined by var(C) = var(A) ∪ var(G). C = Φ×Φ is

the set of contracts.

Usually, an assumption A is an assertion on the behavior of the environment (it

is typically expressed on the inputs of a process) and thus defines the set of behav-

iors that the process has to take into account. The guarantee G defines properties

that should be guaranteed by a process running in an environment where behaviors

satisfy A.

Fig. 1.6: A process p satisfying a contract (A,G).

A process p satisfies a contract C = (A,G) if all its behaviors that are accepted by

A (i.e., that are behaviors of some process in A), are also accepted by G. Figure 1.6

depicts a process p satisfying the contract (A,G) (p̂ is the process-filter generated by

the reduction of p). This is made more precise and formal by the following defini-

tion.

Definition 9 (Satisfaction). Let C = (A,G) a contract; a process p satisfies C, writ-

ten p � C, iff (p̂ ⊓ A) ⊑ G.

Property 3. p � C ⇐⇒ p̂ ⊑ (Ã ⊔ G)

12 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

We define a preorder relation that allows to compare contracts. A contract

(A1,G1) is finer than a contract (A2,G2), written (A1,G1) (A2,G2), iff all pro-

cesses that satisfy the contract (A1,G1) also satisfy the contract (A2,G2):

Definition 10 (Satisfaction preorder). (A1,G1) (A2,G2) iff (∀ p ∈ P)((p �

(A1,G1)) =⇒ (p � (A2,G2)))

The preorder on contracts satisfies the following property:

Property 4. (A1,G1) (A2,G2) iff (Ã1 ⊔ G1) ⊑ (Ã2 ⊔ G2)

Refinement of contracts is further defined from the satisfaction preorder:

Definition 11 (Refinement of contracts). A contract C1 = (A1,G1) refines a con-

tract C2 = (A2,G2), written C1 4 C2, iff (A1,G1) (A2,G2), (A2 ⊑ A1) and G1

⊑ (A1 ⊔ G2).

Refinement of contracts amounts to relaxing assumptions and reinforcing promises

under the initial assumptions. The intuitive meaning is that for any p that satisfies

a contract C, if C refines D then p satisfies D. Our relation of refinement formal-

izes substitutability. Among contracts that could be used to refine an existing con-

tract (A2,G2), we choose those contracts (A1,G1) that “scan” more processes than

(A2,G2) (A2 ⊑ A1) and that guarantee less processes than those of A1 ⊔ G2.

The refinement relation can be expressed as follows in the algebra of process-

filters:

Property 5. (A1,G1) 4 (A2,G2) iff A2 ⊑ A1, (A2 ⊓ G1) ⊑ G2 and G1 ⊑ (A1 ⊔
G2).

The refinement relation (4) defines the poset of contracts, which is shown to be a

lattice. In this lattice, the union (or disjunction) of contracts is defined by their least

upper bound and the intersection (or conjunction) of contracts is defined by their

greatest lower bound. These operations provide two compositions of contracts.

Lemma 2 (Composition of contracts). Two contracts C1 = (A1,G1) and C2 =
(A2,G2) have a greatest lower bound C = (A,G), written (C1 ⇓ C2), defined by:

A = A1 ⊔ A2 and G = ((A1 ⊓ Ã2 ⊓ G1) ⊔ (Ã1 ⊓ A2 ⊓ G2) ⊔ (G1 ⊓ G2))

and a least upper bound D = (B,H), written (C1 ⇑ C2), defined by:

B = A1 ⊓ A2 and H = (Ã1 ⊓ G1) ⊔ (Ã2 ⊓ G2) ⊔ (A1 ⊓ G2) ⊔ (A2 ⊓ G1)

A Heyting algebra H is a bounded lattice such that for all a and b in H there is a

greatest element x of H such that the greatest lower bound of a and x is smaller than

b [5]. For all contracts C1 = (A1,G1), C2 = (A2,G2), there is a greatest element X

of C such that the greatest lower bound of C1 and X refines C2. Then our contract

algebra is a Heyting algebra (in particular, it is distributive):

Theorem 2. (C, 4) is a Heyting algebra with supremum ({℧},P⋆) and infimum

(P⋆,{℧}).

Note that it is not a Boolean algebra since it is not possible to define in general

a complement for each contract. The complement exists only for contracts of the

form (A,Ã) and it is then equal to (Ã,A).

