
HAL Id: hal-00516973
https://hal.archives-ouvertes.fr/hal-00516973v2

Preprint submitted on 11 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplicial Differential Calculus, Divided Differences, and
Construction of Weil Functors

Wolfgang Bertram

To cite this version:
Wolfgang Bertram. Simplicial Differential Calculus, Divided Differences, and Construction of Weil
Functors. 2011. �hal-00516973v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50023509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00516973v2
https://hal.archives-ouvertes.fr


SIMPLICIAL DIFFERENTIAL CALCULUS, DIVIDED

DIFFERENCES, AND CONSTRUCTION OF WEIL FUNCTORS

WOLFGANG BERTRAM

Abstract. We define a simplicial differential calculus by generalizing divided

differences from the case of curves to the case of general maps, defined on general
topological vector spaces, or even on modules over a topological ring K. This
calculus has the advantage that the number of evaluation points grows linearly
with the degree, and not exponentially as in the classical, “cubic” approach.
In particular, it is better adapted to the case of positive characteristic, where
it permits to define Weil functors corresponding to scalar extension from K to
truncated polynomial rings K[X ]/(Xk+1).

Introduction

When one tries to develop differential calculus in positive characteristic, a major
problem arises from the fact that the Taylor expansion of a function f involves
a factor 1

k!
in front of the differential dkf(x). In the present work, we define a

version of differential calculus, called simplicial differential calculus, that allows one
to avoid this factor. The methods are completely general and should be of interest
also in the case of characteristic zero since they point a way to reduce the growth
of the number of variables from an exponential one, arising in the usual “cubic”
differential calculus, to a linear one. Moreover, we hope that they will build a
bridge between differential geometry and algebraic geometry since they show how
to “embed” infinitesimal methods used there, based on “simplicial” ring extensions,
into ordinary cubic differential calculus.

Let us explain the problem first by looking at functions of one variable (i.e.,
curves), before coming to the general case. If f : I → W is such a function, say of
class C2, the second differential at x can be obtained as a limit

f ′′(x) = lim
s,t→0

f(x+ t + s)− f(x+ t)− f(x+ s) + f(x)

st
.

This formula arises simply from iterating the formula for the first differential. There
are similar formulae for higher differentials dkf(x); at each stage the number of
points where evaluation of f takes place is doubled, so that 2k points are involved.
This corresponds to the vertices of a hypercube, and therefore we call this version
of differential calculus “cubic”. A systematic generalization of this calculus is the
general differential calculus developed in [BGN04], where a characteristic feature
is that we look at higher order difference quotient maps f [k] involving evaluation
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2 WOLFGANG BERTRAM

of f at 2k generically pairwise different points, and in [Be08] we followed this line
of thought by investigating the differential geometry of higher order tangent maps
T kf . The advantage of this calculus is its easy inductive definition; the drawback
is the exponential growth of variables.

Now, in the case of curves, there is another formula for the second differential:

1

2
f ′′(x) = lim

a,b,c→x

( f(a)

(a− b)(a− c)
+

f(b)

(b− a)(b− c)
+

f(c)

(c− a)(c− b)

)

It involves evaluation only at 3 points, and it has the advantage of automatically
producing the second derivative term of the Taylor expansion, so that we can write
the expansion without having to divide by factorials. This generalizes to any order:
define divided differences by the formula (see Chapter 7 in [BGN04], [Sch84] or
[Ro00]; see also the Wikepedia-page on “divided differences”):

[t1, . . . , tk+1; f ] :=

k+1∑

j=1

f(tj)∏
i 6=j(tj − ti)

where ti 6= tj. If f is Ck in the usual sense (say, over R or C), then the divided
differences admit a continuous extension to a map defined on Ik+1 (including the
“singular set”, where some of the ti’s coincide), and the k-th derivative f (k)(t) is
obtained as a “diagonal value” of this extended function via

1

k!
f (k)(t) = [t, . . . , t; f ].

Since evaluation of f only at k+1 points is used, we call this definition of higher order
differentials simplicial. Geometrically, the factor k! represents the ratio between the
volume of the standard hypercube and the standard simplex.

Next let us look at functions of several (finitely or infinitely many) variables, say
f : U → W defined on an open part U of some topological vector space V . As
shown in [BGN04], the “cubic” calculus generalizes very well to this framework.
However, to our knowledge, a reasonable “simplicial” theory, generalizing the di-
vided differences, has so far not been developed (see below for some remarks on
related literature). By “reasonable” we mean a calculus that shares some main
features with “usual” calculus – above all, there must be some version of the chain
rule, so that one can define categories like smooth manifolds, bundles, etc. For this
it is not enough to look simply at curves γ and to consider divided differences of the
function f ◦ γ; rather, these should appear as certain special values of the general
simplicial theory. We propose the following general definition of generalized divided
differences (Section 1.2):

f 〈k〉(v0, . . . , vk; s0, . . . , sk) :=
f(v0)

(s0 − s1) · · · (s0 − sk)
+

f
(
v0 + (s1 − s0)v1

)

(s1 − s0)(s1 − s2) · · · (s1 − sk)

+ . . .+
f
(
v0 + (sk − s0)v1 + . . .+ (sk − s0) · · · (sk − sk−1)vk

)

(sk − s0) · · · (sk − sk−1)

Here, v := (v0, . . . , vk) is a k + 1-tuple of “space variables”, and s := (s0, . . . , sk)
a k + 1-tuple of “time (scalar) variables”; hence the the number of variables grows
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linearly with k. If v0 = x, s0 = 0, v1 = h and all other vj = 0, then we are back in
the case of divided differences of f ◦ γ for the curve γ(t) = x+ th. We will say that
f is k times simplicially differentiable, or of class C〈k〉, if these generalized divided
differences extend to continuous maps defined also for singular scalar values (that
is, for s such that not all si − sj are invertible, in particular, to s = (0, . . . , 0)).

The main motivation for this definition is that there is indeed a version of the
chain rule, and that the corresponding theory of manifolds and their bundles per-
mits to define jet bundles also in positive characteristic; this seems to be indeed the
correct framework for generalizing the theory of Weil functors to arbitrary charac-
teristic (see [KMS93], Chapter VIII for an account on the real theory).1 To state
the chain rule, we define for any s, the simplicial s-extension to be the vector

SJ(s)f(v) :=
(
f(v0), f

〈1〉(v0, v1; s0, s1), . . . , f
〈k〉(v; s)

)
,

so that SJ(s)f : SJ(s)U → W k+1 is a map from an open part SJ(s)U of V k+1 to
W k+1. Then the chain rule (Theorem 1.10) says that SJ(s)(g ◦ f) = SJ(s)g ◦ SJ(s)f ,
i.e., SJ(s) is a covariant functor. In particular, for s = (0, . . . , 0) this really is a
true generalization of the classical chain rule. Closely related to this is a result
(Theorem 1.7 and Corollary 1.11) characterizing C〈k〉-maps as the maps satisfying a
certain “limited expansion”, which contains as a special case a version of the Taylor
expansion involving only the “simplicial differentials” SJ(0,...,0)f , without division
by factorials.

The chain rule leads directly to the algebraic viewpoint of scalar extension (Chap-
ter 2), and to the construction ofWeil functors (Chapter 3). Here we take advantage
of the generality of our framework, allowing to take for K a commutative topological
base ring – all definitions and results mentioned so far make sense in this general-
ity. Now combine this with the basic observation from the theory of Weil functors:
applying a covariant, product preserving functor like F := SJ(s) to the base ring K

with its structure maps a (addition) and m (multiplication), we get again a ring

(FK, Fa, Fm). The ring SJ(s)K thus obtained is never a field (even if K is), but
it is still a well-behaved commutative topological ring, and therefore we can speak
of smooth maps over this ring. We prove (Theorem 2.7): If f is of class C<k+m>

over K, then SJ(s)f is of class C<m> over SJ(s)K, and we determine explicitly the
structure of SJ(s)K (Lemma 2.8): The ring SJ(s)K is naturally isomorphic to the
truncated polynomial ring

B
s := K[X ]/

(
X(X − (s1 − s0)) · . . . · (X − (sk − s0))

)
.

