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ABSTRACT

In an earlier work, we proposed a novel phonetic segmentation

method based on speech analysis under the Microcanonical Mul-

tiscale Formalism (MMF). The latter relies on the computation

of local geometrical parameters, singularity exponents (SE). We

showed that SE convey valuable information about the local dynam-

ics of speech that can readily and simply used to detect phoneme

boundaries. By performing error analysis of our original algorithm,

in this paper we propose a 2-steps technique which better exploits SE

to improve the segmentation accuracy. In the first step, we detect the

boundaries of the original signal and of a low-pass filtred version,

and we consider the union of all detected boundaries as candidates.

In the second step, we use a hypothesis test over the local SE distri-

bution of the original signal to select the final boundaries. We carry

out a detailed evaluation and comparison over the full training set

of the TIMIT database which could be useful to other researchers

for comparison purposes. The results show that the new algorithm

not only outperforms the original one, but also is significantly much

more accurate than state-of-the-art ones.

Index Terms— phonetic segmentation, non-linear speech pro-

cessing, multiscale signal processing, complex signals and systems.

1. INTRODUCTION

In an earlier work [1], we proposed a radically new approach for text-

independent (TI) phonetic segmentation based on the Microcanoni-

cal Multiscale Formalism (MMF). Using methods from the statisti-

cal physics field, MMF provides accurate analysis of the nonlinear

dynamics of complex signals. It relies on the estimation of local ge-

ometrical parameters, the singularity exponents (SE), which quan-

tify the degree of predictability at each point of the signal. When

correctly defined and estimated, these exponents can provide valu-

able information about the local dynamics of complex signals and

has been successfully used in many applications ranging from sig-

nal representation to inference and prediction [2, 3, 4]. We showed

that MMF is valid for speech signal and that a simple analysis of SE

yields a fast and relatively accurate TI phonetic segmentation algo-

rithm. Experiments on TIMIT showed that, while our approach is

simple and conceptually novel, it still achieves better segmentation

accuracy than state-of-the-art methods. Moreover our algorithm is

almost parameter/threshold free, which is a major advantage w.r.t.

traditional algorithms and a desirable property for text and language

independent applications.

By performing error analysis of our original MMF-based al-

gorithm, in this paper we propose a technique which better shows

the strength of SE and further improves the segmentation accuracy.

This technique is a 2-step procedure. In the first step, we detect the

phoneme boundary candidates on the given signal and on a low-pass

filtered version using our MMF-based algorithm. We then consider

the set of all detected boundaries (those of the signal and those of

its filtered version) as candidate boundaries. In the second step, we

use dynamic windowing and Log-Likelihood Ratio Test (LLRT) to

decide which are the correct boundaries. This 2-step structure is

similar to that of traditional segmentation methods where there is a

boundary pre-selection followed by statistical tests to make the final

decision [5].

Another objective of this paper is to address a common diffi-

culty in comparing TI segmentation methods which is the diversity

of evaluation datasets and also incoherencies in performance mea-

sures. Indeed, while the literature is rich in phonetic segmentation

methods, it is relatively poor in material for performance compari-

son. Most of the papers report either on undefined subsets of known

databases or on personal/unaccessible databases. Moreover, it is of-

ten difficult to analyze the reported accuracy scores because of the

diversity of measures used. This makes it difficult to make fair com-

parisons between different segmentation algorithms. To the best of

our knowledge, the only TI and unsupervised segmentation algo-

rithms that report on known and accessible database are [6] and [7].

The latter reports on the full training set of TIMIT and has the ad-

vantage of providing different scores with different sizes of tolerance

windows. [8] and [9] also report on the same dataset but the algo-

rithms they propose are not fully unsupervised. The former assumes

prior knowledge of the the number of phonemes in the utterance,

while the latter uses prior knowledge of all manual transcriptions to

train a neural network. We will thus report our results on the full

training set of TIMIT and compare them to [7]. Using different sizes

of tolereance windows, we provide detection, insertion and overseg-

mentation rates and also 2 different global performance measures,

F1 and R-value. By doing so, we attempt to provide results which

are easy to interpret and compare with.

The paper is structured as follows. In Section 2 we briefly in-

troduce MMF and our previous work on its application to phonetic

segmentation. In Section 3 we present our new MMF based segmen-

tation algorithm. The experimental results are presented in Section

4 and we draw our conclusion in Section 5.