1 A Module Language for Typing SIGNAL programs by Contracts 13

1.3.4 Contracts: some related approaches

The use of contracts has been advocated for a long time in computer science [1, 16]

and, more recently, has been successfully applied in object-oriented software engi-

neering [25]. In object-oriented programming, the basic idea of design-by-contract

is to consider the services provided by a class as a contract between the class and its

caller. The contract is composed of two parts: requirements made by the class upon

its caller and promises made by the class to its caller.

In the theory of interface automata [2], the notion of interface offers benefits sim-

ilar to our notion of contract and for the purpose of checking interface compatibility

between reactive modules. In that context, it is irrelevant to separate the assumptions

from guarantees and only one contract needs to be and is associated with a module.

Separation and multiple views become of importance in a more general-purpose

software engineering context. Separation allows more flexibility in finding (contra-

variant) compatibility relations between components. Multiple views allow better

isolation between modules and hence favor compositionality. This is discussed in

Section 1.5.3. In our contract algebra as in interface automata, a contract can be

expressed with only one filter. To this end, a filtering equivalence relation [12] (that

defines the equivalence class of contracts that accept the same set of processes) may

be used to express a contract with only one guarantee filter and with its hypothesis

filter accepting all the processes (or, conversely, with only one hypothesis filter and

a guarantee filter that accepts no process).

In [6], a system of assume-guarantee contracts with similar aims of genericity

is proposed. By contrast to our domain-theoretical approach, the EC Speeds project

considers an automata-based approach, which is indeed dual but makes notions such

as the complement of a contract more difficult to express from within the model. The

proposed approach also leaves the role of variables in contracts unspecified, at the

cost of some algebraic relations such as inclusion.

In [18], the authors show that the framework of interface automata may be em-

bedded into that of modal I/O automata. This approach is further developed in [27],

where modal specifications are considered. This consists of labelling transitions that

may be fired and other that must. Modal specifications are equipped with a parallel

composition operator and refinement order which induces a greatest lower bound.

The glb allows addressing multiple-viewpoint and conjunctive requirements. With

the experience of [6], the authors notice the difficulty in handling interfaces having

different alphabets. Thanks to modalities, they propose different alphabet equaliza-

tions depending on whether parallel composition or conjunction is considered. Then

they consider contracts as residuations G/A (the residuation is the adjoint of parallel

composition), where assumptions A and guarantees G are both specified as modal

specifications. The objectives of this approach are quite close to ours. Our model

deals carefully with alphabet equalization. Moreover, using synchronous composi-

tion for processes and greatest lower bound for process-filters and for contracts, our

model captures both substitutability and multiple-viewpoint (see Section 1.5.3).

In [22], a notion of synchronous contracts is proposed for the programming

language LUSTRE. In this approach, contracts are executable specifications (syn-

14 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

chronous observers) timely paced by a clock (the clock of the environment). This

yields an approach which is satisfactory to verify safety properties of individual

modules (which have a clock) but can hardly scale to the modeling of globally asyn-

chronous architectures (which have multiple clocks).

In [9], a compositional notion of refinement is proposed for a simpler stream-

processing data-flow language. By contrast to our algebra, which encompasses the

expression of temporal properties, it is limited to reasoning on input-output types

and input-output causality graph.

The system Jass [4] is somewhat closer to our motivations and solution. It pro-

poses a notion of trace, and a language to talk about traces. However, it seems that

it evolves mainly towards debugging and defensive code generation. For embedded

systems, we prefer to use contracts for validating composition and hope to use for-

mal tools once we have a dedicated language for contracts. Like in JML [21], the

notion of agent with inputs/outputs does not exist in Jass, the language is based on

class invariants, and pre/post-conditions associated with methods.

Our main contribution is to define a complete domain-theoretical framework for

assume-guarantee reasoning. Starting from a domain-theoretical characterization of

behaviors and processes, we build a Boolean algebra of process-filters and a Heyting

algebra of contracts. This yields a rich structure which is: 1/ generic, in that it can

be implemented or instantiated to specific models of computation; 2/ flexible, in the

way it can help structuring and normalizing expressions; 3/ complete, in the sense

that all combinations of propositions can be expressed within the model.

Finally, a temporal logic that is consistent with our model, such as for instance

ATL (Alternating-time Temporal Logic [3]), can directly be used to express assump-

tions about the context of a process and guarantees provided by that process.