Putting these two results together, for s = 0, we may say that SJ(0,...,0) is the
functor of scalar extension from K to K[X ]/(Xk+1). These results have multiple
applications: on the one hand, as long as s is non-singular (i.e., if si−sj is invertible
for i 6= j), they reduce the complicated structure of finite differences to the better

accessible structure of rings. On the other hand, the functors SJ(s) carry over to

1Note, however, that Thm 35.5 in loc. cit. contains an error: not all finite-dimensional quotients
of polynomial algebras are Weil algebras (this is one of the points of the present work). A corrected
version of this claim can be found in Section 1.5 of [K08].
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the category of manifolds. To be precise, if s 6= (0, . . . , 0), then SJ(s) is a functor
in the category of manifolds with atlas (Theorem 3.2), and if s = (0, . . . , 0), then
difference calculus contracts to “local (i.e., support-decreasing) calculus”, hence

leads to differential geometry: in this case the functor of scalar extension SJ(s)

carries over to the category of manifolds, defining for each K-manifold M a bundle
SJkM := SJ(0,...,0)M overM which is independent of the atlas ofM . This is precisely
the version of the jet functor that works well in any characteristic, and it now makes
sense to consider SJkM as a manifold defined over the ring SJkK = K[X ]/(Xk+1)
(Theorem 3.4).

A second main topic of the present work is to investigate the relation between
“cubic” and “simplicial” calculus. Indeed, the point of view of Weil functors has
been already investigated in the “cubic” framework ([Be08]), where we have ob-
served that this framework leads to some loss of information in the case of positive
characteristic.2 We recall in Section 1.1 the “cubic” C[k]-concept from [BGN04],
and we prove (Theorem 1.6): “Cubic implies simplicial”: if f is C[k], then f is C〈k〉.
Moreover, there is an “embedding” of the simplicial divided differences into the cu-
bic higher order difference quotients. The latter are far too complicated to allow for
an explicit, “closed” formula which would be comparable to the simplicial formula
given above; all the more it is appreciable that the point of view of scalar extension
works also on the the cubic level: we define inductively a family of rings At (where

now t ∈ K2k−1, and the K-dimension of At is 2k) and show (Theorem 2.6): The cu-
bic extended tangent functor T (t) can be interpreted as the scalar extension functor
from K to At. In particular, for t = 0, we get the higher order tangent functors
T k considered in [Be08]. The embedding of simplicial divided differences into the
cubic theory then translates into algebra (Theorem 2.9): There is an embedding of
algebras Bs → At (where t = t(s) depends on s). Correspondingly, if f is C[k], the
“simplicial Weil functors” can be embedded into a family of “cubic Weil functors”
(Theorem 3.4). This embedding is “off-diagonal” (i.e., “most” components of t
are zero, but some are not), and has a more subtle structure than the “diagonal”
embedding used in [Be08].

Let us add some (possibly incomplete) remarks on related literature. The defi-
nition of “r-th order difference factorizer” in Section 5.b of [Nel88] may be seen as
an attempt to define some kind of divided differences for several variables; these
objects are defined in a similar way as the usual divided differences, leading to the
serious drawback that they are no longer uniquely defined by f as soon as the space
dimension is bigger than one. Having introduced them, L.D. Nel decides “not to
study them in any depth in this paper”. “Simplicial” objects appear also in syn-
thetic differential geometry (see Section I.18 of [Ko81]) and in algebraic geometry
(see [BM01]); the approach is different, and it would be interesting to investigate
in more detail the relation with the theory developed here.

Finally, let us mention some open problems and further topics (see also [Be08b]).
Firstly, we conjecture that the converse of Theorem 1.6 also holds: “simplicially

2cf. the note in loc. cit., p. 13; the theory from [Be08] works in arbitrary characteristic, mainly
because we use there the “second order Taylor formula” from [BGN04], which is already simplicial
in nature; but the theory itself is not simplicial.
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smooth implies cubically smooth”, hence both concepts are equivalent (to be more
precise, we conjecture that this is true at least if K is a field since that assumption
has turned out to be sufficient for a similar result concerning curves, see [BGN04],
Prop. 6.9). A proof of this conjecture would imply that the simplicial differential is
always polynomial (which is indeed the case under the assumption that f be C[k]),
and should also indicate a procedure how to recover, in a natural way, the algebras
At from the “smaller” algebras Bs. Secondly, the simplicial point of view suggests
the adaptation of the “cubic” differential geometry and Lie theory from [Be08] to
this framework. In a certain sense, this would amount in the combination of the
theory of scalar extensions and Weil functors with “simplicial” concepts present in
[Wh82]. This is of course a vast topic, which will be taken up elsewhere.

Acknowledgment. I thank my collegue Alain Genestier for stimulating discussions
and for suggesting to me the correct formula describing the generalized divided
differences, and the unknown referee for careful reading and helpful suggestions.

Notation. In the following, the base ring K will be a unital commutative topological
ring with dense unit group K× ⊂ K; all K-modules V,W will be topological K-
modules, and domains of definition U will be open (or, more generally, subsets
having a dense interior). The class of continuous maps will be denoted by C[0] or
C<0>. For some purely algebraic results in Chapter 2, the topology will not be
necessary, and one might instead use arguments of Zariski-density; we leave such
modifications to the reader.

1. Differential calculi

1.1. Cubic differential calculus. We recall the basic definitions of the “cubic”
theory developed in [BGN04] (see also Chapter 1 of [Be08]).

Definition 1.1. We say that f : U → W is of class C[1] if the first order difference
quotient map

(x, v, t) 7→
f(x+ tv)− f(x)

t
extends continuously onto the extended domain

U [1] := {(x, v, t) ∈ V × V ×K| x ∈ U, x+ tv ∈ U},

i.e., if there exists a continuous map f [1] : U [1] → W such that f [1](x, v, t) =
f(x+tv)−f(x)

t
whenever t is invertible. By density of K× in K, the map f [1] is unique

if it exists, and so is the value

df(x)v := f [1](x, v, 0).

The extended tangent map is then defined by

T̂ f :U [1] → W [1] = W ×W ×K,

(x, v, t) 7→ T̂ f(x, v, t) := T̂ (t)f(x, v) :=
(
f(x), f [1](x, v, t), t

)
.

If f is C[1], the differential df(x) : V → W is continuous and linear, and T̂ is a

functor: T̂ (g ◦ f) = T̂ g ◦ T̂ f ; this is equivalent to saying that for each t ∈ K we

have a functor T̂ (t), and for t = 0 this gives the usual chain rule (see loc. cit. for the
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easy proofs). Moreover, for each t, the functor T̂ (t) commutes with direct products:

T̂ (t)(g × f) is naturally identified with T̂ (t)f × T̂ (t)g.

Definition 1.2. The classes C[k] are defined by induction: we say that f is of
class C[k+1] if it is of class C[k] and if f [k] : U [k] → W is again of class C[1], where
f [k] := (f [k−1])[1]. The higher order extended tangent maps are defined by T̂ k+1f :=

T̂ (T̂ kf).

Among the higher order differentiation rules proved in [BGN04], Schwarz’s Lemma
and the generalized Taylor expansion are the most important. Both will be discussed
in more detail later on. Explicit formulae for the higher order difference quotient
maps tend to be very complicated. For convenience of the reader, we give here the
explicit formula in case k = 2:

f [2]((x, v1, t1), (v2, v12, t12), t2)

=
f [1]((x, v1, t1) + t2(v2, v12, t12))− f [1](x, v1, t1)

t2

=
f
(
x+ t2v2 + (t1 + t2t12)(v1 + t2v12)

)
− f(x+ t2v2)

t2(t1 + t2t12)
−

f(x+ t1v1)− f(x)

t1t2

where of course it is assumed that the scalars in the denominator belong to K×.
Observe also that the factor t12 never stands alone, hence in the limit (t1, t2) →
(0, 0), we obtain a local (i.e., support-decreasing) operator even if t12 does not
tend to zero (e.g., for t12 = 1); in finite dimensions over R, by the classical Peetre
Theorem (see [KrM97]), we thus obtain a differential operator. In the general case,
this observation will be taken up later (Theorem 3.4). It would be hopeless to try
to develop the theory by writing out in this way the formulae for f [k] in general –
they involve, in a fairly complicated way, the values of f at 2k generically different
points. Here is a first step towards an efficient organization of these variables: we
group together “space variables” on one hand and “time variables” on the other
hand; that is, f [k] contains 2k − 1 variables from K which we may fix and look at
the remaining transformation on the space level:

Definition 1.3. Let I = {1, . . . , n} be the standard n-element set and fix a family

t := (tJ)J⊂I,J 6=∅ of elements tJ ∈ K. In other words, t ∈ K2k−1. If J = {i1, . . . , ik},
then instead of tJ we write also ti1,...,ik . We define the (cubic) t-extension T (t)f of

f to be the partial map of T̂ nf where the scalar parameters have the fixed value t.
Thus, for n = 1, T (t)f(x, v) = (f(x), f [1](x, v, t)) is the map introduced above, and
for n = 2 we get with t = (t1, t2, t1,2)

T (t)f(x, v1, v2, v1,2) =(
f(x), f [1](x, v1, t1), f

[1](x, v2, t2), f
[2]((x, v1, t1), (v2, v1,2, t1,2), t2)

)
.