2. OVERVIEW ON PREVIOUS WORK

In [1] the very first steps in applying MMF for catching non-linear

dynamics of speech signal were taken. In this section, we briefly

introduce MMF and our previous work on its application to the pho-

netic segmentation of speech signal.



2.1. Microcanonical Multiscale Formalism

MMF is based on the computation of the local scaling exponents of

a given signal, whose distribution is the key quantity defining inter-

mittent dynamics of the signal. These exponents are a useful tool for

the study of geometrical properties of signals, and have been used

in a wide variety of applications ranging from signal compression to

inference and prediction [3, 4]. These exponents are associated to

the evaluation of a local power-law scaling behavior at each point in

the signal domain. The validity of MMF for a given signal s(t) relies

on the existence of such relationship for at least one scale-dependent

functional Γr , for each time instance t and for small scales r:

Γr (s(t)) = α(t) r
h(t) + o

“

r
h(t)

”

r → 0 (1)

where h(t) is the so-called singularity exponent (SE). Turiel et al.

[10] proposed a method for accurate estimation of SE by choosing

Γr to be the gradient-modulus measure:

Γr (s(t)) :=
1

Λ(Br)

Z

Br(t)

dτ |s′(τ)| (2)

It is shown that, the exponent associated to the corresponding power

law characterizes the information content and the dynamical tran-

sitions of the signal in terms of the scale [11, 12]. Practical im-

plementation to avoid noise and discretization artifacts consists in

using a continuous wavelet transform TΨ [|s′|] (r, t) ∝ rh(t). We

use the Lorentzian wavelet because it provides an accurate estima-

tion for small exponents which are the most informative ones [13].

In fact, for a given point, the smaller the value of SE is, the higher

predictability is in the neighborhood of this point [10]. It has been

established that the critical transitions of the system occur at these

points, and this fact has been successfully used in many applications

[2, 4, 14].

2.2. Application of MMF to the phonetic segmentation

The validity of MMF and the availability of precise estimates of

SE for speech signal, was proved by an extensive evaluation on

TIMIT database. We then showed how SE convey valuable informa-

tion about dynamical transitions of the speech signal. Indeed, since

different phonemes should have different geometrical and statistical

properties, we expected the corresponding SE to have different be-

havior inside the boundaries of each phoneme. This was verified

by evaluating the time evolution of the distribution of SE. This led

us to the development of an automatic segmentation algorithm, by

exploiting the easiest interpretation of the changes in distributions,

which is the change in averages. In other words, we expect that dif-

ferent phonemes have different averages of exponents compared to

their neighboring phonemes. We proposed to use the primitive of the

SEs function over time as an estimator of the instantaneous average:

ACC(t) =

Z

t

t0

dτ h(τ) (3)

The resulting functional, with a detrending to enhance the pre-

sentation, is plotted in Figure 1a. As expected, this new functional

revealed the changes in distribution in a more precise way. Indeed,

inside each phoneme the functional ACC is almost linear. More-

over, there is a clear change in the slope at the phoneme boundaries.

Extensive observations over different sentences confirm this behav-

ior, and thus the strength of the proposed functional, Eq. (3).

In order to develop an automatic segmentation algorithm, a very

simple solution was employed to fit a piecewise linear curve to ACC

and identify the breaking points. To do so, we performed a left-to-

right search to find the hypothesized boundaries as the points where

the mean squared error of the linear fit is below a certain threshold.

Finally we reject the nodes located in the silence as the points where

the average power in a 30ms window is less than -30dB.

3. IMPROVING THE MMF-BASED SEGMENTATION

In this section we present a technique which better exploits the

strength of singularity exponents in order to improve the accuracy

of the phonetic segmentation algorithm described above. This tech-

nique is motivated by some observations about the behavior of the

latter algorithm at some particular phoneme transitions. This leads

us to propose a two-steps algorithm where we first pre-select candi-

date boundaries and then use statistical hypothesis test to make the

final decision.