1.4 A module language for typing by contracts

In this section, we define a module language to implement our contract algebra

and apply it to the validation of component-based systems. For the peculiarity of

our applications, it will be instantiated to the context of the synchronous language

SIGNAL, yet it could equally be used in the context of related programming lan-

guages manipulating processes or agents. Its basic principle is to separate the inter-

face, which declares properties of a program using contracts, and implementation,

which defines an executable specification satisfying it.

1.4.1 Syntax

We define the formal syntax of our module language. Its grammar is parameterized

by the syntax of programs, noted p or q, which belong to the target specification

or programming language. Names are noted x or y. Types t are used to declare

1 A Module Language for Typing SIGNAL programs by Contracts 15

parameters and variables in the interface of contracts. Assumptions and guarantees

are described by expressions p and q of the target language. An expression exp
manipulates contracts and modules to parameterize, apply, reference and compose

them.

x, y (name)

p, q (process)

b, c ::= event | boolean | short | integer | . . . (datatype)

t ::= b | input b | output b | x | t × t (type)

dec ::= t x [, dec] (declaration)

def ::= module [type]x = exp (definition)

| module x [: t] = exp
| def ; def

ag ::= [assume p] guarantee q; (contract)

| ag and ag | x(y∗) (process)

exp ::= contract dec; ag end (contract)

| process dec; p end (process)

| functor (dec) exp (functor)

| exp and exp (composition)

| x (exp∗) (application)

| let def in exp (scoping)

1.4.2 A type system for contracts and processes

We define a type system for contracts and processes in the module language. In the

syntax of the module language, contracts and processes are associated with names

x . These names can be used to type formal parameters in a functor and become

type declarations. Hence, in the type system, type names that stand for a contract

or a process are associated with a module type T . A base module type is a tagged

pair τ(I, C). The tag τ is noted π for the type of a process and γ for the type of a

contract. The set I consists of pairs x : t that declare the types t for its input and

output variables x. The contract C is a pair of predicates (p, q) that represent its

assumptions p and guarantees q. The type of a functor Λ(x : S).T consists of the

name x and of the types S and T of its formal parameter and result.

S, T ::= t | τ(I, C) | S × T | Λ(x : S).T (type) τ ::= γ | π (kind)

1.4.3 Subtyping as refinement

We define a subtyping relation on types t to extend the refinement relation of the

contract algebra to the type algebra. In that aim, we apply the subtyping principle

S ≤ T (S is a subtype of T) to mean that the semantic objects denoted by S are

16 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

contained in the semantic objects denoted by T (S refines T). Hence, a module

of type T can safely be replaced or substituted by a module of type S. Figure 1.7

depicts a process P with one long input x and two short outputs a, b, and a process

Q with two integer inputs x, y and one integer output a, such that P refines Q. Then

the type of a module M encapsulating P is a subtype of a module N encapsulating

Q, thus M can replace N .

x:long→
P

→a:short

→b:short
≤

x:integer →

y:integer →
Q

→a:integer

Fig. 1.7: Example of module refinement.

The subtyping relation ≤ is defined inductively with axioms for datatypes, rules

for declarations and rules for each kind of module type. The complete rules are

described in [14]. In particular, a module type S = τ(I, C) is a subtype of T =
τ(J, D), written S ≤ T , iff the inputs in J subtype those in I , the outputs in I
subtype those in J , and the contract C refines D (written C � D).

We can interpret the relation C � D as a mean to register the refinement con-

straint between C and D in the typing constraints. It corresponds to a proof obli-

gation in the target language, whose meaning is defined by the semantic relation

[[C]] � [[D]] in the contract algebra, and whose validity may for instance be proved

by model checking (the decidability of the subtyping relation essentially reduces to

that of the refinement of contracts).

1.4.4 Composition of modules

Just as the subtyping relation, which implements and extends the refinement relation

of the contract algebra in the typing algebra, the operations that define the greatest

lower bound (glb) and least upper bound (lub) of two contracts are extended to

module types by induction on the structure of types.