For general t, T (t)f is defined on an open set T (t)U ⊂ V 2n and takes values in W 2n.

By induction it follows immediately from the remarks concerning the case n = 1
that T (t) is a covariant functor preserving direct products. For t = 0, this is the
higher order tangent functor denoted by T n in [Be08].
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1.2. Simplicial differential calculus. We will write k-tuples of vectors or of
scalars in the form v := (v0, . . . , vk) ∈ V k+1, s := (s0, . . . , sk) ∈ Kk+1, and we
will say that s is non-singular if, for i 6= j, si − sj is invertible.

Definition 1.4. For a map f : U → W and non-singular s ∈ Kk+1, we define
(generalized) divided differences by

f>k<(v; s) :=
f(v0)∏

j=1,...,k(s0 − sj)
+

k∑

i=1

f
(
v0 +

∑i

j=1

∏j−1
ℓ=0(si − sℓ)vj

)
∏

j=0,...,k
j 6=i

(si − sj)
.

For convenience, we spell this formula out explicitly, as follows: f>0<(v0; s0) :=
f(v0) and

f 〉1〈(v0, v1; s0, s1) =
f(v0)

s0 − s1
+

f(v0 + (s1 − s0)v1)

s1 − s0

f>2<(v0, v1, v2; s0, s1, s2) =
f(v0)

(s0 − s1)(s0 − s2)
+

f(v0 + (s1 − s0)v1)

(s1 − s0)(s1 − s2)
+

f(v0 + (s2 − s0)v1 + (s2 − s1)(s2 − s0)v2)

(s2 − s0)(s2 − s1)

and

f>k<(v; s) :=
f(v0)

(s0 − s1) · . . . · (s0 − sk)
+

f
(
v0 + (s1 − s0)v1

)

(s1 − s0)(s1 − s2) · . . . · (s1 − sk)
+

f
(
v0 + (s2 − s0)v1 + (s2 − s1)(s2 − s0)v2

)

(s2 − s0)(s2 − s1)(s2 − s3) · . . . · (s2 − sk)
+ . . .+

f
(
v0 + (sk − s0)v1 + . . .+ (sk − sk−1)(sk − sk−2) · . . . · (sk − s0)vk

)

(sk − s0)(sk − s1) · . . . · (sk − sk−1)

We say that f is of class C〈k〉, or k times continuously simplicially differentiable, if
f 〉ℓ〈 extends continuously to singular values of s, for all ℓ = 1, . . . , k. This means
that there are continuous maps f<ℓ> : U<ℓ> → W , where

U<ℓ> :=
{
(v, s) ∈ V ℓ ×K

ℓ| v0 ∈ U, ∀i = 1, . . . , ℓ : v0 +

i∑

j=1

j∏

m=1

(si − sm)vj ∈ U
}
,

such that, whenever (v, s) ∈ U<ℓ> and s is non-singular,

f 〉ℓ〈(v; s) = f<ℓ>(v; s).

The map f<ℓ> will be called the extended divided difference map. Note that, by
density of K× in K, the extension f<ℓ> is unique (if it exists), and hence in par-
ticular the value f<ℓ>(v; 0), called the ℓ-th order simplicial differential, is uniquely
determined.

One may observe that f 〈k〉(v; s0, . . . , sk) = f 〈k〉(v; s0 − t, . . . , sk − t) for all t ∈ K

since only differences of scalar values appear in the definition; in particular, we may
choose t = s0, so that for many purposes one may assume that s0 = 0. It is clear
that f is C[1] if and only if f is C〈1〉, since

(1.1) f [1](x, v, t) = f 〈1〉(x, v; 0, t), f 〈1〉(v0, v1; s, t) = f [1](v0, v1, t− s).
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For k > 1, it is less easy to compare both concepts. In order to attack this problem,
we start by proving a recursion formula:

Lemma 1.5. The following recursion formula holds: for non-singular s,

f>k+1<(v0, . . . , vk+1; s0, . . . , sk+1) =
1

sk − sk+1

(
f>k<(v0, . . . , vk; s0, . . . , sk)−

f>k<
(
v0, v1, . . . , vk−1, vk + (sk+1 − sk)vk+1; s1, . . . , sk−1, sk+1

))

Proof. We are going to compute the right-hand side term of this equation. To
this end, observe that, in the definition of f>k<(v; s), the values of f at k + 1
(generically pairwise different) points occur, where the j-th point depends only on
(v1, . . . , vj; s0, . . . , sj). Hence, for j = 0, . . . , k−1, these points of evaluation are the
same for both terms of which the difference is taken. Using the algebraic identity

1

a− c

( 1

b− a
−

1

b− c

)
=

1

(b− a)(b− c)
,

we get for the difference of two such terms

1

sk − sk+1

(f
(
v0 + (sj − s0)v1 + . . .+ (sj − sj−1) . . . (sj − s0)vj

)

(sj − sk)
∏

i=0,...,k−1
i6=j

(sj − si)
−

f
(
v0 + (sj − s0)v1 + . . .+ (sj − sj−1) . . . (sj − s0)vj

)

(sj − sk+1)
∏

i=0,...,k−1
i6=j

(sj − si)

)

=
1

sk − sk+1

( 1

sj − sk
−

1

sj − sk+1

)f
(
v0 + (sj − s0)v1 + . . .+ (sj − sj−1) . . . (sj − s0)vj

)
∏

i=0,...,k−1
i6=j

(sj − si)

=
f
(
v0 + (sj − s0)v1 + . . .+ (sj − sj−1) . . . (sj − s0)vj

)
∏

i=0,...,k+1
i6=j

(sj − si)

which is exactly the j-th term appearing in the definition of f>k+1<. It remains to
show that the difference of the k-th terms leads exactly to the last two terms in the
definition of f>k+1<. Now, from

1

sk − sk+1

f
(
v0 + (sk − s0)v1 + . . .+ (sk − sk−1) . . . (sk − s0)vk

)
∏

i=0,...,k−1(sk − si)

we readily obtain the k-th term, and from

−
1

sk − sk+1

f
(
v0 + (sk+1 − s0)v1 + . . .+ (sk+1 − sk−1) . . . (sk+1 − s0)(vk + (sk+1 − sk)vk+1)

)
∏

i=0,...,k−1(sk+1 − si)

we get the last term. �

Theorem 1.6. If f is of class C[k], then f is of class C〈k〉. Moreover, f 〈j〉 (with
j = 0, . . . , k) is then of class C[k−j], and the following relation holds for all s:

−f 〈k〉(v; s) =

(f 〈k−1〉)[1]
((

v0, . . . , vk−1; s0, . . . , sk−1

)
,
(
0, . . . , 0, vk; 0, . . . , 0, 1

)
, sk − sk−1

)
.
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The simplicial differential quotient maps can be embedded into the cubic ones in the
sense that there exist C[∞]- (in fact, affine continuous) maps gk : U 〈k〉 → U [k] such
that

f 〈k〉(v; s) = ±f [k](gk(v; s)).

