
HAL Id: inria-00556844
https://hal.inria.fr/inria-00556844

Submitted on 17 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Approach for Ultra Low-Power WSN Node
Generation

Adeel Pasha, Steven Derrien, Olivier Sentieys

To cite this version:
Adeel Pasha, Steven Derrien, Olivier Sentieys. A Novel Approach for Ultra Low-Power WSN Node
Generation. IET Irish Signals and Systems Conference (ISSC 2010), Jun 2010, cork, Ireland. �inria-
00556844�

https://hal.inria.fr/inria-00556844
https://hal.archives-ouvertes.fr


ISSC 2010, UCC, Cork, June 23–24

A Novel Approach for Ultra Low-Power WSN Node
Generation

Muhammad Adeel Pasha, Steven Derrien and Olivier Sentieys

University of Rennes1, IRISA/INRIA
Campus de Beaulieu, Rennes

FRANCE

E-mail: adeel.pasha@irisa.fr steven.derrien@irisa.fr

olivier.sentieys@irisa.fr

Abstract — Wireless Sensor Network (WSN) technology is now emerging with appli-
cations in various domains of human life e.g. medicine, environmental monitoring and
military surveillance etc. WSN systems consist of low-cost and low-power sensor nodes
that communicate efficiently over short distances. It has been shown that power con-
sumption is the biggest design constraint for such systems. Currently, WSN nodes are
being designed using low-power microcontrollers. However, their power dissipation is
still orders of magnitude too high and limits the wide-spreading of WSN technology. In
this paper, we propose an alternative approach that uses hardware specialization and
power-gating to generate distributed hardware micro-tasks. We target control-oriented
tasks running on WSN nodes and present, as a case study, a lamp-switching applica-
tion. Our approach is validated experimentally and shows prominent power gains over
software implementation on a low-power microcontroller such as the MSP430.
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I Introduction

Recent advancements in micro-electro-mechanical-
systems (MEMS) technology, wireless communica-
tion, and digital electronics have facilitated the de-
velopment of low-cost, low-power, multi-functional
sensor nodes that are small in size and communi-
cate efficiently over short distances. Systems of
1000s or even 10,000s of such nodes are antici-
pated and can revolutionize the way we live and
work. A Wireless Sensor Network (WSN) is com-
posed of a large number of sensor nodes, that are
densely deployed either inside a region of interest
or very close to it. Each node consists of processing
capability (one or more microcontrollers with as-
sociated memory (RAM/Flash)), communication
capability (an RF transceiver) and can accommo-
date various sensors and actuators.

Power consumption has been realized as the
biggest constraint in the design of a WSN node.
Since the nodes must be low-cost and small in
size [1], it is not possible to equip them with a
huge source of energy. To make the situation
worse, WSN nodes may have to work unattended
for long durations due to difficult access to them
or a huge number of nodes. As a result, they
must survive with self-harvested (e.g. solar cells)

or non-replenishing (e.g. batteries) sources of en-
ergy. All these restrictions toward energy retrieval
make power consumption the most important de-
sign parameter.

In recent years, WSN nodes have been de-
signed using low-power microcontrollers such as
the MSP430 [2] from Texas Instrument or AT-
Mega128L [3] from Atmel Corporation. These pro-
grammable processors share common characteris-
tics such as a reasonable processing power with low
power consumption at a very low cost. However,
power dissipation of these devices is still orders of
magnitude too high for application domains such
as WSN, since these systems expect sensor nodes
to operate with extremely limited energy resources
for very long time periods (months if not years).
Moreover, because these nodes remain idle during
most of their lifetime, their static power consump-
tion plays a major role in their actual energy bud-
get.

In such situations, the only way to further im-
prove the energy efficiency of such a system is to
customize its design to the application at hand.
The approach consists in implementing each task
of a control-oriented application graph on a power-
gated specialized hardware architecture (called
hardware micro-task). This architecture is in the



form of a minimalistic datapath controlled by a
custom Finite State Machine (FSM) and is being
automatically generated from a task specification
in C, using an ASIP-like retargeted design environ-
ment. The approach results in improving both the
dynamic (thanks to hardware specialization) and
static (thanks to power-gating) power of the WSN
node.

In this paper, we are investigating the applica-
tion of this hardware specialization approach from
WSN perspective. We propose, as a case study,
a lamp-switching application in which a trans-
mitting node demands a receiving node to switch
on/off its lamp if a button is pressed at transmitter
end.

The main contribution of this article lies in in-
vestigating the power benefits of power-gated hard-
ware micro-tasks based approach. A simple yet
realistic case study of a WSN example also serves
as an experimental validation that the approach
is conceivable for real-life WSN applications. We
also provide the SPICE transistor-level timing sim-
ulation results to show that the on/off-switching
delays of the power-gated micro-tasks are within
the acceptable range and even better than that of
traditional low-power microcontrollers such as the
MSP430.