Greatest lower bound:

– modules: τ(I, C) ⊓ τ(J, D)=τ(I ⊓ J, C ⇓ D)
– products: S × T ⊓ U × V =(S ⊓ U) × (T ⊓ V)
– functors: Λ(x : S).T ⊓ Λ(y : U).V =Λ(x : (S ⊔ U)).(T ⊓ V [y/x])
Least upper bound:

– modules: τ(I, C) ⊔ τ(J, D)=τ(I ⊔ J, C ⇑ D)
– products: S × T ⊔ U × V =(S ⊔ U) × (T ⊔ V)
– functors: Λ(x : S).T ⊔ Λ(y : U).V =Λ(x : (S ⊓ U)).(T ⊔ V [y/x])

1 A Module Language for Typing SIGNAL programs by Contracts 17

Note that the intersection and union operators have to be extended to combine the

set of input and output declarations of a module. For the greatest lower bound, for

instance, the resulting set of input variables is obtained by intersection of the input

sets, and the type of an input variable is defined as the lub of the considered corre-

sponding types. For the lower bound again, the resulting set of output variables is

obtained by the union of the output sets, and for common output variables, their type

is defined as the glb of the considered corresponding types. Similar rules are defined

for the least upper bound (union of sets for inputs with glb of types, intersection of

sets for outputs with lub of types).

The composition of modules is made available in the module language through

the “and” operator. The operands of this operator can be contracts, in that case,

the resulting type is the greatest lower bound ⇓ of both contracts. Or they can be

expressions of modules, in that case the resulting type is the greatest lower bound ⊓
of both module types.

1.5 Application to SIGNAL

We illustrate the distinctive features of our contract algebra by reconsidering the

specification of the LTTA and its translation into observers in the target language

of our choice: the multi-clocked synchronous (or polychronous) data-flow language

SIGNAL [19, 20].

1.5.1 Implementation of the LTTA

We model the LTTA protocol in SIGNAL by specifying the abstraction of all

functionalities that write and read values on the bus. Refer to [8] for a descrip-

tion of the operators of the SIGNAL language. In particular, the cell operator

y := x cell b init y0 allows to memorize in y the latest value carried by

x when x is present or when b is true. It is defined as follows:

(| y := x default (x$1 init y0) | y ˆ= x ˆ+ (when b) |)

We consider first the following basic functionalities:

process current =

{ boolean v0; }

(? boolean wx; event c; ! boolean rx;)

(| rx := (wx cell c init v0) when c |);

process interleave =

(? boolean x, sx;)

(| b := not (b$1 init false)

| x ˆ= when b

18 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

| sx ˆ= when (not b) |)

where boolean b; end;

The process current defines a cell in which values are stored at the input

clock ˆwx and loaded on rx at the output clock c (the parameter v0 is used as

initial value). The other functionality is the process interleave, that desynchro-

nizes the signals x and sx by synchronizing them to the true and false values of an

alternating Boolean signal b.

A simple buffer can be defined from these functionalities:

process shift_1 =

(? boolean x; ! boolean sx;)

(| interleave(x, sx)

| sx := current{false}(x, ˆsx) |);

It represents a one-place FIFO, the contents of which is the last value written into

it. Thanks to the interleave, the output (signal sx) may only be read/retrieved

strictly after it was entered. Also, there is no possible loss nor duplication of data.

For the purpose of the LTTA, a couple of signals have to be memorized together:

the value to be transmitted, and its associated Boolean flag. So we define the process

shift 2, in which both values are memorized at some common clock:

process shift_2 =

(? boolean x, b ! boolean sx, sb;)

(| interleave(x, sx)

| sx := current{false}(x, ˆsb)

| sx := current{true}(b, ˆsb)

|);

The shift processes ensure there is necessarily some delay between the input

of a data and its output. But for a more general buffer, some data may be lost if a

new one is entered and memorized values have to be sustained. Using the shift 2

(for the LTTA), we may write:

process buffer =

(? boolean x, b; event c ! boolean bx, bb, sb;)

(| (sx, sb) := shifht_2(x, b)

| bx := current{false}(sx, c)

| bb := current{true}(sb, c)

|) where boolean sx; end;

The signal c provides the clock at which data are retrieved from the buffer. The

clock of the output signal sb (which is the clock resulting from the internal shift)

represents the clock of the first instants at which the buffer can fetch a new value. It

will be used to express some assumptions on the protocol.