For k ∈ {1, 2, 3} we have the following explicit formulae for these embeddings:

f 〈1〉(v; s) = f [1]
(
v0, v1, s1 − s0

)

f<2>(v; s) = −f [2]
(
(v0, v1, s1 − s0), (0, v2, 1), s2 − s1

)

f<3>(v; s) = f [3]
((

(v0, v1, s1 − s0), (0, v2, 1), s2 − s1
)
,
(
(0, 0, 0), (0, v3, 0), 1

)
, s3 − s2

)

Proof. All claims are proved by induction, the case k = 1 being trivial thanks to
Equation (1.1). We write the recursion formula from the preceding lemma as

f>k+1<(v0, . . . , vk+1; s0, . . . , sk+1) =
1

sk − sk+1

(
f>k<(v0, . . . , vk; s0, . . . , sk)−

f>k<
(
v0, v1, . . . , vk−1, vk + (sk+1 − sk)vk+1; s1, . . . , sk−1, sk + (sk+1 − sk)

))

which has the form of a first order difference quotient, equal to

−(f 〈k〉)[1]
((

v0, . . . , vk; s0, . . . , sk
)
,
(
0, . . . , 0, vk+1; 0, . . . , 0, 1

)
, sk+1 − sk

)

for non-singular s. Now assume we have proved the claims of the theorem for order
k, and let f be a map of class C[k+1]. By induction, f 〈k〉 is thus of class C[1], and hence
the right hand side term from the formula extends to a continuous map of (v; s)
on the extended domain. Thus f>k+1<(v; s) indeed admits a continuous extension
onto the extended domain, given by the right hand side term. This proves that f is
C<k+1>, and that the formula for f<k+1>(v; s) from the claim holds. Note that, by
density, this formula holds for all s (including singular values). Moreover, it shows
that f<k+1> is embedded into f [k+1] by a continuous affine map, and hence all maps
f 〈j〉, being composition of C[k+1−j]-maps, are again C[k+1−j], by the chain rule. �

As mentioned in the introduction, we conjecture that the concepts C[k] and C〈k〉 are
equivalent; however, the proof of the converse of the statement from the theorem is
likely to be considerably more complicated. For the purposes of the present work,
this converse is not needed, as it is clearer and more instructive to develop the
C〈k〉-theory independently from the C[k]-theory, before comparing both approaches.
Thus, in the following, we develop the basic simplicial theory. First of all, it is clear
that f 〈1〉(v0, v1; 0, 0) = df(v0)v1 is the usual first differential. We will explain now
how higher coefficients like f<2>(v0, v1, v2; 0, 0, 0) are related to second and higher
differentials.

Theorem 1.7. Assume f : U → W is of class C〈k〉. Then the following “limited
expansions” hold: for all s,

f
(
v0 + (s1 − s0)v1)

)
= f(v0) + (s1 − s0)f

〈1〉(v0, v1; s0, s1)

f
(
v0 + (s2 − s0)(v1 + (s2 − s1)v2)

)
= f(v0) + (s2 − s0)f

〈1〉(v0, v1; s0, s1)+

(s2 − s1)(s2 − s0)f
<2>(v0, v1, v2; s0, s1, s2)

...
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f
(
v0 +

k∑

j=1

j−1∏

ℓ=0

(sk − sℓ)vj
)

= f(v0) +
k∑

j=1

j−1∏

ℓ=0

(sk − sℓ)f
〈j〉(v0, . . . , vj; s0, . . . , sj)

In particular, choosing s0 = s1 = . . . = sk−1 = 0 and sk = t, we get

f(v0 + tv1 + t2v2 + . . .+ tkvk) = f(v0) + tf 〈1〉(v0, v1; 0, 0) + t2f<2>(v0, v1, v2; 0, 0, 0)
+ . . .+ tkf 〈k〉(v; 0, . . . , t),

which, for v2 = . . . = vk = 0 and v1 =: h gives the radial Taylor expansion

f(v0 + th) = f(v0) + tf 〈1〉(v0, h; 0, 0) + t2f<2>(v0, h, 0; 0, 0, 0)
+ . . .+ tkf 〈k〉(v0, h, . . . , 0; 0, . . . , t).

Proof. The claim is proved by induction. The computation can be seen as multivari-
able analog of the proof of the generalized Taylor expansion from [BGN04], Th. 5.1,
consisting of a repeated application of the relation f(x+ tv) = f(x) + tf [1](x, v, t).
For k = 1 we have

f(v0 + (s1 − s0)v1) = f(v0) + (s1 − s0)f
[1](v0, v1, s1 − s0)

= f(v0) + (s1 − s0)f
〈1〉(v0, v1; s0, s1).

For k = 2, replace in the preceding equation s1 by s2 and v1 by v1 + (s2 − s1)v2,

f
(
v0 + (s2 − s0)(v1 + (s2 − s1)v2)

)
= f(v0) + (s2 − s0)f

〈1〉(v0, v1 + (s2 − s1)v2; s0, s2)

= f(v0) + (s2 − s0)
(
f 〈1〉(v0, v1; s0, s1)+

(s2 − s1)f
<2>(v0, v1, v2; s0, s1, s2)

)

where for the last equality we used the recursion formula (in its form valid on the
extended domain, given in Theorem 1.6). For k = 3, we replace again s2 by s3 and
v2 by v2 + (s3 − s2)v3, and proceed in the same way, and so on. The remaining
statements are immediate consequences. �

Corollary 1.8. Assume f : U → W is of class C[k] and denote by

f(x+ th) = f(x) + ta1(x, h) + t2a2(x, h) + . . .+ tkak(x, h) + tkRk(x, h, t)

the radial Taylor expansion of f at x from [BGN04], Theorem 5.1. Then this
expansion coincides with the one given in the preceding theorem, that is,

aj(x, h) = f 〈j〉(x, h, 0, . . . , 0; 0, . . . , 0).

In particular, the maps h 7→ f 〈j〉(x, h, 0, . . . , 0; 0, . . . , 0) are polynomial. If 2 is
invertible in K, then

f<2>(v0, v1, v2; 0, 0, 0) = df(v0)v2 +
1

2
d2f(v0)(v1, v1),

and if 2 and 3 are invertible in K, then

f<3>(v0, v1, v2, v3; 0, 0, 0, 0) = df(v0)v3 + d2f(v0)(v1, v2) +
1

6
d3f(v0)(v1, v1, v1),

and if 2, . . . , k are invertible in K, then f 〈k〉(v; 0) is polynomial in v, and

f 〈k〉(v0, v1, 0, . . . , 0; 0, . . . , 0) =
1

k!
dkf(v0)(v1, . . . , v1).
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Proof. The first claim follows from uniqueness of the radial Taylor expansion (see
[BGN04], Lemma 5.2). It has been shown in [BGN04], Theorem 5.6, that the co-
efficients aj(x, h) are polynomial mappings in h, hence f 〈j〉(x, h, 0, . . . , 0; 0, . . . , 0)
is polynomial in h Note that, as shown in [BGN04], a2(x, h) = 1

2
d2f(x)(h, h)

and a3(x, h) = 1
6
d2f(x)(h, h, h) (if 2, resp. 6, are invertible). For the remain-

ing statements, we use again the radial Taylor expansion for f(x + th) and let
h = v1 + tv2 + t2v3,

f(v0+t(v1+tv2+t2v3)) = f(v0)+tdf(v0)h+
t2

2
d2f(v0)(h, h)+

t3

6
d3f(v0)(h, h, h)+t3R3,

use multilinearity and symmetry of d2f(v0) and of d3f(v0) and compare terms
according to powers of t with the limited expansion from the theorem; uniqueness
of these terms leads to the two equalities concerning f<2> and f<3>. Clearly, this
procedure can be applied at any order, leading to an explicit and polynomial formula
for f 〈k〉(v; 0) (we leave it to the reader to work out the explicit combinatorial formula
involving all higher differentials djf(v0), j = 1, . . . , k; it has the same structure as
the formula for the highest component in Jkf(v0) given in [Be08], Theorem 8.6). �

As mentioned above, we conjecture that the converse of Theorem 1.6 holds. It
should be a major step towards the proof of the conjecture to prove, if f is assumed
C〈k〉, that f 〈k〉(v; 0) is always polynomial in v. In this context, note that from
the expression of f<3>, we should indeed be able to recover the second differential
d2f(v0), without a factor 1

2
, and then one has to prove that this expression is indeed

bilinear; similarly for higher order differentials.

Definition 1.9. Assume that f : U → W is of class C〈k〉, and let v0 ∈ U . For any
s ∈ Kk+1 we define the simplicial s-extension of f by

SJ(s)f : SJ(s)U → W k+1, v 7→




f(v0)
f 〈1〉(v0, v1; s0, s1)

...
f 〈k〉(v0, . . . , vk; s0, . . . , sk)




where

SJ(s)U :=
{
v ∈ V k+1| v0 ∈ U, ∀i = 1, . . . , k : v0 +

i∑

j=1

j∏

ℓ=1

(si − sℓ)vj ∈ U
}

(this set is open in V k+1). For s = (0, . . . , 0), the map

SJkf := SJ(0,...,0)f : U × V k → W k+1

is called the simplicial k-jet of f .

Theorem 1.10. (Chain rule) The simplicial s-extension is a covariant functor: if
f : U → W and g : U ′ → W ′ are of class C〈k〉 and such that f(U) ⊂ U ′, then g ◦ f
is of class C〈k〉 and, for all s ∈ Kk+1,

SJ(s)(g ◦ f) = SJ(s)(g) ◦ SJ(s)(f).