Our experiments show that dynamic power sav-
ings of one to two orders of magnitude can be ob-
tained for different control-oriented tasks of our
application (w.r.t. a low-power MCU such as the
MSP430). Moreover, since the tasks are power-
gated, their static power consumption will be vir-
tually zero when the WSN nodes will be in sleep
mode.

The rest of this paper is organized as follows.
We start by presenting the related work in Sec-
tion II and describe thoroughly our proposed case
study in Section III. In Section IV, we present ex-
perimental results which confirm the validity of the
approach. Finally, conclusion and future research
directions are drawn in Section V.

II Related Work

In the last decade, a wide range of applications
for sensor network have been developed. Some
of the application areas are environment, mili-
tary, health, and security. WSN may consist of
many different types of sensors such as seismic,
low sampling rate magnetic, thermal, visual, in-
frared, acoustic and radar. These sensors are able
to monitor a wide variety of ambient conditions
such as temperature, humidity, lightning, pressure,
and vehicular movements etc [4]. This section de-
tails the literature study of some of such WSN ap-
plications. Later in the section, we highlight some
application benchmarks that have been proposed
for WSN. Finally, we present some power optimiza-
tion efforts done at micro-architectural and oper-
ating system level in the context of WSN.

a) Important WSN applications

Environmental monitoring is an important appli-
cation of WSN. In reference [5], a habitat monitor-
ing system is discussed. Similarly, forest fire detec-
tion and prevention [6], and detection of volcanic
eruptions [7] are other examples of environment-
monitoring WSN systems.

WSN can also be used as an integral part of
military command, control, communication, com-
puting, intelligence, surveillance, reconnaissance
and targeting (C4ISRT ) systems [8]. The rapid
deployment, self-organization and fault tolerance
are some characteristics that make WSN a very
promising sensing technique for military C4ISRT
systems.

Moreover, the benefits of WSN have also been
proved in other domains of human life such as
health monitoring and home applications [9, 10].

b) WSN application benchmarks

We have seen in this section that WSN applica-
tions consist of a heterogeneous nature as they
are pretty different in their overall goals to be
achieved. However, the basic tasks performed in
a WSN node are quite similar. These tasks are:
sensing a certain phenomenon, gathering its rele-
vant data and forwarding it to a base-station in
a pre/post-processed state. Several attempts have
been conceived to profile the workload of a generic
WSN node. Two of the recent application bench-
marks for WSN are SenseBench [11] and WiSeN-
Bench [12]. Both of them have tried very well to
cover the general applications and algorithms that
can be run on a typical WSN node.

c) Low-power MCUs and operating systems

As far as power optimization of WSN domain is
concerned, many research efforts have been made.
These works cover all the design aspects of a WSN
from application layer of the communication stack
to the physical layer (e.g. efficient routing algo-
rithms, low-power medium access control (MAC)
protocols etc.). However, since the focus of our
research work is the micro-architectural level, we
try to summarize the characteristics of low-power
micro-controllers (such as the MSP430 and the
ATMega128L) that have been developed for low-
power applications and the light-weight operating
systems running on them.

The common characteristics of such MCUs are:
a simple datapath (8/16-bit wide), a reduced num-
ber of instructions (only 27 instructions for the
MSP430), and several power saving modes that
allow the system to select the best compromise
between power saving and reactivity (i.e. wake-
up time). These processors are designed for low-
power operation across a range of embedded sys-
tem application settings but are not necessarily
well-suited to the event-driven behavior of WSN
nodes as they are based on a general purpose,
monolithic compute engine.



For example, Mica2 mote [13] has been widely
used by the research community. It is a complete
WSN node based on a ATmega128L MCU, with
I/O peripherals, an RF transceiver and sensor de-
vices. Measurements of Mica2 show that its MCU
consumes an average 8 mA of current when ac-
tive and approximately 15µA when in low-power
mode. The MSP430F1611 used by Hydrowatch
platform consumes a nominal 500 µA [14] whereas
the latest version of MSP430 (MSP430F21x2) con-
sumes approximately 8.8 mW (@ 16 MHz).

It is an acknowledged fact that the power bud-
get of a WSN node that would rely only on en-
ergy harvesting technologies is estimated to be
around 100µW [15]. Comparing this constraint
with that of current MCUs power consumption
profiles clearly drives us toward alternative archi-
tectural solutions (e.g. hardware specialization of
the system).

Moreover, most of currently used MCU pack-
ages include a limited amount of RAM (only a few
hundred Bytes to a few kilo-Bytes). This limited
amount of storage resources poses great challenges
to the software designers since both the user appli-
cation and operating system must work with this
very small amount of memory.

