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Abstract
Managing large software development systems has become increasingly challenging,
as large volumes of raw data generated by the production telemetry are intractable
for manual processing. The client of this thesis seeks an effective scalable approach
to tackle this issue by automatically classifying the software logs generated in case
of integration test failures during software production.

This thesis has developed two machine learning candidate solutions to demonstrate
the feasibility of a learning-based approach for log classification. The first solution
represents a canonical natural language processing pipeline, which performs step-
by-step transformation of the input data using text preprocessing and numerical
representation methods as well as permits using any traditional machine learning
model for classification. The second solution employs the transfer learning approach
and a deep neural language model from the family of bidirectional transformers,
which incorporates an encoder for contextual text representation that is fine-tuned
on a domain-specific corpus to improve classification performance.

Both solutions achieved high accuracy scores, thus confirming the feasibility of
a learning-based approach for software log classification. Experiments showed that
contextual text representations using no text preprocessing contributed more to
classification accuracy than other representation schemes attempted in this work. A
transformer neural language model pre-trained on the general natural language domain
successfully adapted to the domain of software logs with minimal preprocessing
effort. At the same time, the experimental results indicated that careful vocabulary
management and methodical log preprocessing could enhance similarity between the
domains and thus further improve the classification accuracy of the transfer learning
solution.
Keywords Artificial Intelligence, Machine Learning, Deep Learning, Natural

Language Processing, Continuous Integration, Test Automation
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1 Introduction
Modern software development systems have become increasingly sophisticated. With
the widespread adoption of agile practices, almost every step in software production
has become automated to eliminate the need for manual labour and to streamline
the integration of software changes continuously submitted by many collaborators
[1]. This approach to software production is known as continuous integration (CI),
and the instances of such production systems are referred to as CI pipelines.

CI pipelines are delicate systems that should be continuously monitored and
adjusted to meet the requirements of an ever-evolving software development envi-
ronment because their uninterrupted work is one of the main factors determining
production throughput [2]. To facilitate status telemetry and effective fault tracing,
the pipelines keep a record of their activity using logs of graphical and textual in-
formation. If a break occurs in the workflow, this data becomes instrumental for
troubleshooting, as it provides clues for a probable cause of the issue.

Professional software development practice has established a standard for event
logging to permeate throughout the software production system to ensure oversight
of every system component [2]. On the one hand, such a detailed logging scheme
permits localising problems with extreme accuracy. On the other hand, automatically
generated logs tend to grow in size, making it challenging and time-consuming to
find relevant information.

In the event of pipeline failure, it is a common practice for human operators to
manually browse over log data, searching for hints to help them localise the source
of a problem and take actions to resolve it. This approach may be acceptable at
the early stages of a software production system life cycle when the frequency of
failures is relatively low. However, as the software grows more complex and the
production system increases in scale, the likelihood of failure increases proportionally
[1], thereby making pipeline interruptions more frequent. Consequently, the sheer
volume of generated log data makes manual inspection intractable. Therefore, an
organisation that has no means of automating the log analysis and failure tracing
process is poised to suffer a decline in throughput and prolonged delivery cycles.

1.1 Problem Statement
The client for this thesis, a technology organisation, wishes to improve the problem
resolution management in its software development environment by automating the
analysis and classification of failed test reports. These reports mainly consist of
software logs. Hence, the primary challenge is to find an effective approach to utilise
the text information from these logs for the classification task.

The log classification task has a high potential for automation because log contents
tend to follow an implicit structure and are often repetitive [3]. The client has already
created a solution that uses heuristic rules to extract keywords and identify sentence
patterns that can be automatically mapped to a predefined category. However,
there are two problems with the current approach. Firstly, it is challenging to
design rules that are general enough to cover a great variability of log content.
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Secondly, a continuously evolving production system causes the log content to change
over time, thus aggravating the first problem. Together, these issues result in a
continuous burden of creating more (often conflicting) rules, which eventually renders
the rule-based approach intractable [4].

In recent years, multiple publications have addressed the software log classification
problem. Several of these studies [5]–[7] have highlighted the learning-based ap-
proach as effective in overcoming the issues of rule-based solutions. Indeed, machine
learning methods have the potential to eliminate the need for handcrafted rules by
automatically extracting statistically significant associations from training examples.
Furthermore, the diversity of learned associations enables such a classifier to generate
predictions for previously unseen data samples that moderately deviate from the
original training set. Finally, as more examples accumulate, the quality of prediction
tends to increase [8], thus facilitating automatic continuous self-improvement of the
learning-based solution.