The identity map idU is of class C〈k〉 and satisfies SJ(s)(idU) = idSJ(s)(U). In partic-
ular, for s = 0, we see that the simplicial k-jet defines a covariant functor.
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Proof. First, we prove the claims for non-singular s, i.e., si − sj ∈ K×; by density
of K× in K and by continuity of terms on both sides of the equation, it will then
hold for all s.

By induction, we show that id〈k〉(v; s) = vk. Indeed, for k = 0 and k = 1 it
follows directly from the definitions, and using the recursion formula (Lemma 1.5)

id<k+1>(v; s) =
vk − (vk + (sk+1 − sk)vk+1)

sk − sk+1
= vk+1,

whence SJ(s)(idU) = idSJ(s)(U).

Next we show that, for non-singular s, SJ(s)f is (linearly) conjugate to the direct
product ×k+1f : ×k+1U → ×k+1W . In order to prove this, define the linear operator

(1.2) Ms : V
k+1 → W k+1, v 7→

(
v0 + (si − s0)v1 + . . .+

i∏

j=0

(si − sj)vi
)
i=0,...,k

which may be identified with the invertible lower triangular (k+1)× (k+1)-matrix

(1.3) Ms =




1
1 s1 − s0
1 s2 − s0 (s2 − s1)(s2 − s0)

1 sk − s0 (sk − s1)(sk − s0) . . .
∏

i<k(sk − si)




Using this notation, the “limited expansion” from the preceding theorem can be
restated as follows: for i = 0, . . . , k,

f
(
(Msv)i

)
=

(
Ms(SJ

(s)f(v))
)
i
,

that is,

(1.4) (×k+1f) ◦Ms = Ms ◦ SJ
(s)f

where ×k+1f : Uk+1 → W k+1 is simply the k+1-fold direct product of f with itself.
The operator Ms is invertible (since so is its “matrix”); let Ns := (Ms)

−1, so that

(1.5) Ns ◦ (×
k+1f) ◦Ms = SJ(s)f.

In other words, the operator SJ(s) is linearly conjugate to the direct product functor
and hence is itself a (covariant) functor: for f and g as in the theorem,

SJ(s)(g ◦ f) = Ns ◦ (×
k+1(g ◦ f)) ◦Ms

= Ns ◦ (×
k+1g) ◦ (×k+1f) ◦Ms

= Ns ◦ (×
k+1g) ◦Ms ◦Ns ◦ (×

k+1f) ◦Ms

= SJ(s)g ◦ SJ(s)f .

As explained above, by continuity and density the result follows for all s. �

One should regard Ms as a “change of variables”, which is bijective as long as
s is non-singular, and then serves to “trivialize” the whole situation. However, as
soon as s becomes singular, the change of variables is no longer bijective, leading
to the non-trivial structure of differential calculus. Nevertheless, certain features of
the “trivial” situation survive, among them functoriality. The promised “explicit
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formula” for Ns with non-singular s can be derived easily from the explicit formula
of the simplicial difference quotients: it is the linear map

Ns : W
k+1 → V k+1, w 7→ (Nsw)i =

w0∏
m=1,...,k(s0 − sm)

+

i∑

j=1

wj∏
m=0,...,j

m6=j
(sj − sm)

which can be identified with a lower triangular matrix of the type

N =




1
(s0 − s1)

−1 (s1 − s0)
−1

((s0 − s1)(s0 − s2))
−1 ((s1 − s2)(s1 − s0))

−1 ((s2 − s1)(s2 − s0))
−1

. . . . . .
. . .




Of course, one may check by a direct computation that the inverse matrix of Ms

is indeed given by such a formula. Finally, we point out that, in the situation of
Corollary 1.8, for s = 0, the Chain Rule can be written out explicitly and then
corresponds to the “Fáa di Bruno formula” (cf. [Be08], 8.7).

Corollary 1.11. A map f : U → W is of class C〈k〉 if and only if, for j = 1, . . . , k,
there exist continuous maps f 〈j〉 such that the “limited expansion” from Theorem
1.7 holds on the extended domain.

Proof. One direction has been proved in Theorem 1.7. As to the converse, the
arguments given above show that the maps f 〈j〉 are necessarily given by Equation
(1.5), whence they indeed are continuous extensions of the simplicial difference
quotient maps. �

Finally, in the next chapter we will need that the simplicial s-extension functors
commute with direct products:

Lemma 1.12. If f and g are of class C〈k〉, then so is g × f , and

SJ(s)(g × f) = SJ(s)(g)× SJ(s)(f).

It follows that SJ(s) also is compatible with diagonal imbeddings ∆ : x 7→ (x, x).

Proof. This is a rather a notational convention, meaning that we group together
terms coming from f and those coming from g. �

2. The ring theoretic point of view

In this chapter we are going to explain that the functors arising in higher order
difference- and differential calculus can all be understood as certain functors of
scalar extension. The basic remark is very simple: whenever we have a covariant
functor F commuting with direct products, applying F to the base ring K yields a
new ring FK, and in the given context, F can then be interpreted as the functor of
scalar extension by FK. Differential calculus corresponds to a “contraction” of the
ring F : as the parameter s becomes singular, the ring F = Fs tends to a ring F0

that is less rigid, hence allows for more symmetries and a richer invariant theory.
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2.1. First order difference calculus and quadratic scalar extension. Recall
from Definition 1.1 the functor T̂ (t), which is equivalent to the functor SJ(0,t) from
Definition 1.9.

Lemma 2.1. Let (K, a,m) be the base ring with addition map a : K×K → K and

product map m : K × K → K, and let F = T̂ (t) be the extended tangent functor
with fixed parameter t ∈ K. Then a and m are cubically and simplicially smooth,
and (FK, Fa, Fm) is again a ring, which is isomorphic to the truncated polynomial
ring K[X ]/(X2 − tX).

Proof. Since a andm are linear (resp. bilinear), they are smooth, and as aK-module,
FK = K×K. For invertible t, we get m̂(t) by writing the difference quotient

(x0, x1) · (y0, y1) =
(
x0y0 ,

(x0 + tx1)(y0 + ty1)− x0y0
t

)

=
(
x0y0 , x0y1 + x1y0 + tx1y1

)
.

In a similar way, we see that the sum in this ring is just the usual sum in K2.
Hence as a ring, we get K ⊕ ωK with relation ω2 = tω. It can also be described
as the truncated polynomial ring K[X ]/(X2 − tX). Again by density, these state-
ments remain true for non-invertible scalars t, and in particular for t = 0 we ob-
tain the tangent ring TK, which is nothing but the ring of dual numbers over K,
K[X ]/(X2) = K⊕ εK, ε2 = 0. �

Theorem 2.2. Assume f : U → W is C[2] over K. Then T̂ (t)f is C[1] over the ring
K[X ]/(X2 − tX).

Proof. The proof of the special case t = 0 ([Be08], Theorem 6.3) can be applied

literally; it uses only the fact that T̂ (t) is a covariant functor. �

To first order, the cubic and simplicial calculi coincide, and hence the following is
a restatement of the preceding theorem:

Theorem 2.3. Assume f : U → W is C<2> over K. Then SJ(s0,s1)f is C〈1〉 over
the ring K[X ]/(X2 − (s1 − s0)X).

We add a few remarks on the structure of the ring Kt := K[X ]/(X2− tX). There
is a well-defined projection

π : Kt → K, [P (X)] 7→ P (0)

which splits via the natural map K → Kt, r 7→ [r] (inclusion of constant polynomi-
als). The kernel of the projection is isomorphic to K with product (a, b) 7→ atb; if
t is invertible, the kernel is isomorphic to K as a ring, and then Kt is isomorphic
to the direct product of rings K × K. If t is nilpotent, the kernel is a nilpotent
K-algebra, and if t = 0, the kernel carries the zero product.

