-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Bringing Introspection into BlobSeer: Towards a
Self-Adaptive Distributed Data Management System
Alexandra Carpen-Amarie, Alexandru Costan, Jing Cai, Gabriel Antoniu, Luc

Bougé

» To cite this version:

Alexandra Carpen-Amarie, Alexandru Costan, Jing Cai, Gabriel Antoniu, Luc Bougé. Bringing In-
trospection into BlobSeer: Towards a Self-Adaptive Distributed Data Management System. Interna-
tional Journal of Applied Mathematics and Computer Science, University of Zielona Géra 2011, 21
(2), pp.229-242. 10.2478/v10006-011-0017-y . inria-00555610

HAL 1d: inria-00555610
https://hal.inria.fr /inria-00555610

Submitted on 14 Jan 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50022828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00555610
https://hal.archives-ouvertes.fr

Int. J. Appl. Math. Comput. Sci.,, Vol. , No. , -
DOL ‘ amcs

BRINGING INTROSPECTION INTO BLOBSEER: TOWARDS A
SELF-ADAPTIVE DISTRIBUTED DATA MANAGEMENT SYSTEM

ALEXANDRA CARPEN-AMARIE *, ALEXANDRU COSTAN **, JING CAI***,
GABRIEL ANTONIU *, LuCc BOUGE ****

*INRIA Rennes - Bretagne Atlantique, France, e-mail: {alexandra.carpen-amarie,gabriel.antoniu}@inria.fr
**University Politehnica of Bucharest, e-mail: Alexandru.Costan@cs.pub.ro
***City University of Hong Kong, e-mail: Tylor.Cai@student.cityu.edu.hk

***ENS Cachan/Brittany, IRISA, Rennes, France, e-mail: Luc.Bouge@bretagne.ens-cachan.fr

Introspection is the prerequisite of an autonomic behavior, the first step towards a performance improvement
and a resource-usage optimization for large-scale distributed systems. In Grid environments, the task of ob-
serving the application behavior is assigned to monitoring systems. However, most of them are designed to
provide general resource information and do not consider specific information for higher-level services. More
precisely, in the context of data-intensive applications, a specific introspection layer is required to collect data
about the usage of storage resources, about data access patterns, etc. This paper discusses the requirements
for an introspection layer in a data-management system for large-scale distributed infrastructures. We focus
on the case of BlobSeer, a large-scale distributed system for storing massive data. The paper explains why and
how to enhance BlobSeer with introspective capabilities and proposes a three-layered architecture relying on the
MonALISA monitoring framework. We illustrate the autonomic behavior of BlobSeer with a self-configuration
component aiming to provide storage elasticity by dynamically scaling the number of data providers. Then
we propose a preliminary approach for enabling self-protection for the BlobSeer system, through a malicious
clients detection component. The introspective architecture has been evaluated on the Grid’5000 testbed, with
experiments that prove the feasibility of generating relevant information related to the state and the behavior of
the system.

Keywords: distributed system, storage management, large-scale system, monitoring, introspection.

1. Introduction very large scales have to address a series of chal-

lenges, such as a scalable architecture, data loca-

Managing data at a large scale has become a crit-
ical requirement in a wide spectrum of research
domains, ranging from data-mining to high-energy
physics, biology or climate simulations. Grid in-
frastructures provide the typical environments for
such data-intensive applications, enabling access to
a large number of resources and guaranteeing a pre-
dictable Quality of Service. However, as the expo-
nentially growing data is correlated with an increas-
ing need for fast and reliable data access, data man-
agement continues to be a key issue that highly im-
pacts on the performance of applications.

More specifically, storage systems intended for

tion transparency, high throughput under concur-
rent accesses and the storage of massive data with
fine grain access. Although these requirements are
the prerequisites for any efficient data-management
system, they also imply a high degree of complexity
in the configuration and tuning of the system, with
possible repercussions on the system’s availability
and reliability.

Such challenges can be overcome if the system is
outfitted with a set of self-management mechanisms
that enable autonomic behavior, which can shift the
burden of understanding and managing the system
state from the human administrator to an automatic
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decision-making engine. However, self-adaptation
is impossible without a deep and specific knowledge
of the state of both the system and the infrastruc-
ture where the system is running on. It heavily relies
on introspection mechanisms, which play the crucial
role of exposing the system behavior accurately and
in real time.

On existing geographically-distributed plat-
forms (e.g. Grids), introspection is often limited to
low-level tools for monitoring the physical nodes
and the communication interconnect: they typically
provide information such as CPU load, network traf-
fic, job status, file transfer status, etc. In general,
such low-level monitoring tools focus on gathering
and storing monitored data in a scalable and non-
intrusive manner (Zanikolas and Sakellariou, 2005).

Even though many Grid monitoring applica-
tions have been developed to address such general
needs (Massie et al., 2004) (Gunter et al., 2000), lit-
tle has been done when it comes to enabling in-
trospection for large-scale distributed data manage-
ment. This is particularly important in the context
of data-intensive applications distributed at a large
scale. In such a context, specific parameters related
to data storage need to be monitored and analyzed
in order to enable self-optimization in terms of re-
source usage and global performance. Such parame-
ters regard physical data distribution, storage space
availability, data access patterns, application-level
throughput, etc.

This paper discusses the requirements of a
large-scale distributed data-management service in
terms of self-management. It explains which self-
adaptation directions can serve a data-management
service designed for large-scale infrastructures. Fur-
thermore, it focuses on introspection, identifying the
specific ways in which introspection can be used to
enable an autonomic behavior of a distributed data
storage system.

As a case study, we focus on BlobSeer (Nicolae
et al., 2010), a service for sharing massive data at
very large scale in a multi-user environment. We
propose a three-layered architecture enabling Blob-
Seer with introspection capabilities. We validate our
approach through an implementation based on the
generic MonALISA (Legrand et al., 2004) monitor-
ing framework for large-scale distributed services.
Moreover, we provide two applications for the intro-
spection layer, targeting self-configuration and self-
protection, which take advantage of the introspec-
tive features that BlobSeer is equipped with.