Then the process ltta is decomposed into a reader, a bus and a writer:

process ltta =

(? boolean xw; event cw, cb, cr; ! boolean xr;)

1 A Module Language for Typing SIGNAL programs by Contracts 19

(| (xb, bb, sbw) := bus(xw, writer(xw, cw), cb)

| (xr, br, sbb) := reader(xb, bb, cr)

|) where boolean bw, xb, bb, sbw, br, sbb; end;

Using the buffer process, the components have the following definition:

process writer =

(? boolean xw; event cw; ! boolean bw;)

(| bw ˆ= xw ˆ= cw

| bw := not(bw$1 init true)

|);

process bus =

(? boolean xw, bw; event cb;

! boolean xb, bb, sbw;)

(| (xb, bb, sbw) := buffer(xw, bw, cb) |);

process reader =

(? boolean xb, bb; event cr;

! boolean xr, br, sbb;)

(| (yr, br, sbb) := buffer(xb, bb, cr)

| xr := yr when switched(br)

|) where boolean yr; end;

The switched basic functionality allows to consider the values for which the

Boolean flag has alternated:

process switched =

(? boolean b; ! boolean c;)

(| zb := b$1 init true

| c := (b and not zb) or (not b and zb)

|) where boolean zb; end;

1.5.2 Contracts in SIGNAL

In this section, we will specify assumptions and guarantees as SIGNAL processes

representing generators of corresponding process-filters.

The behavior of the LTTA is correct if the data flow extracted by the reader is

equal to the data flow emitted by the writer (∀n · xr(n) = xw(n)). It is the case if

the following conditions hold:

w ≥ b and
⌊w

b

⌋
≥

r

b
,

We will consider this property as a contract to be satisfied by a given imple-

mentation of the protocol. Here, we use again the SIGNAL language to specify this

contract with the help of clock constraints or of signals used as observers [15]. In

general, the generic structure of observers specified in contracts will find a direct

20 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

instance and compositional translation into the synchronous multi-clocked model

of computation of SIGNAL [20]. Indeed, a subtlety of the SIGNAL language is that

an observer not only talks about the value, true or false, of a signal, but also about

its status, present or absent. Considered as observers, the assumption and guarantee

of the contract for LTTA could be described as follows:

ALTTA = w ≥ b ∧
⌊

w

b

⌋
≥ r

b

GLTTA = xr(n) = xw(n)

For instance, GLTTA is true when xr(n) = xw(n) and it is false when xr(n) 6=
xw(n). By default, it is absent when the equality cannot be tested. Notice that

the complement of an event (a given signal, e.g. xr, is present and true) is that

it is absent or false. The signal GLTTA is present and true iff xr is present and

the condition xr(n) = xw(n) is satisfied. For a trace of the guarantee GLTTA,

the set of possible traces corresponding to its complement G̃LTTA is infinite

(and dense) since it is not defined on the same clock as GLTTA. For example,

GLTTA = 1 0 1 0 1 0 1 0 1

and G̃LTTA = 0 0 0 0 0 or 0 1 1 1 0 1 1 0 1 1 0 1 0 1 . . .

Let cw, cb and cr be the signals representing respectively the clocks of the

writer, the bus and the reader. If the signal sbw has the clock of the first instants at

which the bus can fetch a new value (from the writer)—it has the same period as

cw but is shifted from it—, the contraint “never two tw between two successive tb”

(w ≥ b) can be expressed in SIGNAL by: cb ˆ= sbw ˆ+ cb.

If the signal sbb has the clock of the first instants at which the reader can fetch

a new value (from the bus), and its values represent the values of the Boolean

flag transmitted along the communication path, then the constraint “never two

τb between two successive tr” (
⌊

w

b

⌋
≥ r

b
)—remind that τb(n) is the first in-

stant where the bus can fetch the nth writing—can be expressed in SIGNAL by:

cr ˆ= (when switched(sbb)) ˆ+ cr.

Then the assumptions of the contract for the LTTA may be expressed as the

synchronous composition of the above two clock constraints.

Consider now the property that has to be verified: ∀n · xr(n) = xw(n). Let xr

and xw represent respectively the corresponding signals. The property that these

two signals represent the same data flows (remind that they do not have the same

clock) can be expressed in SIGNAL by comparing xr (the output of the reader) with

a signal—call it xok—which is the output of a FIFO queue on the input signal xw,

such that xok can be freely resynchronized with xr. The signal xok can be defined

as xok := fifo_3(xw) with fifo_3 a FIFO with enough memory so that the

clock of xr is not indirectly constrained when xr and xok are synchronized:

process fifo_3 =

(? boolean x; ! boolean xok;)

(| xok := shift_1(shift_1(shift_1(x))) |);

The observer of the guarantee is expressed as: obs := (xr = xok).