As a consequence, there have been several at-
tempts to reduce the complexity of the operat-
ing system (OS) on these devices. In particu-
lar, many approaches have been proposed to re-
duce the overhead caused by dynamic scheduling of
the threads by using alternative concurrency com-
putational models. For example, TinyOS [16] is
built upon an event-driven approach, without ex-
plicit thread management, and Contiki [17] pro-
poses a simplified thread execution model (named
protothread), in which preemption can only occur
at specific points in the task control flow.

III Proposed approach

The section starts by explaining the case study
used in the current work and later on, outlines the
notion of micro-task and the generic architecture
of a WSN node built using the proposed approach.

a) Proposed case study

WSN applications, being event-driven in nature,
can be represented as Tasks Flow Graphs (TFGs)
where a task execution is triggered by events, be
they external or produced by another task.

This section highlights the important control
tasks of our lamp-switching WSN application dur-
ing transmit as well as receive mode. The control-
flow of the proposed node is based on RICER
(Receiver Initiated CyclEd Receiver) MAC proto-
col [18]. Briefly speaking, data transmission by
a transmitter node is initiated upon reception of
a wake-up beacon from the desired receiver node.
Fig. 1 (a and b) shows the TFGs of the proposed
node in transmit and receive mode, respectively.

a).1 Control tasks running on a WSN node
in transmit mode

Here are the basic control tasks running on a our
WSN node in transmit mode:

• Wait for wake-up beacon: Upon reception
of an external event (buttonPushed) or an
ackNOK event, the transmitter node waits
for the wake-up beacon from the desired
receiver node according to RICER proto-
col. We have written a C-function, called
waitForBeacon(), that actually starts a
timer and reads the data packets received by
its RF transceiver through Serial Peripheral
Interface (SPI) bus. In our example, we are
using CC2420 radio chip from Texas Instru-
ment [19] as RF transceiver. If the transmit-
ter receives the required wake-up beacon be-
fore the timer expiry, it generates a beaconRe-
ceived event. Otherwise, a timeOut2 event is
generated by the task.

• Sending data: The next task is data transmis-
sion that is described in sendData() function.
This function writes data frame to the physi-
cal interface of the radio transceiver through
SPI bus and generates a dataSent event.

• Receiving acknowledgment: After sending
data, the transmitter node waits for an ac-
knowledgment frame from the receiver us-
ing receiveAck() function. If it receives
the acknowledgment correctly, it generates an
ackOK event, otherwise an ackNOK event is
generated.

• Shutting down the transceiver: Upon recep-
tion of ackOK or timeOut2 event, the trans-
mitter node will shut down its RF transceiver
to save energy. This is done through
shutDownRadio() function, that sends appro-
priate signals to RF transceiver to shut it
down.

a).2 Control tasks running on a WSN node
in receive mode

The control tasks running on a WSN receiver node
of our case study are as follows:

• Sending a wake-up beacon: Our proposed
WSN node periodically broadcasts a wake-up
beacon to announce the neighbors to initial-
ize a communication. This control task waits
for an external event timerEvent for its ac-
tivation. This external event is periodically
generated by a hardware timer. The corre-
sponding C-function for the task is described
in sendBeacon() function that generates a
beaconSent event.

• Receiving and analyzing data: After sending
the beacon, the receiver waits for the data
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frame from any transmitter. The task is de-
scribed in receiveData() function that starts
a timer for possible time-out and receives and
analyzes the data frame if it is destined for the
receiver node or not. In case of valid data, it
generates dataReceived event whereas if the
timer is expired and no valid data is received,
a timeOut1 event is generated.

• Sending acknowledgment: Upon successful
data reception, the receiver generates an ac-
knowledgment for the transmitter node by
calling sendAck() function that sends an ac-
knowledgment frame to its RF transceiver and
generates a ackSent event.

• Switching the lamp: The next task, in receiver
TFG, is switching the lamp that is accom-
plished by calling the switchLamp() function.
This function analyzes the previous state of
the lamp by reading its corresponding port
and inverses it to switch the lamp state. Then
it generates a lampSwitched event.

• Shutting down the transceiver: Upon recep-
tion of lampSwitched or timeOut1 event, the
receiver node shuts down its RF transceiver.

b) Notion of micro-task and generic architecture
of proposed WSN node

Each task of a TFG can be mapped onto a special-
ized hardware structure called a micro-task. This
hardware can be seen as a small MCU datapath
micro-architecture, driven by a control FSM that
executes the micro-code corresponding to the task
at hand. The micro-task can access some shared

memories, and can be directly connected to some
of the I/O peripheral ports.