The remainder of the paper is organized as fol-
lows. Section 2 summarizes existing efforts in the
Grid monitoring systems field, emphasizing their
limitations when it comes to enabling specific in-

trospection requirements. Section 3 explains which
self-management directions fit the needs of data-
management systems. Section 4 provides a brief de-
scription of BlobSeer and describes the specific in-
trospection mechanism that we designed and im-
plemented and the data that need to be collected in
such a data-management system. Section 5 presents
the applications of the introspective features of Blob-
Seer, namely a self-configuration module dealing
with storage elasticity and the preliminary steps to-
wards a self-protection component. In Section 6 we
discuss the feasibility and efficiency of our approach,
by presenting a visualization tool and a set of experi-
ments realized on the Grid’5000 testbed. Finally, Sec-
tion 7 draws conclusions and outlines directions for
future developments.

2. Related work

The autonomic behavior of large scale distributed
systems aims to deal with the dynamic adapta-
tion issues by embedding the management of com-
plex systems inside the systems themselves, allevi-
ating the users and administrators from additional
tasks. A distributed service, like a storage service,
is said to be autonomic if it encapsulates some au-
tonomic behavior (Gurguis and Zeid, 2005) such
as self-configuration, self-optimization, self-healing,
and self-protection (Kephart and Chess, 2003).

In this context, performance evaluation be-
comes a critical component of any dynamic sys-
tem that requires high throughput, scheduling, load
balancing or analysis of applications” performances
and communications between nodes. In Grid en-
vironments, previous research has often limited to
using historical information to create models on
which various analysis and mining techniques are
applied. The results were thereafter used for per-
forming more efficient job mappings on available re-
sources. The autonomic behavior depends on mon-
itoring the distributed system to obtain the data on
which decisions are based. Experience with produc-
tion sites showed that in large distributed systems
with thousands of managed components, the pro-
cess of identifying the causes of faults in due time
by extensive search through the potential root fail-
ure injectors proves rather time-consuming and dif-
ficult. This process may interrupt or obstruct impor-
tant system services. Several techniques were used
to address these issues.

One approach relies on Bayesian Networks
(BNs) (Cowell et al., 1999), often used to model
systems whose behaviors are not fully understood.
We investigated some consistent work already done
on the probabilistic management in distributed sys-



Towards a Self-Adaptive Distributed Data Management System

tems. Hood et. al utilize Bayesian networks for
the proactive detection of abnormal behavior in a
distributed system (Hood and Ji, 1997). Steinder
et al. apply Bayesian reasoning techniques to per-
form fault localization in complex communication
systems (Steinder and Sethi, 2004). Ding et al.
present the probabilistic inference in fault manage-
ment based on Bayesian networks (Ding et al., 2004).
However, the Bayesian Network paradigm used
within all these works does not provide direct mech-
anisms for modeling the temporal dependencies in
dynamic systems (Santos and Young, 1999), which is
essential for enhancing the autonomic behavior.

Another approach takes time into consideration
by identifying the dynamic changes in distributed
systems as a discrete nonlinear time series. Previ-
ous research work on scalable distributed monitor-
ing for autonomous systems can be broadly classi-
fied into two categories: relying on decentralized ar-
chitectures such as hierarchical aggregation (Van Re-
nesse et al., 2003) or peer-to-peer structure (Albrecht
et al., 2005) to distribute monitoring workload; and
trading off information coverage (Liang et al., 2007)
or information precision (Jain et al., 2007) for lower
monitoring cost. In contrast, our research focuses
on identifying the relevant parameters for an auto-
nomic introspection layer, while relying on the ex-
tension and adaptation of some existing monitoring
tools for tracking these parameters. The monitor-
ing solution should further meet our needs for non-
intrusiveness and minimized monitoring costs.

Exploring correlation patterns among dis-
tributed monitoring data sources has been exten-
sively studied in various contexts such as sensor
network monitoring (Vuran and Akyildiz, 2006),
distributed event tracking (Jain et al., 2004), and
resource discovery (Cardosa and Chandra, 2008).
While the general idea of exploring temporal and
spatial correlations is not new, we shall emphasize
applying the idea to distributed information track-
ing over large-scale networked systems requires
non-trivial system analysis and design. In our case,
it means discovering dynamic correlation patterns
(for some predefined targeted events: node failures,
malicious clients intrusions, etc.) among distributed
information sources, using light-weight methods in-
stead of assuming a specific probabilistic model, as
in wireless sensor networks, for instance.

The works mentioned above, although they are
able to provide some means of monitoring for sin-
gular or aggregate services, they do not dynamically
replace the faulty service once failure has been de-
tected, or take automated actions to optimize the
overall system’s performance, as our work aims to
within a large scale distributed storage system.

3. Self-adaptation for large scale data-
management systems

A large scale data-management platform is a com-
plex system that has to deal with changing rates
of concurrent users, the management of huge data
spread across hundreds of nodes or with malicious
attempts to access or to damage stored data. There-
fore, such a system can benefit from a self-adaptation
component that enables an autonomic behavior. We
refine the set of self-adaptation directions that best
suit the the requirements of data-management sys-
tems: they match the main self-management prop-
erties defined for autonomic systems (Kephart and
Chess, 2003) (Parashar and Hariri, 2005).

Self-awareness is the feature that enables a sys-
tem to be aware of the resource usage and the
state of its components and of the infrastructure
where they are running. This is mainly achieved
through monitoring and interpreting the rele-
vant information generated by the usage of the
system.

Self-optimization is the ability to efficiently allocate
and use resources, while dealing with changing
workloads. It aims at optimizing the system’s
performance and increasing data availability.