1 A Module Language for Typing SIGNAL programs by Contracts 21

This contract can be used as a type for specifying a LTTA protocol. A possi-

ble implementation of this protocol is the one described in Section 1.5.1 using the

SIGNAL language:

module type spec_LTTA =

contract input boolean xw;

event cw,

cb, cr

output boolean xr,

sbw, sbb;

assume

(| cb ˆ= sbw ˆ+ cb

| cr ˆ= cr ˆ+

(when switched(sbb))

|)

where

process switched = ...

end;

guarantee

(| xok := fifo_3(xw)

| obs := xr = xok

|)

where boolean xok;

process fifo_3 = ...

end;

end;

module ltta : spec_LTTA =

process input boolean xw;

event cw, cb, cr

output boolean xr,

sbw, sbb;

(| (xb, bb, sbw) :=

bus(xw, writer(xw, cw), cb)

| (xr, br, sbb) :=

reader(xb, bb, cr)

|)

where boolean bw, xb, bb, br;

process writer =

(? boolean xw; event cw;

! boolean bw;)

(| ...

|);

process bus =

(? boolean xw, bw; event cb;

! boolean xb, bb, sbw;)

(| ...

|);

process reader =

(? boolean xb, bb; event cr;

! boolean xr, br, sbb;)

(| ...

|);

end;

end;

It is needless to say that a sophisticated solver, based for instance on Pressburger

arithmetics, shall help us to verify the consistency of the LTTA property. Nonethe-

less, an implementation of the above LTTA specification, for the purpose of simula-

tion, can straightforwardly be derived. As a by-product, it defines an observer which

may be used as a proof obligation against an effective implementation of the LTTA

controller to verify that it implements the expected LTTA property. Alternatively, it

may be used as a medium to synthesize a controller enforcing the satisfaction of the

specified property on the implementation of the model.

1.5.3 Salient properties of contracts in the synchronous context

In the context of component-based or contract-based engineering, refinement and

substitutability are recognized as being fundamental requirements [10]. Refinement

allows one to replace a component by a finer version of it. Substitutability allows

one to implement every contract independently of its context of use. These prop-

22 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

erties are essential for considering an implementation as a succession of steps of

refinement, until final implementation. As noticed in [27], other aspects might be

considered in a design methodology. In particular, shared implementation for dif-

ferent specifications, multiple viewpoints and conjunctive requirements for a given

component.

Considering the synchronous compositon of SIGNAL processes, the satisfaction

relation of contractsand the greatest lower bound as a composition operator for con-

tracts, we have the following properties:

Property 6. Let two processes p, q ∈ P, and contracts C1, C2, C′
1, C′

2 ∈ C.

(1) C1 4 C2 =⇒ ((p � C1) =⇒ (p � C2))

(2) C1 C2 ⇐⇒ ((p � C1) =⇒ (p � C2))

(3) ((C′
1 4 C1) ∧ (C′

2 4 C2)) =⇒ ((C′
1 ⇓ C

′
2) 4 (C1 ⇓ C2))

(4) ((p � C1) ∧ (q � C2)) =⇒ ((p|q) � (C1 ⇓ C2))

(5) ((p � C1) ∧ (p � C2)) ⇐⇒ (p � (C1 ⇓ C2))

(1) and (2) relate to refinement and implementation; (3) and (4) allow for substi-

tutability in composition; (5) addresses multiple viewpoints.

• (1) and (2) illustrate the substitutability induced by the refinement relation. For

relation (1), if a contract C1 refines a contract C2 then a process p which satis-

fies C1 also satisfies C2. Consequently, the set of processes satisfying C1 being

included in the set of processes satisfying C2, a component which satisfies C2

can be replaced by a component which satisfies C1. For relation (2), a contract

C1 is finer than a contract C2 if and only if the processes which satisfy C1 also

satisfy C2.

• (3) and (4) illustrate the substitutability in composition. For relation (3), if a con-

tract C′
1 refines a contract C1 and a contract C′

2 refines a contract C′
2, then the

greatest lower bound of C
′
1 and C

′
2 refines the greatest lower bound of C1 and

C2. Relation (4) expresses that a subsystem can be developed in isolation. Then,

when developed independently, subsystems can be substituted to their specifica-

tions and composed as expected. If a SIGNAL process p satisfies a contract C1

and a SIGNAL process q satisfies a contract C2, then the synchronous compo-

sition of p and q satisfies the greatest lower bound of C1 and C2. Thus, each

subsystem of a component can be analyzed and designed with its specific frame-

works and tools. Finally, the composition of the subsystems satisfies the specifi-

cation of the component. Property (4) could be illustrated as follows on the LTTA

example: define the implementation of the LTTA as a functor parameterized by

two components, bus and reader, respectively associated with the types (i.e.,

contracts) busType and readerType, such that the greatest lower bound of

busType and readerType is equal to the type spec_LTTA associated with

the LTTA implementation.