Fig. 2(a) shows the template of a micro-task ar-
chitecture with an 8-bit data-path; dotted lines
represent control signals generated by the control
FSM whereas solid lines represent the data-flow
connections between the various datapath compo-
nents.

Fig. 2(b) presents the generic architecture of a
node designed using micro-tasking. Monitor is
a system-level controller that is responsible for
the activation and deactivation of the individual
micro-tasks and is automatically generated by our
design tool (for details about its features, working
and architecture see [20]).

IV Experimental results

This section starts by outlining the design-flow
used to generate the micro-tasks from their cor-
responding C-descriptions and summarizes the
power benefits of the proposed approach w.r.t. cor-
responding software implementation. Later on, it
describes the experimental setup used for the ex-
traction of output switching timings for a power-
gated logic block.

a) Automatic generation of micro-tasks

The proposed design-flow for micro-task genera-
tion (Fig. 3) is based on GeCoS compiler infras-
tructure [21], a retargetable C compiler framework,
whose instruction selection phase is retargeted to
generate the assembly instructions for our simpli-
fied datapath model. This low-level program rep-
resentation is then used to generate VHDL descrip-
tions of (i) a custom datapath which implements
the minimum required set of operations for the
task at hand, and (ii) a micro-coded FSM that
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Table 1: Dynamic power consumption for various
control tasks (@ 16 MHz).

Micro-Task
Name Power Gain Area Eq.Nand

(µW) (x) (µm2) Gates (#)
sendData 28.2 312/34 6435 805

sendBeacon 28.3 310/33.9 6435 805
sendAck 28.2 312/34 6435 805

receiveData 28.3 310/33.9 6473 810
receiveBeacon 28 314/34.3 6469 809

receiveAck 27.9 315/34.5 6600 825
switchLamp 18.5 475/51 4208 526

shutDownRadio 20.3 433/47 4356 545

controls different entities of the datapath (for de-
tails of our design-flow, see [22]) .

b) Power benefits of micro-tasking

The micro-task VHDL designs have been synthe-
sized for 130 nm CMOS technology using Synopsys
Design Compiler. We used these synthesis results
to extract gate-level static and dynamic power es-
timations assuming a 16 MHz operating frequency.
For the sake of comparison, with a software imple-
mentation, we used as baseline the MSP430F21x2
(MCU core with memory and peripherals) dissi-
pation of 8.8 mW normalized at 16 MHz (the data
sheet indicates a dissipation of 550 µW at 1 MHz).

We also synthesized an open-source MSP430-like
MCU core to get the statistical power estimation.
Early estimates show 0.96 mW at 16 MHz without
accounting for memory and peripherals. We ex-
pect the actual power consumption of the MSP430
to lie between the two figures and compared the
power consumption of micro-tasks to both of them.

The results are given in Table 1 where it can be
observed that power benefits of one to two orders
of magnitude can be gained over software imple-
mentation. The fourth column of Table 1 sum-
marizes the surface areas consumed by the micro-
tasks (FSM and datapath without the shared data
RAM). The surface area of open-source MSP430-
like MCU core is around 74,000 µm2. Hence, it
can be seen that our approach does not consume
much area and several micro-tasks can be placed in
the same area as is consumed by an MSP430-like
MCU.

c) Switching delays for a power-gated block

To check the feasibility of applying power-gating
to a micro-task, we used similar model of a power-
gated block as was used in [23]. However, as no
quantitative data for the switching delays specific
to a CMOS technology was given, we re-run the
experiments to extract the delay information.

For this purpose, We used Mentor Graphics Eldo
to perform the transistor-level SPICE simulations
using a 130 nm CMOS technology. We used par-
allel NAND gates to model the timing behavior of
a power-gated block (Fig. 4(a)). Fig. 4 (b and c)
also shows that for a block consisting of 3000 gates
(a sleep transistor width of 2.04µm), we have a
turn-on delay of 38 ns and turn-off delay of 451 ns
(between cut-off and active mode). This must be
compared with MSP430’s typical wake-up delay of
1 µs from the standby mode.

V Conclusion

In this paper, we have proposed a novel approach
for ultra low-power implementation of control-
oriented tasks running on a WSN node. Our ap-
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proach is based on power-gated micro-tasks that
are implemented as specialized hardware blocks.
We presented as a case study a WSN system im-
plementing a lamp-switching application.

The synthesis results obtained for the micro-
tasks of the case study show that, compared with a
software implementation such as the MSP430 mi-
crocontroller, power reductions of one to two or-
ders of magnitude are possible.

In future, we would also like to evaluate the
feasibility of our approach on control-oriented re-
configurable structures, which would provide sup-
port for small grain power-gating techniques [24].
We also envisage to interface the proposed micro-
task-based node with the WSN simulators such as
WSim and WSNet for network-level validation.
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