Self-configuration is the property that addresses
the dynamic adaptation of the system’s deploy-
ment scheme as a response to changing environ-
ment conditions. The system has to be able to
reconfigure on the fly, when its state requires or
allows for a change in the number of managed
nodes.

Self-protection addresses the detection of hostile or
intrusive actions directed towards the system’s
components and enables the system to automat-
ically take appropriate measures to enforce se-
curity policies and make itself less vulnerable to
subsequent similar attacks.

In order to improve the performance and the ef-
ficiency of the resource usage in a data-sharing sys-
tem, we define a set of goals that justify the need for
the aforementioned properties:

Monitoring. The constant surveillance of the state
of a system and of the events that trigger sys-
tem reactions is the prerequisite of all the other
self-adaptation directions. Thus, the self-awareness
property is of utmost importance for providing sup-
port for an autonomous behavior.
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(a) The architecture of the BlobSeer system

Fig. 1.

Dynamic dimensioning. The performance of data-
access primitives is influenced by the number of run-
ning nodes of the data-sharing system. Moreover,
the load of each component that stores data is also
dependent on the available storage nodes and on
their capacity to serve user requests. On the other
hand, the workload is often unpredictable, and the
deployment of the system on a large number of
physical nodes can lead to underused storage nodes
when the number of clients is low or the stored data
is not large enough. These reasons account for the
need to enhance a large-scale storage system with a
mechanism that dynamically adjusts the number of
deployed storage nodes. This is equivalent to tak-
ing advantage of the real-time indicators of the state
of the system within a self-configuration component
that can observe a heavy load or underutilized com-
ponents.

Malicious clients detection. A data-sharing sys-
tem distributed on a large number of nodes can fit
the needs of applications that generate important
amounts of data only if it can provide a degree of
security for the stored information. For this reason,
the system has to be able to recognize malicious re-
quests generated by unauthorized users and to block
illegal attempts to inject or to modify data. There-
fore, a self-protection component that enforces these
requirements has to be integrated into the system.

4. Towards an introspective BlobSeer

BlobSeer is a data-sharing system which addresses
the problem of efficiently storing massive, unstruc-
tured data blocks called binary large objects (referred
to as BLOBs further in this paper), in large-scale, dis-
tributed environments. The BLOBs are fragmented
into small, equally-sized chunks. BlobSeer provides

(b) The architecture of the introspective BlobSeer

BlobSeer

an efficient fine-grained access to the chunks belong-
ing to each BLOB, as well as the possibility to modify
them, in distributed, multi-user environments.

4.1. Architecture. The architecture of BlobSeer
(Figure 1(a)) includes multiple, distributed enti-
ties. Clients initiate all BLOB operations: CREATE,
READ, WRITE and APPEND. There can be many
concurrent clients accessing the same BLOB or dif-
ferent BLOBs in the same time. The support for
concurrent operations is enhanced by storing the
chunks belonging to the same BLOB on multiple
storage providers. The metadata associated with each
BLOB are hosted on other components, called meta-
data providers. BlobSeer provides versioning support,
so as to prevent chunks from being overwritten and
to be able to handle highly-concurrent WRITE and
APPEND operations. For each of them, only a patch
composed of the range of written chunks is added
to the system. Finally, the system comprises two
more entities: the version manager that deals with
the serialization of the concurrent WRITE/APPEND
requests and with the assignment of version num-
bers for each new WRITE/APPEND operation; the
provider manager, which keeps track of all storage
providers in the system.

A typical setting of the BlobSeer system in-
volves the deployment of a few hundreds storage
providers, storing BLOBs of the order of the TB.
The typical size for a chunk within a blob can be
smaller that 1 MB, whence the challenge of deal-
ing with hundreds of thousands of chunks belong-
ing to just one BLOB. BlobSeer provides efficient
support for heavily-concurrent accesses to the stored
data, reaching a throughput of 6.7 GB/s aggregated
bandwidth for a configuration with 60 metadata
providers, 90 data providers and 360 concurrent
writers, as explained in (Nicolae ef al., 2009).
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4.2. Introspection mechanisms on top of BlobSeer.
We enhanced BlobSeer with introspection capabil-
ities, in order to enable this data-sharing platform
with an autonomic behavior. In (Carpen-Amarie
et al., 2010), we present the three-layered architec-
ture we designed to identify and generate relevant
information related to the state and the behavior of
the system (Figure 1(b)). Such information is then
expected to serve as an input to a higher-level self-
adaptation engine. These data are yielded by an (1)
introspection layer, which processes the raw data col-
lected by a (2) monitoring layer. The lowest layer is
represented by the (3) instrumentation code that en-
ables BlobSeer to send monitoring data to the upper
layers.

4.2.1. Introspection: what data to collect?. The
self-adaptation engine can only be effective if it re-
ceives accurate data from the introspection layer. The
latter generates data ranging from general informa-
tion about the running nodes to specific data regard-
ing the stored BLOBs and their structure.

General information. These data are essentially
concerned with the physical resources of the nodes
that act as storage providers. They include CPU
usage, network traffic, disk usage, storage space or
memory. A self-adapting system has to take into ac-
count information about the values of these param-
eters across the nodes that make up the system, as
well as about the state of the entire system, by means
of aggregated data. For instance, the used and avail-
able storage space at each single provider play a cru-
cial role in deciding whether additional providers
are needed or not.

Individual BLOB-related data. The most sig-
nificant information for a single BLOB is its access
pattern, i.e. the way the chunks and the versions
are accessed through READ and WRITE operations.
The basic data are the number of read accesses for
each chunk that the BLOB version consists of, and
the number of WRITE operations performed on the
BLOB for each chunk. These data facilitate the iden-
tification of the regions of the BLOB comprising
chunks with a similar number of accesses, informa-
tion that can influence the adopted replication strat-
egy-

Global state. Even though the provider-
allocation algorithm has access to the details within
each BLOB, it is essential to have an overview of
the whole data stored in the BlobSeer system, from
a higher-level point of view. Some of the key data
at this global level are the total number of accesses
associated with each provider. This is a measure of
the load of each of them and can directly influence

the selection of the providers that will be allocated
new chunks, depending on their deviation from the
average load within the system.