• (5) illustrates the notion of multiple viewpoints: a process p satisfies a contract

C1 and a contract C2 if and only if p satisfies the greatest lower bound of con-

tracts C1 and C2. This property is a solution for the need for modularity coming

1 A Module Language for Typing SIGNAL programs by Contracts 23

from the concurrent development of systems by different teams using different

frameworks and tools. An example is the concurrent handling of the safety or re-

liability aspects and the functional aspect of a system. Other aspects may have to

be considered too. Each of these aspects requires specific frameworks and tools

for its analysis and design. Yet, they are not totally independent but rather in-

teract. The issue of dealing with multiple aspects or multiple viewpoints is thus

essential.

1.5.4 Implementation

The module system described in this paper, embedding data-flow equations defined

in SIGNAL, has been implemented in OCaml. It produces a proof tree that consists

of 1/ an elaborated SIGNAL program, that hierarchically renders the structure of the

system described in the original module expressions, 2/ a static type assignment, that

is sound and complete with respect to the module type inference system, 3/ a proof

obligation consisting of refinement constraints, that are compiled as an observer or

a temporal property in SIGNAL.

The property is then passed on to SIGNAL’s model-checker, Sigali [24], which

allows to prove or disprove that it is satisfied by the generated program. Satisfaction

implies that the type assignment and produced SIGNAL program are correct with

the initially intended specification. The generated property may however be used

for other purposes. One is to use the controller synthesis services of Sigali [23] to

automatically generate a SIGNAL program that enforces the property on the gener-

ated program. Another, in the case of infinite state system (e.g. on numbers) would

be to generate defensive simulation code in order to produce a trace if the property

is violated.

1.6 Conclusion

Starting from an abstract characterization of behaviors as functions from variables

to a domain of values (Booleans, integers, series, sets of tagged values, continuous

functions), we introduced the notion of process-filter to formally characterize the

logical device that filters behaviors from processes much like the assumption and

guarantee of a contract do. In our model, a process p fulfils its requirements (or sat-

isfies a contract) (A,G) if either it is rejected by A (i.e., if A represents assumptions

on the environment, they are not satisfied for p) or it is accepted by G. The structure

of process-filters is a Boolean algebra and the structure of contracts is a Heyting

algebra. These rich structures allow for reasoning on contracts with great flexibility

to abstract, refine and combine them. In addition to that, the negation of a contract

can formally be expressed from within the model. Moreover, contracts are not lim-

ited to expressing safety properties, as is the case in most related frameworks, but

24 Yann Glouche, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

encompass the expression of liveness properties [13]. This is all again due to the cen-

tral notion of process-filter. Our model deals with constraints or properties possibly

expressed on different sets of variables, and takes into account variable equaliza-

tion when combining them. In this model, assumption and guarantee properties are

not necessarily restricted to be expressed as formulas in some logic, but are rather

considered as sets of behaviors (generator of process-filter). Note that such a pro-

cess can represent a constraint expressed in some temporal logic. We introduced a

module system based on the paradigm of contract for a synchronous multi-clocked

formalism, SIGNAL, and applied it to the specification of a component-based de-

sign process. The paradigm we are putting forward is to regard a contract as the

behavioral type of a component and to use it for the elaboration of the functional ar-

chitecture of a system together with a proof obligation that validates the correctness

of assumptions and guarantees made while constructing that architecture.