By performing error analysis of the MMF-based algorithm, we

first observed that some of the misssed boundaries correspond to

transitions between fricatives/stops and vowels. We also observed

that transitions between speech and low energy segments (such as

pauses and epenthetic silence) display strong and easy to detect

changes in the slopes of ACC. Indeed, the singularity exponents

of low energy segments have high positive values, while they are

mostly negative in active speech segments. Motivated by these ob-

servations and the fact that fricatives/stops are essentially high-band

signals, we propose to compute ACC on a low-pass filtered version

of the utterance. By doing so fricatives/stops-vowels transitions will

be converted into silence-speech transitions which are much easier

to detect as shown in Figure 1b. It is known that most of the spectral

energy of fricatives is located above 2000Hz and, for most stops, the

active frequency bands start at 1800Hz. We thus choose the cutoff

frequency of the low-pass filter as 1800Hz.

The second and most important observation we made is related

to the statistical distribution of singularity exponents. We observed

that some missed boundaries correspond to neighboring phonemes

which have a quite distinctive difference in their SE distribution.

However, the change in their averages is not strong enough to be

translated as a change in the slope of ACC, and thus it is not cap-

tured by the simple curve-fitting procedure. It is then natural to think

about including a statistical hypothesis test over SE distributions in

our segmentation algorithm in order to detect such boundaries.

Motivated by these observations, we develop new segmentation

algorithm which consists in 2 steps. First, we use our original MMF-

based algorithm to detect the boundaries of the original and filtered

signal. We gather all the detected boundaries and consider them as

candidate boundaries. In the second step, we make the final decision

by performing a dynamic windowing over these candidates followed

by Log Likelihood Ratio Test (LLRT) over SE distributions of the

original signal. We use a Gaussian hypothesis because our purpose

is to detect changes in mean and variance. More precisely, for each

candidate ci we consider the large window Z = [ci−1, ci+1] and the

two smaller windows X = [ci−1, ci] and Y = [ci, ci+1]. We then

compute LLR statistic to decide between the two hypothesis:

• H0 : SE of Z are generated by a single Gaussian.

• H1 : SE of Z are generated by two Gaussians on X and Y .

If H1 is significantly likelier than H0, we select ci as a boundary.

Otherwise, ci is removed from the candidates list. We emphasize

here that SE of the filtered signal are used only in the first step. The

final decision is made upon the information conveyed by SE of the

original signal. We also emphasize that this new algorithm is still

simple and efficient as the original one.



(a) (b)

Fig. 1: (a) A speech signal from TIMIT and its ACC functional. (b) TOP: Two examples of ACC functional for the original signal where

the change in the slopes are not clear, BOTTOM: The ACC functional for the low-passed filtered signal. The changes in slopes are clearer.

Phoneme boundaries are marked with vertical red lines.

4. EXPERIMENTAL RESULTS

Our evaluation is carried out on the full Train set of the TIMIT

database which contains 4620 sentences uttered by 462 speakers.

This set contains a wide variabilitiy of speakers and is balanced for

dialectical coverage which is desirable for the evaluation of TI seg-

mentation methods.

4.1. Performance measures

The segmentation quality can be evaluated and analyzed using three

”partial” scores: the Hit Rate (HR) which is the rate of correctly

detected boundaries; the False Alarm Rate (FA) which is the rate

of erroneously detected boundaries and the Over Segmentation Rate

(OS). These three scores are defined as:

HR =
NH

NR

, OS =
NT − NR

NR

, FA =
NT − NH

NT

(4)

where, NT is the total number of detected boundaries, NH is the

number of correctly detected boundaries and NR is the total number

of boundaries in the reference transcription. In order to to assess the

overall quality of a segmentation method, a global measure which

simultaneously takes these scores in to account is required. A well

known measure is the F1-value:

F1 =
2 × PCR × HR

PCR + HR
(5)

where PCR = 1 − FA is the precession rate. Another global

measure, called the R-value, which is supposed to be more accurate

than F1 has been recently proposed in [15]. This measure makes

more emphasize on over-segmentation by arguing that better hit rates

might be achieved by simply adding random boundaries without any

algorithmic improvement. This measure evaluates how close one is

to the ideal segmentation R = 1:

r1 =
p

(1 − HR)2 + OS2, r2 =
HR − OS − 1√

2
(6)

R = 1 − |r1| + |r2|
2

(7)

4.2. Results

Using different sizes of tolerance windows, we provide comparison

of segmentation results for 3 methods. In the first one, we give the

results reported in [7]. We mention here that [7] report scores with

0ms, 10ms and 20ms tolerance windows. However, their approach

is frame-based with a 10ms frame step size and they convert each

manual boundary to the closest frame position. Thus, 5ms has to

be added to their window size in order to make a fair comparison

with our sample-based approach which has the finest possible res-

olution. In the second one, we provide the results using our origi-

nal MMF-based algorithm [1] summarized in section 2.2, we call it

MMF-ACC. In the third one, we present the results obtained using

our new algorithm described in section 3, we call it MMF-LLRT.