4.2.2. Monitoring: how to collect?. The input for
the introspective layer consists of raw data that are
extracted from the running nodes of BlobSeer, col-
lected and then stored, a set of operations realized
within the monitoring layer. Therefore, it can rely
on a monitoring system designed for large-scale en-
vironments that implements these features. Such a
monitoring framework has to be both scalable and
extensible, so as to be able to deal with the huge
number of events generated by a large-scale data-
management system, as well as to accommodate
system-specific monitoring information and to offer
a flexible storage schema for the collected data.

The monitoring framework — MonALISA. The
Global Grid Forum (GGE 2010) proposed a Grid
Monitoring Architecture (GMA) (Tierney et al.,
2002), which defines the components needed
by a scalable and flexible Grid monitoring sys-
tem: producers, consumers, and a directory ser-
vice. A wide variety of Grid monitoring sys-
tems (Zanikolas and Sakellariou, 2005), such as Gan-
glia (Massie et al., 2004), RGMA (Cooke et al., 2004),
GridICE (Andreozzia et al., 2005), comply with this
architecture.

Among them, we selected MonALISA (Moni-
toring Agents in a Large Integrated Services Architec-
ture) (Legrand et al., 2004) for our data-monitoring
tasks, as it is a general-purpose, flexible frame-
work, which provides the necessary tools for col-
lecting and processing monitoring information in
large-scale distributed systems. Moreover, it is an
easily-extensible system, which allows the definition
and processing of user-specific data, by means of
an API for dynamically-loadable modules. MonAL-
ISA is currently used to monitor large high-energy
physics facilities; it is deployed on over 300 sites be-
longing to several experiments, such as CMS or AL-
ICE (ALICE, 2010).

In BlobSeer, the main challenge the monitoring
layer has to cope with, is the large number of stor-
age provider nodes and therefore the huge num-
ber of BLOB chunks, versions and huge BLOB sizes.
Furthermore, it has to deal with hundreds of clients
that concurrently access various parts of the stored
BLOBs, as they generate a piece of monitoring in-
formation for each chunk accessed on each provider.
MonALISA is suitable for this task, as it is a system
designed for large-scale environments and it proved
to be both scalable and reliable.

Gamcs
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Instrumenting BlobSeer. The data generated by
the instrumentation layer are relayed by the mon-
itoring system and finally fed to the introspection
layer. The instrumentation layer is implemented as a
component of the monitoring layer. The MonALISA
framework provides a library called ApMon that can
be used to send the monitoring data to the MonAL-
ISA services. At the providers, the instrumentation
code consists in listeners located on each of them,
which report to the monitoring system each time a
chunk is written or read. The monitoring informa-
tion from the version manager is collected using a
parser that monitors the events recorded in the logs.
The state of the physical resources on each node is
monitored through an ApMon thread that periodi-
cally sends data to the monitoring service.

5. Introducing self-adaptation for Blob-
Seer

To introduce an autonomic behavior in BlobSeer,
we investigated two directions. The first approach
aims at enhancing BlobSeer with self-configuration
capabilities, as a means to support storage elastic-
ity trough dynamic deployment of data providers.
The second direction addresses the self-protection of
BlobSeer from malicious clients by detecting and re-
acting to potential threats in real-time based on the
information yielded by the introspection layer. In
this section, we detail these two approaches.

5.1.  Self-configuration through dynamic data
providers deployment. Dynamic dimensioning is
a means to achieve the self-configuration of Blob-
Seer, by enabling the data providers to scale up and
down depending on the detected system’s needs.
The component we designed adapts the storage sys-
tem to the environment by contracting and expand-
ing the pool of storage providers based on the sys-
tem’s load.

The key idea of the Dynamic Data Providers De-
ployment component is the automatic decision that
has to be made on how many resources the sys-
tem needs to operate normally while keeping the re-
sources utilization down to a minimum. This prob-
lem is addressed by using a test-decided heuristic
based on the monitoring data. The system maintains
two pools of providers:

Active Pool of Providers (APP) - pool of providers
that are currently on and are actively used by
the BlobSeer infrastructure.

Backup Pool of Providers (BPP) - pool of providers
that are currently off, waiting in stand-by to be
activated in order to be used.

Dynamic Providers Deployment

—{ Provider Pool Manager ]

Enable / Disable
Data Providers

[ Provider Mover

Introspection
Module

Start / Shutdown

BlobS }?55 :J'A
obSeer L‘L}L,/l} g

{
|
€

Notify / Ack

' E’i‘f
L
o %

Data Providers

Provider
Manager

Fig. 2. The Dynamic Deployment module’s architectural
overview

The goal is to dynamically switch providers from
one pool to another when certain conditions are met,
in order to optimize resource usage; instead of re-
serving a large number of nodes which eventually
are not effectively used, the system only relies on the
APP and self-adapts its execution using the BPP.

5.1.1. Architectural Overview. The dynamic de-
ployment decision is based on retrieving the mon-
itoring data and computing a score that evaluates
the status of each provider. The monitoring data is
retrieved from two different sources, each one with
specific metrics: BlobSeer-related data and physical
resources information. These data are stored and
processed using a Monitoring Repository. Based on
the real-time monitoring information the decision al-
gorithm computes a heuristic score. Its value deter-
mines the decision of removing or adding a node to
the active pool of providers.

A first step involves taking the deployment de-
cision based on retrieving the monitoring data and
computing a score that evaluates the status of each
provider. The monitoring data is retrieved from
two different sources, each one with specific metrics:
BlobSeer related data and physical resources infor-
mation. These data are stored and processed using a
Monitoring Repository. Based on the real-time moni-
toring information the decision algorithm computes
a heuristic score. Its value determines the decision
of removing or adding a node to the active pool of
providers.