One may describe any element z = a+ωb ∈ Kt by the 2× 2-matrix representing
the linear map left translation by z. Hence, we are led to define tr(z) := 2a + tb
, det(z) := a2 + tab and z := a + bt − ωb. Then every z satisfies the relation
z2 + tr(z)z + det(z) = 0, and z is invertible iff det(z) is invertible in K, in which
case z−1 = z

z z
= z

det(z)
.
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The automorphism group AutK(Kt) becomes richer as t becomes singular. If t is
invertible, Kt is isomorphic to K × K, and the only non-trivial K-linear automor-
phism is the exchange automorphism exchanging both copies of K. Let us describe
this automorphism in a more geometric way, that shows how this automorphism
survives also for singular t. In general, there are automorphisms arising from the
affine group of K which acts on the polynomial ring K[X ]; such automorphisms
define automorphisms of Kt if they preserve the ideal (X2 − tX) by which we take
the quotient; and this ideal is preserved if the affine map of K preserves the set
of zeroes {0, t} of the ideal. Thus, if t is invertible, the exchange automorphism
is induced by the affine map exchanging the two roots (acting on polynomials by
[a + bX ] 7→ [a + b(t − X)], hence this is also the map z 7→ z described above);
for t = 0, there are more such automorphisms since all dilations preserve the zero
set {0}, and hence we have a one-parameter family of automorphisms, given by
[P (X)] 7→ [P (rX)] with r ∈ K×.

2.2. Higher order cubic calculus and iterated scalar extensions. In differ-
ential geometry, the iterated tangent functors T k = T ◦. . .◦T play an important role
(see [Be08], [Wh82]). In a similar way, we may compose the scalar extension func-
tors from the preceding section: fixing t′ = s+s′X1 ∈ K′ := Kt = K[X1]/(X

2
1−tX1),

we consider the iterated scalar extension

A := K
′
t′ = (Kt)t′ =

(
K[X1]/(X

2
1 − tX1)

)
[X2]/(X

2
2 − s′X1X2 − sX2)

= K[X1, X2]/
(
(X2

1 − tX1), (X
2
2 − s′X1X2 − sX2)

)

and applying Theorem 2.2 twice, the second order functor T (t,s,s′) is seen to be
functor of scalar extension from K to A. More systematically, we now construct a
sequence A0,A1, . . . of K-algebras and of scalar extension functors, extending the
base ring from K to Ak. At each step we have a quadratic ring extension, so that
the dimension over K will double in each step. That is, we will obtain a canonical
identification Ak = K2k as K-modules.

Definition 2.4. Let I = {1, . . . , n} be the standard n-element set and fix a family
t := (tJ)J⊂I of elements tJ ∈ K. If J = {i1, . . . , ik}, then instead of tJ we write
also ti1,...,ik , and we write XJ := Xi1 · · ·Xik for a product of indeterminates. Let

Ak := A
(t)
k be the K-algebra

Ak := K[X1, . . . , Xk]/Rk

where Rk = R
(t)
k is the ideal generated by the polynomials (depending on t)

P1(X1, . . . , Xk) = X2
1 − t1X1

P2(X1, . . . , Xk) = X2
2 − t2X2 − t1,2X1X2

P3(X1, . . . , Xk) = X2
3 − t3X3 − t1,3X1X3 − t2,3X2X3 − t1,2,3X1X2X3

...
Pk(X1, . . . , Xk) = X2

k −
∑

J⊂{1,...,k−1}

tJ∪{k}XJXk .

Lemma 2.5. The algebra Ak is a quadratic ring extension of Ak−1. More precisely,
Ak is a free K-module having dimension 2k, with canonical basis the classes of the
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polynomials XJ with J ⊂ {1, . . . , k}, and as a ring,

Ak = Ak−1[Xk]/(X
2
k − t′ ·Xk)

where t′ := (tJ)J⊂{1,...,k},k∈J is identified with an element of Ak−1 = K2k−1
by map-

ping any J ⊂ {1, . . . , k} such that k ∈ J to the set J \ {k}.

Proof. For k = 1 the claim is obviously true. For general k, the lemma translates
merely the fact that, under the inclusion K[X1, . . . , Xk−1] ⊂ K[X1, . . . , Xk], the
ideal Rk is generated by Rk−1 together with the polynomial Pk, so that

K[X1, . . . , Xk]/Rk =
(
K[X1, . . . , Xk−1]/Rk−1

)
/(Pk),

and Pk is a quadratic polynomial of Xk if all variables except the last are frozen. �

Combinatorial formulas for the “structure constants” ΓJK
L (t) ∈ K, defined by

XJ ·XK ≡
∑

L⊂{1,...,k}

ΓJK
L (t)XL ,

are fairly complicated. It is quite easy to see that ΓJK
L (t) = 0 unless (J ∪K) ⊂ L ⊂

{1, . . . ,max(J,K)}, and that, if J ∩ K = ∅, then XJ · XK = XJ∪K . The general
case is illustrated by relations of the form

X2 ·X{1,2} = X1X
2
2 ≡ X1(t2X2 + t1,2X1X2) = (t2 + t1t1,2)X{1,2},

X2 ·X{2,3} = X2
2X3 ≡ (t2X2 + t1,2X1X2)X3 = t2X{2,3} + t2t1,2X{1,2,3}.

Of course, for special choices of t the structure may become much simpler; this is
in particular the case for t = 0, where we get the higher order tangent ring T k

K.
Similar remarks hold concerning inversion in Ak.

Theorem 2.6. Assume f : U → W is C[k+m] over K and let t ∈ K
2k−1. Then T (t)f

is C[m] over the algebra A
(t)
k .

Proof. The result follows by induction from Theorem 2.2 since, by the lemma, the
inductive definition of the rings Ak corresponds to the inductive definition of the
functors T (t). �

Let us add some remarks on the structure of the rings Ak, and in particular on
their automorphisms. For simplicity, let us consider the case k = 2. There are
surjective ring homomorphisms

A2 → A1 → K, P (X1, X2) 7→ P (X1, 0) 7→ P (0, 0)

which admit sections. Note that P (X1, X2) 7→ P (0, X2) does not pass to a well-
defined homomorphism on A2; however, this is the case if t1,2 = 0 (in this case, the
rings A(t1,t2,0) and A(t2,t1,0) are isomorphic).

As in the first order case, the automorphism group becomes richer as t tends to
singular values: for non-singular t, iterating the ring isomorphism A1

∼= K × K,
we have A2

∼= K4, and hence the permutation group Σ4 acts by automorphisms of
A2. Two of these automorphisms are the two commuting exchange automorphisms,
coming in each step from the quadratic extension K ⊂ A1 ⊂ A2. The others do not
seem to have a simple geometric description.
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On the other hand, “geometric” automorphisms come from the affine group of
K2, acting on K[X1, X2] in the usual way: namely, if K has no zero-divisors, the
equations X1(X1−t1) = 0, X2(X2−t1,2X1−t2) = 0 define two pairs of lines forming
a trapezoid in K2. An affine transformation of K2 preserving this figure gives rise
to an automorpism of A2. In the generic case, there is exactly one non-trivial such
map (it is of order 2).

If t1,2 = 0 and t1 = t2, then the trapezoid becomes a square, and we obviously
have a new symmetry exchanging both axes (the “flip”): this symmetry is precisely
the one giving rise to Schwarz’s lemma (see its proof in [BGN04], Lemma 4.6). If
moreover t1 = t2 = 0, then we are in the case of the ring TTK, and the figure
degenerates to two perpendicular lines – in particular, this figure is preserved by
all 2 × 2-diagonal matrices, and by their composition with the flip (if K = R, this
gives the full description of the automorphism group, see [KMS93], p. 320).

If t1,2 = 1 and t1 = t2 = 0, the figure degenerates to three concurrent lines, and
all multiples of the identity on K2 give rise to endomorphisms of A2.

2.3. Simplicial calculus and simplicial ring extensions.

Theorem 2.7. Fix s = (s0, . . . , sk) ∈ Kk+1 and assume s0 = 0 (otherwise replace
si by si − s0). Then the simplicial s-extension functor from Theorem 1.10 is the
functor of scalar extension from K to the ring

Bk := B
s

k := K[X ]/(X(X − s1)) . . . (X − sk)),

that is, if f : U → W is C<k+m> over K, then SJ(s)f is C<m> over Bk. In particular,
if si = 0 for all i, we get the jet functor of scalar extension from K to K[X ]/(Xk+1).

Proof. The proof from Theorem 2.2 carries over to the present situation, mutatis
mutandis: let F be a functor of the type in question (covariant and preserving direct
products). Recall from Corollary 1.11 that f is C<m> if and only if there exists a
continuous map (v, t) 7→ gt(v) such that

×m+1f ◦Mt = Mt ◦ gt .