Table 1 presents HR, FA and OS for the 3 methods. The first obser-

vation is that MMF-LLRT outperforms MMF-ACC for the 3 scores

and all tolerance windows. In particular, a significant improvement

is made in FA and OS. This shows that, as expected, some of the

insertions introduced by the curve fitting procedure has been cor-

rected by the LLRT. The second observation is that MMF-LLRT

yields considerably much higher accuracy than [7]. In particular,

the smaller tolerance window is, the higher relative improvement is.

This shows that MMF-LLRT is better suited for high precision de-

tection of phoneme boundaries. To this regard, we can mention an-

other interesting comparison with [9] which is also a sample-based

segmentation method as ours. In [9], it is reported that 43.5% of

their 86.8% detection output is located within the first bin of the

cumulative histogram of distances from true boundaries. This corre-

sponds to 43.5% × 86.8% = 37.75% hit rate with 7.5ms tolerance.

With MMF-LLRT we obtain 44% hit rate which is significantly more

accurate. More importantly, the algorithm in [9] is supervised (all

manual transcriptions are used to train a neural network) while ours

is fully unsupervised.

Table 2 presents the performance of each of the 3 methods when

evaluated using the global measures F1 and R. The same observa-

tions we made above still hold for the global performance evaluation.

Indeed, MMF-LLRT still outperforms MMF-ACC for both F1 and

R. Moreover, about 6% (resp. 10%) improvement in R-value and

4% (resp. 10%) in F1-value is achieved for 25ms of tolerance (resp.

5ms and 15ms). This is a significant gain in accuracy that shows the

strength of singularity exponents in revealing the transitions fronts

between phonemes.

Finally we emphasize an important feature of our algorithm



Table 1: The comparative table of segmentation results (”-” means

not available). The scores are reported as percentages.

tolerance score Dusan et al [7] MMF-ACC

5ms

HR 22.8 31.7

FA 79.7 70.2

OS 12.8 6.4

10ms

HR - 52.8

FA - 50.4

OS - 6.4

15ms

HR 59.2 65.5

FA 47.5 38.4

OS 12.8 6.4

20ms

HR - 72.4

FA - 31.94

OS - 6.42

Table 2: The comparative table of global performance measures.

tolerance score Dusan et al [7] MMF-ACC MMF-LLRT

5ms
R-value 0.29 0.39 0.41

F1-value 0.21 0.31 0.32

10ms
R-value - 0.57 0.60

F1-value - 0.51 0.53

15ms
R-value 0.60 0.68 0.70

F1-value 0.55 0.63 0.65

20ms
R-value - 0.74 0.76

F1-value - 0.70 0.72

25ms
R-value 0.73 0.77 0.79

F1-value 0.71 0.74 0.75

30ms
R-value - 0.79 0.81

F1-value - 0.76 0.77

which is its insensitivity to the threshold of the linear curve fitting.

Figure 2 displays the R-value for different thresholds. we used a

subset of 30 randomly selected sentences to compute these values.

One can see that with about 400% change in the value of threshold,

that variance of changes in R-value is less than 0.5%. Thus, we can

fairly consider that our algorithm is threshold-free. This is a major

advantage as most of the TI methods require accurate threshold

tuning.

Fig. 2: The sensitivity of the MMF-LLRT to threshold.

5. CONCLUSIONS

By performing error analysis of our original MMF-based phonetic

segmentation algorithm, we presented a new technique which con-

firms the strength of singularity exponents in detecting phoneme

boundaries, and which further improves the segmentation accuracy.

We provided a detailed evaluation and comparison using the full

training set of TIMIT that could be useful to other researchers for

comparison purposes. The results show that the new algorithm not

only outperforms the original one, but also is significantly much

more accurate than state-of-the-art ones. We are still at the begin-

ning of exploration of speech analysis from the MMF perspective.

The encouraging results we obtained so far suggest that the MMF

has indeed big potential in speech processing and should be further

investigated. This will be the purpose of future communications.
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