In order to take the corresponding action based
on the result obtained, the application needs to get
a list of available nodes (Data Providers) from the
Provider Manager which can be turned on or off, de-
pending on the decision taken. This part is also re-
sponsible for notifying the BlobSeer system, specifi-
cally the Provider Manager, of the changes made in
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the system.

The main actors of the Dynamic Deployment
service are the decision taking component (the
ProviderPoolManager) and the decision enforce-
ment component (the ProviderMover), as depicted
in Figure 2. The ProviderPoolManager analyzes
the monitoring information and using some config-
urable policies takes the decision of either enabling
or disabling a set of Data Providers. The Provi-
derMover is responsible with putting this decision
into practice by moving a provider from the Active
Pool of Providers to the Backup Pool of Providers
or vice-versa, depending on what commands it re-
ceives from the ProviderPoolManager.

The interaction with the BlobSeer’s Provider
Manager is represented by requests for the list of
the active Data Providers running in the system at a
specific moment in time. The ProviderPoolManager
reads the coordinates of the Provider Manager and
contacts it to obtain a list of tuples (host, port)
that point to the nodes where Data Providers are
active. The ProviderMover also manages the two
pools, APP and BPP, and the Providers’ migra-
tion between them. The ProviderMover notifies the
Provider Manager of a change in the APP. If the noti-
fication fails, the ProviderMover doesn’t retry it, re-
lying on the watchdog facility implemented in Blob-
Seer, which scans the entire list of Providers to track
the active providers. Finally, the ProviderMover
communicates directly with the Data Providers and
issues the start or shutdown commands through
which a Provider is moved from BPP to APP or from
APP to BPD, respectively.

The sequence diagram depicted in Figure 3 il-
lustrates the flow of actions within the Dynamic
Deployment module. The monitoring data is re-
trieved continuously, as a separate process by the
monitoring module, and is stored into a monitoring
repository. The ProvidePoolManager connects to the

Provider Manager to get the list of active providers.
Once this data is obtained, the Pool Manager starts
computing a score for each provider. Based on a con-
figuration file specifying the targeted scenarios and
the heuristic used, a decision is taken and communi-
cated to the ProviderMover. This, in turn, calls the
scripts that start or stop a particular provider.

5.1.2. Heuristic Providers Evaluation. The scor-
ing algorithm provides a method to detect which
providers should be moved from APP to BPP. The
factors to be taken into consideration and tracked
using the introspection layer can be divided into
two subcategories: physical factors (depending on the
physical node that runs the Provider, e.g., the free
disk space, the average bandwidth usage, the CPU
load or the system uptime) and BlobSeer factors (met-
rics referring to the BlobSeer behavior, e.g., the num-
ber of read/write accesses per time unit, the size of
stored chunks and BLOBSs, the replication degree).

We illustrate this approach with a common sce-
nario identified by the Dynamic Providers Deploy-
ment module and treated accordingly by stopping
the unnecessary providers. In this case, if the intro-
spection layer detects that on one provider the free
disk space is above the 70% threshold, the replica-
tion factor for the stored chunks is greater than 1,
with a small read and write access rate (e.g. less
than one access per hour), it decides to shut down
the provider. All the values referred to above are
adjustable through a configuration file. The current
values were chosen based on a set of performance
evaluation experiments aiming to identify the trade-
off between the costs of shutting down one provider
and moving its data to another one, and the bene-
fits of using less resources. The scenario illustrates
the case of a provider with extra disk space avail-
able, that is not used by clients. Considering all the
stored data is also replicated on other providers, it
is reasonable to shut down this provider in order to
efficiently use the available resources. The stopping
decision is only taken when the shutting down costs
are smaller and there are available nodes where to
transfer the data in order to preserve the replication
factors.

The self-configuration engine is not limited to
detecting this type of scenarios, several other pat-
terns are identifiable using a simple specification
mechanism. The conditions making up the scenarios
are modeled as factors, used to compute a score for
each provider. The heuristic used in the score com-
putation is based on weight factors using the follow-

&
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Algorithm 1 Scaling down data providers.

Algorithm 2 Data-writing step.

1: procedure SCALING_DOWN(DataProvidersList)
2: for all DataProvider in DataProvidersList do

3: RetriveMonitoringData(DataProvider)

4: S «— ComputeScore(DataProvider)

5: if S < scoreThreshold then

6: Keep DataProvider in APP

7: else

8: if  DataReplicationDegree >

replicationThreshold then

9: Move DataProvider to BPP

10: AvailableProviders ~ « retrieve
available providers from the Provider Manager

11: TransferDataTo(AvailableProviders)
12: Update the metadata
13: ShutDown(DataProvider)

14: else

15: Keep DataProvider in APP

16: end if

17: end if

18: end for

19: end procedure
ing formula:

n
S =Y wft;xwcf; (1)

i=1

where wft; represents the weight of the factor i from
the total score and wcf; represents the weight of the
true condition from the factor i. With these notations
the pseudo-code for scaling down data providers is
presented in Algorithm 1.

5.2. Self-protection through malicious clients de-
tection. Detecting malicious clients is the first step
towards enabling self-protection for the BlobSeer
system. Such a feature has to take into account sev-
eral types of security threats and to react when such
attacks occur.

In this section, we propose a simple malicious
clients detection mechanism that focuses on protocol
breaches within BlobSeer, as this is a critical vulnera-
bility of a data-management system that enables the
clients to directly access the data storage nodes in or-
der to provide very efficient data transfers. The goal
of the detection component is to identify the known
forms of protocol misuse, and thus to help the sys-
tem to maintain the stored data in a consistent state.

5.2.1. Protocol breach scenarios for BlobSeer. A
malicious user can try to compromise the system by
deliberately breaking the data-insertion protocols.