If f is C<m+k>, then g is actually of class C〈k〉 and hence we can apply the functor
F = SJ(s) to this relation; we obtain a relation of the same kind, where f, gt are
replaced by Ff, Fgt, and K by FK, and V,W by their scalar extensions VFK, WFK.
This proves that Ff is C<m> over FK. It remains to determine the ring FK. This
is the content of the following lemma:

Lemma 2.8. The rings Bs

k and SJ(s)K are canonically isomorphic. More precisely,

if b0, . . . , bk denotes the standard basis in SJ(s)K = Kk+1 and c0, . . . , ck the basis of
Bk given by (the classes of) the polynomials

cj(X) = X(X − s1) · . . . · (X − sj),

then Bs

k → SJ(s)K, cj 7→ bj is a ring isomorphism. In particular, for s = 0, the
standard bases of these rings correspond to each other.

Proof of the Lemma. Once again it suffices to prove the claim for non-singular s.
Indeed, the map in question is always a K-linear bijection. Hence, if we have shown
that it is a ring isomorphism for non-singular s, then, since the products on both
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sides depend continuously on s, by density of the non-singular elements this map
will be a ring isomorphism for all s.

For non-singular s, since X − si and X − sj are then coprime for i 6= j, by the
Chinese Remainder Theorem, Bs

k is uniquely isomorphic to the direct product of

rings
∏k

i=0K[X ]/(X − si) = Kk+1. Thus there is a unique K-basis e0, . . . , ek of Bs

k

such that ei · ej = δijei. In fact, ei is the class of the polynomial Ei(X) of degree k
satisfying

∀j = 0, . . . , k : Ei(sj) = δij .

These polynomials are determined as follows: let A := As := (aij)i,j=0,...,k be the

change of basis matrix, defined by cj =
∑k

i=0 aijei . It follows that

aij =

k∑

n=0

ajnEn(si) = cj(si) = si(si − s1) · . . . · (si − sj).

Note that these are exactly the coefficients of the matrix Ms given by Equations
(1.2), resp. (1.3), whence As = Ms.

On the other hand, as seen in the proof of Theorem 1.10, the simplicial s-extension
of the product map m : K×K → K is conjugate to a direct product ×k+1m via

SJ(s)m = Ns ◦ ×
k+1m ◦Ms

where Ns = (Ms)
−1. Therefore the new basis fj := Ns(bj) in K

k+1 = SJ(s)K is
characterized by the idempotent relations fj · fi = δijfj . Since As = Ms, the bases
ej and fj correspond to each other under the bijection from the lemma, and they
satisfy the same multiplication table. This proves the lemma and the theorem for
non-singular s and hence for all s. �

We add a few remarks on the structure of the ring: there are projections Bk+1 →
Bk, hence by composition Bk → Bj for j ≤ k, but these projections do not have a
section, except for j = 0. As to the automorphism group, if s is non-singular, there
is of course an action of the symmetric group on Bk

∼= K
k+1, permuting the roots

si. This action degenerates for singular s, and for s = 0 survives by a sign: namely,
for s = 0, every dilation of K acts on the polynomial algebra K[X ], and this action
descends to Bk.

2.4. Embedding of simplicial ring extensions into cubic ones. Recall that,
if f is C[k], then f is C〈k〉, and the s-extended simplicial divided differences can be
embedded into the cubic t-extension (Theorem 1.6). This means that, on the ring

level, the rings B
(s)
k can be embedded into the algebras A

(t)
k . In the following, we

prove a purely algebraic version of this result:

Theorem 2.9. Fix s ∈ Kk+1, and assume that s0 = 0. Let t ∈ K2k−1 be such that
for all i = 0, . . . , k,

t{i} = ti = sk−i − sk−i−1, t{i,i+1} = ti,i+1 = 1, tJ = 0 else.

Then the subring 〈Xk〉 of A
(t)
k generated by the class of the polynomial Xk is iso-

morphic to Bs

k.
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Proof. By choice of t, At

k is the polynomial ring K[X1, . . . , Xk], quotiented by the
relations

X2
1 ≡ t1X1, ∀j = 2, . . . , k : X2

i ≡ Xi−1Xi + tiXi .

Let B ⊂ At

k be the K-submodule

B := K⊕KXk ⊕KXkXk−1 ⊕KXkXk−1Xk−2 ⊕ . . .⊕KXkXk−1 · · ·X1 .

We claim that 〈Xk〉 = B. Indeed, by an easy induction it follows from the relations
written above that, for all j, ℓ ∈ N there exist constants c1, . . . , cℓ ∈ K such that

Xℓ
j ≡ XjXj−1 · · ·Xj−ℓ+1 + c1XjXj−1 · · ·Xj−ℓ + . . .+ cℓ−1Xj ,

whence Xℓ
k ∈ B, whence 〈Xk〉 ⊂ B. On the other hand, XkXk−1 ≡ X2

k − tkXk

belongs to 〈Xk〉, hence also XkXk−1Xk−2 ≡ X3
k −c1XkXk−1−c2Xk belongs to 〈Xk〉,

and so on, whence the other inclusion and hence 〈Xk〉 = B.
Let (P ) be the kernel of the surjective homomorphism φ : K[X ] → B sending X

to Xk, so that B ∼= K[X ]/(P ). Now we show that this establishes an isomorphism
of B with Bs

k. Again, by density, it will suffice to prove this for non-singular s, since
the products on both sides depend continuously on s. For reasons of dimension, P
is a polynomial of degree k. We show by induction: the polynomial P has simple
roots in K, equal to 0, s1, . . . , sk, hence is proportional to X(X − s1) · . . . · (X − sk).
Indeed, for k = 1 we have X1(X1− t1) = 0, hence 0 and t1 are roots of P , and they
are simple since P is of degree two and t1 is invertible. Assume the claim proved at
rank k − 1, i.e.,

Xk−1(Xk−1 − s1) · . . . · (Xk−1 − sk−1) ≡ 0 .

We multiply by Xk, and note that (using the defining relations of At

k)

Xk(Xk−1 − sj) ≡ X2
k − tkXk − sjXk = (Xk − (tk + sj))Xk ,

so that we get

0 ≡ XkXk−1(Xk−1 − s1) · . . . · (Xk−1 − sk−1)
≡ (Xk − tk)Xk(Xk−1 − s1) · . . . · (Xk−1 − sk−1)
≡ . . .
≡ (Xk − tk)(Xk − (tk + s1)) · . . . · (Xk − (tk + sk−1))Xk .

Thus, at rank k, P has necessarily as roots 0, tk, tk + s1, . . . , tk + sk−1. �

The embedding B
(s)
k ⊂ A

(t(s))
k just constructed coincides in fact with the embed-

ding of f 〈k〉 into f [k] constructed in Theorem 1.6, which could have been used to
give another (less algebraic) proof of the preceding result.

3. The Weil functors

3.1. Manifolds and bundles of class C〈k〉. We define manifolds of class C[k] as in
[BGN04] or in [Be08], Section 2. The definition of manifolds of class C〈k〉 follows the
same pattern. We briefly recall the relevant definitions. Fix a topological K-module
V as “model space”, and let M be a topological space (which may be Hausdorff
or not). We say that A = (φi, Ui)i∈I is an atlas of M (of class C〈k〉), if I is some
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index set, (Ui)i∈I an open covering of M and φi : Ui → Vi bijections with open sets
Vi ⊂ V such that the transition functions

φij : Vji → Vij, v 7→ φi(φ
−1
j (v)), where Vij := φi(Ui ∩ Uj),

are of class C〈k〉. On
S := {(i, x) ∈ I × V | x ∈ Vi}

define an equivalence relation (i, x) ∼ (j, y) iff φ−1
i (x) = φ−1

j (x) iff φji(x) = y. Then

S/ ∼→ M , [i, x] 7→ φ−1
i (x) is a bijection, and a set Z ⊂ M is open if, and only if,

for all i ∈ I, the set Z ∩ Ui is open in M , if and only if, for all i ∈ I, the set

Zi := φi(Z ∩ Ui) = {x ∈ V | [i, x] ∈ Z}

is open in V . This can be rephrased by saying that the topology ofM is recovered as
the quotient topology of the canonical projection S → M = S/ ∼, where S ⊂ I×V
carries the topology induced from the product I × V , where I carries the discrete
topology. As may be checked directly, all of these constructions admit a converse
(see [St51], pp. 14 – 15, where essentially the same construction is described in a
slightly different context). We summarize:

Proposition 3.1. A C〈k〉-manifold with atlas, indexed by I and modelled on a topo-
logical K-module V , is equivalent to the following data: a collection of open sets
Vij ⊂ V such that Vi := Vii is non-empty, and a collection of C〈k〉-diffeomorphisms
φij : Vji → Vij such that φii = idVi

and φij ◦ φjk = φik (on Vkj ∩ φ−1
jk (Vji)); the

manifold is then given by M = S/ ∼ with equivalence relation and quotient topology
as described above; the atlas is given by Ui := ({i} × Vi)/ ∼ and φi : Ui → Vi,
[i, x] 7→ x.