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang. Syst. 15(1),

73–132 (1993)

2. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26(5), 109–

120 (2001)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the

ACM 49(5), 672–713 (2002)

4. Bartetzko, D., Fischer, C., Möller, M., Wehrheim, H.: Jass - Java with assertions. Electronic

Notes in Theoretical Computer Science 55(2), 1–15 (2001)

5. Bell, J.L.: Boolean algebras and distributive lattices treated constructively. Math. Logic Quar-

terly 45, 135–143 (1999)

6. Benveniste, A., Caillaud, B., Passerone, R.: A generic model of contracts for embedded sys-

tems. Tech. Rep. 6214, INRIA Rennes (2007)

7. Benveniste, A., Caspi, P., Le Guernic, P., Marchand, H., Talpin, J.P., Tripakis, S.: A protocol

for loosely time-triggered architectures. In: J. Sifakis, S.A. Vincentelli (eds.) EMSOFT ’02:

Proceedings of the Second International Conference on Embedded Software, Lecture Notes in

Computer Science, vol. 2491, pp. 252–265. Springer Verlag (2002)

8. Besnard, L., Gautier, T., Le Guernic, P., Talpin, J.P.: Compilation of polychronous dataflow

equations. In: this book

9. Broy, M.: Compositional refinement of interactive systems. Journal of the ACM 44(6), 850–

891 (1997)

10. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with component

reuse. In: EMSOFT ’08: Proceedings of the 8th ACM international conference on Embed-

ded software, pp. 79–88. ACM (2008)

11. Edwards, S., Lavagno, L., Lee, E.A., Sangiovanni-Vincentelli, A.: Design of embedded sys-

tems: formal models, validation, and synthesis. Proceedings of the IEEE 85(3), 366–390

(1997)

12. Glouche, Y., Le Guernic, P., Talpin, J.P., Gautier, T.: A boolean algebra of contracts for logical

assume-guarantee reasoning. Tech. Rep. 6570, INRIA Rennes (2008)

13. Glouche, Y., Talpin, J.P., Le Guernic, P., Gautier, T.: A boolean algebra of contracts for logical

assume-guarantee reasoning. In: 6th International Workshop on Formal Aspects of Compo-

nent Software (FACS 2009) (2009)

14. Glouche, Y., Talpin, J.P., Le Guernic, P., Gautier, T.: A module language for typing by con-

tracts. In: E. Denney, D. Giannakopoulou, C.S. Păsăreanu (eds.) Proceedings of the First

1 A Module Language for Typing SIGNAL programs by Contracts 25

NASA Formal Methods Symposium, pp. 86–95. NASA Ames Research Center, Moffett Field,

CA, USA (2009)

15. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and the verification of reac-

tive systems. In: AMAST ’93: Proceedings of the Third International Conference on Method-

ology and Software Technology, pp. 83–96. Springer-Verlag (1994)

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM

12(10), 576–580 (1969)

17. Kopetz, H.: Component-based design of large distributed real-time systems. Control Engi-

neering Practice 6(1), 53–60 (1997)

18. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and product line

theories. In: R. De Nicola (ed.) ESOP, Lecture Notes in Computer Science, vol. 4421, pp.

64–79. Springer (2007)

19. Le Guernic, P., Gautier, T., Le Borgne, M., Le Maire, C.: Programming real-time applications

with SIGNAL. Proceedings of the IEEE 79(9), 1321–1336 (1991)

20. Le Guernic, P., Talpin, J.P., Le Lann, J.C.: Polychrony for System Design. Journal for Circuits,

Systems and Computers 12(3), 261–304 (2003)

21. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: H. Kilov,

B. Rumpe, W. Harvey (eds.) Behavioral Specifications of Businesses and Systems, pp. 175–

188. Kluwer Academic Publishers (1999)

22. Maraninchi, F., Morel, L.: Logical-time contracts for reactive embedded components. In:

EUROMICRO, pp. 48–55. IEEE Computer Society (2004)

23. Marchand, H., Bournai, P., Le Borgne, M., Le Guernic, P.: Synthesis of discrete-event con-

trollers based on the Signal environment. Discrete Event Dynamic System: Theory and Ap-

plications 10(4), 325–346 (2000)

24. Marchand, H., Rutten, E., Le Borgne, M., Samaan, M.: Formal verification of programs spec-

ified with Signal: Application to a power transformer station controller. Science of Computer

Programming 41(1), 85–104 (2001)

25. Meyer, B.: Object-oriented software construction (2nd ed.). Prentice-Hall, Inc. (1997)

26. Mitchell, R., McKim, J., Meyer, B.: Design by contract, by example. Addison Wesley Long-

man Publishing Co., Inc. (2002)

27. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are modalities

good for interface theories? In: Proc. of the 9th International Conference on Application

of Concurrency to System Design (ACSD’09), pp. 119–127. IEEE Computer Society Press

(2009)