1: procedure WRITE_DATA(buffer, offset, size)

2: wid «+ generate unique write id
3. noCh « [size/chSize|
4: P « get noCh providers from provider man-
ager
5: D«—®
6: for all 0 < i <noCh in parallel do
7: cid « generate unique chunk id
8: chOffset < chSizexi
9: store buffer[chOffset .. chOffset + chSize] as
chunk (cid,wid) on provider P[i]
10: D «— D U {(cid, wid, i, chSize) }
11 Petopar <= Pglobar U {(cid, P[i])}

12: end for
13: end procedure

This kind of behavior is a starting point for DoS at-
tacks, in which the user attempts to overload the sys-
tem through large numbers of malformed or incom-
plete requests. To cope with this security risk, spe-
cific mechanisms have to be developed to quickly
detect the illegal accesses and isolate the user that
initiated them.

The most vulnerable data access operation is
writing data into Blobseer, as it gives a malicious
user not only the opportunity to overload the system
and to increase its response time, but also the means
to make available corrupted data.

The WRITE operation imposes a strict protocol
to the user that wants to correctly insert data into
the system. We consider the typical case of WRITE
operations in BlobSeer, that is when a user attempts
to write a continuous range of chunks to a specific
BLOB. For simplicity we can assume that the WRITE
operation consists of two independent phases that
have to be executed consecutively. These two steps
can be summarized as follows (the full description of
the data access primitives in BlobSeer can be found
in (Nicolae et al., 2010)):

The data-writing step. A simplified description
of this operation is provided in Algorithm 2. We as-
sume the size of data to be written is a multiple of a
predefined chunk size, denoted chSize, as this is of-
ten the case in BlobSeer. The input parameters of this
step are the data to be written as a string buffer, the
offset within the BLOB where the data has to be in-
serted and the size of the sequence.

The client connects to the provider manager
and requests a list of data providers, P, which can
host the chunks to be written. Then, the chunks
are sent in parallel to the data providers, together
with a unique identifier, cid, and the identifier of the
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Algorithm 3 Data-publication step

1: procedure PUBLISH_DATA (offset, size, D, wid)
2: writeInfo < invoke remotely on version
manager ASSIGN_VERSION (offset, size, wid)

3: BUILD_METADATA(writelnfo, D)

4: invoke remotely on version manager
COMPLETE_WRITE (writelnfo)

5. end procedure

WRITE operation, wid. Upon the successful com-
pletion of this step, the information associated with
all the written chunks will be stored in a chunk de-
scriptor map denoted D. Additionally, the providers
that hold each cid are stored in Pgj,p,, a container
where the addresses of all the chunks in the system
are saved.

The data-publication step is represented by the
creation of the metadata associated with the written
data and the publication of the written chunk range
as a new version, as described in Algorithm 3.

First, the client asks the version manager for a
new version for its chunk list, and then it proceeds to
the creation of metadata, starting from the chunk de-
scriptor map D generated in the first step. The write
is finalized after the client successfully invokes the
COMPLETE_WRITE procedure on the version man-
ager, which in turn is responsible for publishing the
new version of the BLOB.

A correct WRITE operation is defined as the suc-
cessful completion of the aforementioned steps, with
the constraint that the published information con-
cerning the written chunk range is consistent with
the actual data sent to the data providers, that is,
the values of D and wid that are sent to the version
manager correspond to chunks that have been writ-
ten on data providers. As a consequence, there are
two types of protocol breaches that can be detected
for the WRITE operation:

Data written and not published. In this case, a ma-
licious user obtains a list of providers from the
provider manager and then starts writing data
to the providers. The second step is never
issued and thus the version manager, which
keeps track of all the BLOBs and their versions,
will never be aware of the data inserted into the
system. This kind of protocol breach can be de-
veloped into a Denial of Service (DoS) attack,
targeted to the overloading of one or more data
providers.

Publication of inconsistent data. The attack that
corresponds to this situation aims to disrupt
the computations that use data stored by the

BLOBs. As an example, a user may attempt
to compromise the system by making available
data that does not actually exist. Therefore, an
application can start reading and processing the
data and without being aware that the metadata
contain fake references. Hence the computa-
tion would be compromised and the application
forced to restart the processing.

5.2.2. The detection mechanism. Enabling
self-protection in BlobSeer relies on coupling a
malicious-clients detection module with the intro-
spection layer. On one hand, such a module has to
identify the malicious activities that attempt to com-
promise the system and to isolate users that initial-
ize them. On the other hand, it should not interfere
with BlobSeer operations, so as to preserve the effi-
cient data-accesses for which BlobSeer is optimized.
The introspection layer processes informations mon-
itored independently of the interactions between the
user and the system, and thus it is an ideal candidate
to provide input data for a malicious clients detec-
tion module.

We implemented a detection module that ad-
dresses the protocol-breach attacks and generates
blacklists with the users that attempt them. Its input
data are provided as a history of the users” actions
by the introspection layer, which constantly moni-
tors the real-time data-accesses and updates the his-
tory. The user history stores the following types of
monitoring parameters:

Data generated by the data providers. The mon-
itoring information collected from the data
providers consists in tuples that aggregate the
information about the stored data chunks. The
data corresponding to a new chunk written
in the system is defined as a tuple denoted
(cid, wid, noCh, chSize, ts), where wid is the
write identifier generated in the data-writing
step and ts is the timestamp attached by the
monitoring system when the data is recorded.
Note that for the each wid there can be several
records in the user history (with different
timestamps), as not all the chunk writes are
recorded by the monitoring system in the same
time.