For M to be Hausdorff it is necessary, but not sufficient that the model space V
be Hausdorff. One may always shrink chart domains since obviously the restriction
of a C〈k〉-map to a smaller open set is again C〈k〉; however, if K is not a field, one
has to be careful with unions of chart domains (see [Be08], 2.4). One could assume
that the atlas is maximal (in the usual sense), but this will not be important in the
sequel.

Theorem 3.2. Let F be one of the functors T̂ (t), resp. SJ(s) (of degree k), let
M be a manifold with atlas of class C〈ℓ〉 (with ℓ ≥ k), and retain notation from
above. Then the data (FV, (F (Vij), F (φij))i,j∈I) define a manifold FM with atlas
FA which is of class C〈ℓ−k〉 over the ring FK (and hence also over K). There is a
canonical projection π : FM → M . The construction is functorial in the category
of manifolds with atlas.

Proof. By functoriality, the data (FV, (F (Vij), F (φij))i,j∈I) satisfy again the condi-
tion of the preceding proposition, and hence define a manifold FM . As shown in the
preceding chapter, the functors F admit a natural “base projection” π : F (Vij) →
Vij , i.e., π ◦ F (φij) = φij ◦ π, and hence π gives rise to a globally well-defined map
FM → M . It is clear from the definition of morphisms of manifolds, and from
the functoriality of F on the level of open sets, that the construction is functorial.
Finally, again by results of the preceding chapter, F (φij) is smooth over the ring
FK, hence FM is a manifold not only over K, but also over FK. �
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In general, not only the atlas FA, but also the underlying set of the manifold
FM will depend on the atlas A. This is best understood by looking at the following
example:

Example. Let F = T̂ (1), that is,

FU = {(x, v) | x ∈ U, x+ v ∈ U}, Ff(x, v) = (f(x), f(x+ v)− f(x)) .

As we have already remarked, this functor is conjugate to the direct product functor,
via the simple change of variables (x, y) := (x, x+v). This change of variables is the
chart formula of a well-defined embedding ι : FM → M×M , [i; x, v] 7→ [i; x, x+v].
In general, ι will not be a bijection: the fiber over the point p ∈ M is the set
of all q ∈ M such that, for some i ∈ I, the points p and q belong to a common
chart domain Ui; let us temporarily call this set the star of p. If the atlas consists
of “small” charts, then the star of p may very well be a proper subset of M . If
we choose a maximal atlas, including “very big” charts, then under quite general
conditions the star of p equals M (in the Hausdorff case, e.g., over K = R, we
may work with non-connected charts; in this case one might distinguish between
a “connected star” and a general one). For instance, for finite-dimensional real
projective spaces, Grassmannians and reductive Lie groups, the “connected star”
will be equal to M , and hence FM = M ×M in these cases. Note that, even when
using a “small” atlas, functoriality implies that, e.g., if G is a Lie group, then so is
FG. One may think of the Lie group FG then as some “open neighborhood group”
of the diagonal group ∆(G×G).

3.2. Locality. The example we have just discussed is of “non-local” nature: in the
language of [KMS93], it corresponds to a product-preserving functor that stems
from a formally-really algebra (FR ∼= R × R, in the example) which is not a Weil
algebra. The “non-locality” is related to the dependence on the atlas. On the other
hand, we know that the fibers of the tangent bundle TM and of its iterates T kM
are independent of the chosen atlas of M . This corresponds to “locality” of the
tangent functor, and to the fact that TK = K[X ]/(X2) is a Weil algebra.

Definition 3.3. Let F be one of the functors T̂ (t), resp. SJ(s), defined as in Chapter
1. We say that F is local if, for an open set U in the model space V ,

FU = U × V 2k−1, respectively FU = U × V k.

Theorem 3.4. i) The functor SJ(s) is local for s = 0.

ii) The functor T̂ (t) is local if tJ = 0 whenever J is of cardinality one (i.e., if
ti = 0 for i = 1, . . . , k).

Proof. i) Recall the definition of SJ(s)U (Definition 1.9). If s = 0, it is obvious that
only the condition v0 ∈ U remains, and all other vi can be chosen arbitrarily, hence
the functor SJ(0) is local.

ii) Let F := T̂ (t) and assume that ti = 0 for i = 1, . . . , k. We prove by induction

that FU = U × V 2k−1. For k = 1 and t1 = 0,

FU = {(x, v)| x ∈ U, v ∈ V, x+ t1v ∈ U} = U × V
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(and this case corresponds to the tangent bundle). For the inductive step, we use
the recursion relation for Ak from Lemma 2.5, which gives the following recursion
relation for the domains (notation as in the lemma, and write TjU for T (t)U if

t ∈ K2j−1)

TkU = {(x, w) ∈ Tk−1U × V 2k−1

| x+ t′.w ∈ Tk−1U}

where the product t′.u is the action of the ring Ak−1 on the scalar extension VAk−1 =
V 2k−1

. By induction, T k−1U = U × V 2k−1−1. Therefore, writing out the 2k−1

components of the condition x+ t′.w ∈ Tk−1U , only the first component may add a
non-trivial condition (all other conditions mean that some vector lies in V , which is
always true). But this first condition is of the form (t′)1w1 ∈ U , where (t′)1 = tk = 0

by asumption, and hence, is also satisfied for all w1 ∈ V , hence any w ∈ V 2k−1
fulfills

the condition. Moreover, again by induction, any x ∈ U×V 2k−1−1 belongs to Tk−1U ;

summarizing, TkU = U × V 2k−1. �

Theorem 3.5. Assume, in the situation of Theorem 3.2, that F is local (i.e., s,
resp. t are as in Theorem 3.4). Then the bundle π : FM → M is locally trivial
with typical fiber V r where r = 2k − 1, resp. r = k; in particular, as a set and as a
topological space, FM does not depend on the atlas A chosen on M .

Proof. For an element p = [i, x] ∈ M , let FpM = {[i; x,v] | (x,v) ∈ FVi} be the
fiber of FM over p. By locality, the map Fpφ

−1
i : V r → FpM , v 7→ [i; x, v] is an

isomorphism of K-modules. Thus the bundle π : FM → M is locally trivial with
typical fiber V r, and this property does not depend on the atlas A. �

The functors from the preceding theorem are generalizations of the Weil functors
from the real theory, and the corresponding rings generalize the Weil algebras from
[KMS93]. We add some final remarks.

1. Comparing the functors SJ(s) and T̂ (t), the “more efficient” organization of the
simplicial functor corresponds to the fact it has just one “local contraction”, whereas
the cubic functor admits many of them. This may lead to the conjecture that the
generalized divided differences also give the ‘correct’ definition of a “pointwise”
concept of differentiability: one may say that a map f is C〈k〉 at a point p ∈ U if
all limits lims→0,v→(p,0,...,0) f

〉j〈(v; s) exist. The proofs of the chain rule and of the
Taylor expansion then go through essentially without any changes. On the cubic
level, similar “pointwise” concepts can be defined, but appear to be less natural
since the limit condition must be formulated differently (for ti → 0 the limits shall
exist while the other components of t may remain arbitrary).

2. As mentioned in the introduction, it is an important topic for further work to
adapt the approach to differential geometry and Lie theory over general base rings
from [Be08] to this the simplicial framework introduced here. As long as it is not
clarified whether the converse of Theorem 1.6 holds, one should still work in the C[∞]-
category since in this case we already know that the simplicial jet bundles SJkM over
M will be polynomial bundles (i.e., the transition functions are polynomial in the
fibers); for the C〈∞〉-category, this would follow as a corollary from the conjectured
converse of Theorem 1.6. Although we did not use partial derivatives in an explicit
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way, our interpretation of jet bundles in [Be08] followed common definitions; over R,
or over any ring of characteristic zero, higher order tangent bundles T kM or their
symmetric parts JkM are indeed equivalent objects, so that one may work with
either of them. However, the difference between them is that the bundle projections
T kM → T jM have canonical sections, whereas the bundles JkM → J jM do not.
An intrinsic, or “simplicial”, theory of the bundles JkM should not use the sections
of the ambient T kM ; such a theory would then automatically be valid for the
bundles SJkM , and hence be fully valid also in positive characteristic. Analogous
remarks apply to Lie theory, and in particular to the relation between Lie groups
and Lie algebras. We will discuss such topics in subsequent work.
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