Data obtained from the version manager. The
introspection system records each new version
published by the version manager in the form
of tuples defined as (cid,wid, v, offset, size, ts),
where wid is the same write identifier used for
the data-writing step, v is the new published
version, offset and size identify the chunk range

aamcs
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Algorithm 4 Malicious clients detection
1: BL— @
: lastTsChecked = 0
: procedure DETECT_ILLEGAL_PUBLISH
maxTs = getCurentTime() — windowSize
PW <« get list of published writes such that
ts > lastTsChecked and ts < maxTs
6: DW <« get list of data writes such that ts >
lastTsChecked — windowSize
: lastTsChecked < max(ts) from PW
8. forp e PW,p = (cid, wid, of fset, size,v) do
: if  Ad € DW, d =
(cidy, widy, noChy, chSizey, tsy) such that
cidy = cid, wid; = wid then

10: BL «— UPDATE_SCORE(BL, cid, p)

11: else

12: ifsize # Y. noChy  chSizey then
deDW

13: BL <+ UPDATE_SCORE(BL, cid, p)

14: end if

15: end if

16: end for

17: end procedure

written into the system and ts is the timestamp
assigned by the monitoring system.

The detection module comprises two compo-
nents, each of them dealing with a specific type of
protocol breach. The detection mechanism for incon-
sistent data publication is presented in Algorithm 4.
The DETECT_ILLEGAL_PUBLISH procedure is ex-
ecuted periodically and each time it inspects the
most recent monitoring data recorded by the intro-
spection module. The procedure searches for pub-
lished versions that have no corresponding written
data chunks or the written range of chunks does not
match the published information. Each published
write is matched against the set of chunk writes that
occurred in a predefined time window, denoted win-
dowSize, surrounding its timestamp. If no chunks
writes are found with the same client identifier and
write id, or if the total size of the written chunks does
not match the published size, the client is added to a
global blacklist BL. Once blacklisted, a client is also
associated with a score, which can be computed ac-
cording to the type of illegal action. As an example,
if no chunks are written, the UPDATE_SCORE pro-
cedure computes a score proportional to the write
size declared by the publication step.

The goal of the detection mechanism is to keep
track of the malicious users and to feed this informa-
tion back into the BlobSeer system, so as to enable it
to react when receiving new requests from the users
identified as malicious. The malicious users can be

made available to the provider manager as a black-
list where each user’s score shows the amount of
fake data that the user introduced into the BlobSeer
system. The provider manager implements the allo-
cation strategy that assigns providers for each user
WRITE operation. Being aware of the blacklist, the
provider manager can decide to block the malicious
users by not granting the providers when they want
to write again into the system. The behavior of the
provider manager can be further refined by taking
into account the score associated with each client. In
this case, there are several other constraints that can
be enforced on the users, such as a decreased band-
width for their WRITE operations, a waiting time
imposed before being assigned the necessary list of
providers or a size limit for the data written.

6. Experimental evaluation

We evaluated the feasibility of gathering and in-
terpreting the BlobSeer-specific data needed as in-
put data for the different self-optimizing directions.
Our approach was to create an introspection layer
on top of the monitoring system, able to process
the raw data collected from BlobSeer and to ex-
tract significant information regarding the state and
the behavior of the system. We performed a series
of experiments that evaluate the introspection layer
and also provide some preliminary results concern-
ing the introduction of self-protection capabilities in
BlobSeer. The experiments were conducted on the
Grid’5000 (Jégou et al., 2006) testbed, a large-scale
experimental Grid platform, that covers 9 sites geo-
graphically distributed across France.

6.1. Visualization tool for BlobSeer-specific data.
We implemented a visualization tool that can pro-
vide a graphical representation of the most impor-
tant parameters yielded by the introspection layer.
We show the outcome of the introspection layer
through an evaluation performed on 127 nodes be-
longing to a Grid’5000 cluster in Rennes. The nodes
are equipped with x86_64 CPUs and at least 4 GB
of RAM. They are interconnected through a Gigabit
Ethernet network. We deployed each BlobSeer en-
tity on a dedicated node, as follows: two nodes were
used for the version manager and the provider man-
ager, 10 nodes for the metadata providers, 100 nodes
for the storage providers and 10 nodes acted as Blob-
Seer clients, writing data to the BlobSeer system.
Four nodes hosted MonALISA monitoring services,
which transferred the data generated by the instru-
mentation layer built on top of the BlobSeer nodes to
a MonALISA repository. The repository is the loca-
tion where the data were stored and made available
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Fig. 4. Visualization for BlobSeer-specific data

to the introspection layer.

In this experiment, we used 10 BLOBs, each of
them having the chunk size of 1 MB and a total size
larger than 20 GB. We created the BLOBs and we
wrote 10 data blocks of 2 GB on each BLOB. Each
data block overlaps the previous one by 10%. Next,
we started 10 clients in parallel and each of them
performed a number of WRITE operations on a ran-
domly selected BLOB. The blocks were written on
the BLOB at random offsets and they consisted of a
random number of chunks, ranging between 512 MB
and 2 GB in size.

We processed the raw data collected by the
monitoring layer and extracted the higher-level data
within the introspection layer. Some results are pre-
sented below, along with their graphical representa-
tions.

Access patterns. They represent a significant
information that the introspection layer has to be
aware of. It can be obtained by computing the num-
ber of READ/WRITE accesses. The access patterns
can be examined from two points of view. The first
one regards the access patterns for each BLOB. It
considers the number of READ or WRITE accesses
for each chunk, for a specified version or for the
whole BLOB and it identifies the regions of the
BLOB composed of chunks with the same number
of accesses (Figure 4(a)). The other one refers to the
number of READ or WRITE operations performed
on each provider, allowing for a classification of the
providers according to the pressure of the concurrent
accesses they have to withstand.

The size of all the stored versions of a BLOB.
The differences between the versions of the same
BLOB are presented in Figure 4(b), where the size
of the new data introduced by each version into the
system is shown in MB. This information, correlated

with the number of accesses for each version, can be
used to identify versions that correspond to a small
amount of data and are seldom accessed. Such ob-
servations are necessary for a self-optimization com-
ponent that handles the replication degree of each
version.

6.2. Impact of the introspection architecture on
the Blobseer data-access performance. This exper-
iment is designed to evaluate the impact of using
the BlobSeer system in conjunction with the intro-
spection architecture. The introspective layer col-
lects data from BlobSeer without disrupting the in-
teractions between its components, and thus no con-
straint is enforced on the user’s accesses to the Blob-
Seer entities. In this way the throughput of the Blob-
Seer system is not influenced by the detection mod-
ule. The only downside of such a system is the intru-
siveness of the instrumentation layer that runs at the
level of the BlobSeer components and is susceptible
of decreasing their performance.

For this experiment we used the Grid’5000 clus-
ters located in Rennes and Orsay. The nodes are
equipped with x86_64 CPUs and at least 2 GB of
RAM. We used a typical configuration for the Blob-
Seer system, which enables the system to store mas-
sive amounts of data that can reach the order of
TB. It consists of 150 data providers, 20 metadata
providers, one provider manager and one version
manager. Both data and metadata providers store
data on their hard disks and they are configured
to store up to 64 GB and 8 GB, respectively. The
MonALISA monitoring services are deployed on 20
nodes and they collect monitoring data from all the
providers, each of them being dynamically assigned
to a monitoring service in the deployment phase.
The repository that gathers all the monitored param-
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Fig. 5. Performance evaluations

eters is located outside Grid’5000, as well as the de-
tection module that interacts only with the reposi-
tory’s database. Each entity is deployed on a dedi-
cated physical machine.

This test consists of deploying a number of con-
current clients that make a single WRITE operation.
Each client writes 1 GB of data in a separate BLOB,
using a chunk size of 8 MB. We analyze the ag-
gregated throughput of the BlobSeer WRITE oper-
ation obtained when deploying it standalone com-
pared with the BlobSeer outfitted with the introspec-
tion layers. The throughput is measured for a num-
ber of clients ranging from 5 to 80 and the exper-
iment was repeated 3 times for each value of the
number of clients deployed. Figure 5(a) shows that
the performance of the BlobSeer system is not influ-
enced by the addition of the instrumentation code
and the generation of the monitoring parameters, as
in both cases the system is able to sustain the same
throughput. Since the introspective layer computes
its output based on the monitored data generated for
each written chunk, the more fine-grained BLOBs
we use, the more monitoring information has to be
processed. For this test, each BLOB consists of 128
chunks and therefore the introspective component
performs well even when the number of generated
monitoring parameters reaches 10,000, as it is the
case when testing it with more than 80 clients.

6.3. Malicious clients detection. We aim to ex-
plore the first step towards a self-protecting BlobSeer
system, by building a component that can detect il-
legal actions and prevent malicious users from dam-
aging the stored data. To reach this goal, the detec-
tion mechanism for the malicious users has to de-
liver an accurate image of the users’ interaction with

BlobSeer. Moreover, it has to expose the illegal op-
erations as fast as possible, so as to limit the size of
data illegally injected into the system and to prevent
the malicious users from carrying on the harmful ac-
cesses. We define the detection delay as the duration
of the detection phase after the end of the client’s op-
erations. We use the detection delay as a measure of
the performance of the detection module.

The aim of this experiment is to analyze the
performance of the detection module when the sys-
tem is accessed by multiple concurrent malicious
clients that publish data without actually writing
them. This access pattern corresponds to a scenario
where a number of clients access a reputation-based
data-storage service. Each client can increase his rep-
utation by sharing a large amount of data with the
other users of the system. To achieve this goal, a ma-
licious client may pretend to share huge data, while
it only skips the data writing phase of the WRITE
operation and publishes inexistent data.

The deployment settings are identical to the pre-
vious experiment. We want to assess the behavior of
the system under illegal concurrent accesses. Thus
we deploy only malicious clients, repeating the test
with an increasing number of clients, ranging from 5
to 80. We measure both the duration of the WRITE
operation of the client and the delay between the
beginning of the WRITE and the detection of the
client that initiated it as being malicious. All the
clients start writing at the same time, thus having
the same start time. For each point in the chart, we
compute the average duration between all the clients
deployed for that run. The results obtained in Fig-
ure 5(b) show that the delay between the end of the
write operation and the detection of the malicious
clients remains constant as the number of clients in-
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creases. This is a measure of the scalability of our ap-
proach, showing that the detection process is able to
cope with a large number of concurrent clients and
to deliver results fast enough to allow the system to
block the attackers, while sustaining the same level
of performance.

7. Conclusions and future work

This paper addresses the challenges raised by the in-
troduction of introspection into a data-management
system for large-scale, distributed infrastructures.
Such a feature aims at exposing general and service-
specific data to a higher-level layer, in order to en-
able the system to evolve towards an autonomic
behavior. We propose a layered architecture built
on top of the BlobSeer data-management system, a
service dedicated to large-scale sharing of massive
data. The goal of this architecture is to generate a
set of specific data that can serve as input for a self-
adaptive engine.

We also proposed a dynamic dimensioning
module and a malicious clients detection component
that rely on data yielded by the introspection layer.
By reacting in real-time to changes in the state of
the system, they represent the first step towards en-
hancing this system with self-configuration and self-
protection capabilities.

To build the monitoring layer, we relied on the
MonALISA general-purpose, large-scale monitoring
framework, for its versatility and extensibility. Our
experiments showed that it was able to scale with
the number of BlobSeer providers and to cope with
the huge amount of monitoring data generated by a
large number of clients. Moreover, it allowed us to
define and to collect BlobSeer-specific data, as well
as to visualize graphical representations associated
with the various high-level data extracted.

The next step will consist in equipping Blob-
Seer with other self-adaptive components in order
to optimize the system’s performance and resource
usage. As an example, by allowing the provider
manager to rely on introspection data, this engine
will help improving the storage resource allocation
strategies. Besides, it can also provide information
based on which adaptive data replication strategies
can be implemented. Together, such features will
enable an autonomic behavior of the BlobSeer data-
management platform.
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