Despite their merits, conventional learning-based methods often struggle to meet
performance requirements if the input data lacks structure and contains excessive
noise. This problem is so pernicious in machine learning projects that data cleaning
and searching for better forms of representation account for a considerable share of
the solution design effort [9]. One possible approach to overcome this problem would
be to employ a neural network model with sufficient expressive power to automatically
learn an effective data representation and mitigate the noise problem by applying a
suitable regularisation technique. Such a neural network solution would simplify the
development of a learning-based classifier by alleviating the need for tedious data
preprocessing and feature engineering.

Among the neural networks capable of working with sequential text input, neural
language models have become particularly effective in a variety of natural language
processing tasks [10], including text classification. Notably, the feasibility of applying
neural language models to classify unstructured log data originated from a software
development environment still remains largely unexplored in the literature.

Therefore, the aim of this thesis is to develop a software solution implementing a
learning-based log classifier that would achieve performance comparable to that of
the currently used rule-based solution while requiring the same or less supervision
effort and obviating the need for handcrafted heuristic rules. Furthermore, this thesis
aims to assess the capacity of a pre-trained and fine-tuned neural language model to
capture the semantic structure of software logs and produce contextually accurate
encoding of unstructured log content, thus aiding classification accuracy.

To accomplish these goals, this thesis will develop the baseline solution imple-
menting a conventional machine learning pipeline that accepts raw labelled data as
input, extracts relevant features for learning, converts these features into a suitable
mathematical representation, and outputs a trained classifier object for deployment
in the field. As an alternative solution, the thesis will adapt a pre-trained neural
language model to the domain of software logs and fine-tune it for the classification
task, thus decreasing the data preprocessing effort compared to the baseline solution.
Finally, the thesis will compare the candidate solutions using standard classifier
evaluation metrics.
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The remainder of this thesis is organised as follows. Section 2 reviews the concepts
essential for this study, such as rule-based approach, machine learning methods, and
natural language processing. Section 3 surveys the earlier work concerned with the
log classification problem and outlines the recent advancements in neural language
models and the related learning strategies. Section 4 describes the solution methods
and their step-by-step implementation. Section 5 presents and formally evaluates
the experimental results. Section 6 interprets the results and discusses the main
findings. Finally, Section 7 concludes the thesis by summarising the solution design
and methods, evaluating the proposed solution and giving recommendations for
future work.
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2 Background
Section 1 has presented the learning-based approach as a potential solution for
overcoming the lack of scalability in the rule-based method. Because these approaches,
as well as the related study of natural language processing, attempt to mimic the
human reasoning process, they are subsumed under the more general field of study,
known as artificial intelligence. This chapter takes a deeper look into these methods.
Specifically, Section 2.1 introduces the concept of artificial intelligence, Section 2.2
explains the notion of rule-based artificial intelligence, Section 2.3 presents the
essential elements of machine learning theory, including deep learning, and Section 2.4
introduces the relevant concepts from the field of natural language processing.

2.1 Artificial Intelligence (AI)
Artificial intelligence is a broad term that encompasses multiple scientific and en-
gineering disciplines. The exact definition of AI remains elusive, as it has changed
multiple times over the years. A prevalent concept of AI today has been described
by Russel and Norvig [11] as an intelligent agent able to perceive its operating
environment and act rationally according to the principles defining its purpose.
Throughout the history of AI research, the paradigm of intelligent machines has
undergone numerous evolutionary steps. This research path resulted in a wealth of
mathematical and computational methods, which collectively comprise the modern
study of AI. Figure 1 illustrates the relationship between the disciplines important
for this thesis.

Historically, AI has had a mixed reputation. Despite the enthusiasm around it in
its early years, the majority of the legacy AI methods have found limited application
outside of the academic realm [11]. However, in the past decade, progress in machine
learning has produced results that have reignited the interest of companies and
investors in the business potential of this technology [12] to such an extent that it
has made AI an integral part of the digital transformation trend [13], [14].

Although the potential of AI has been recognised, it has not yet become a general-
purpose technology. While the big-tech giants have been actively capitalising on
AI-powered innovation, the average adoption rate across industries has been rather
slow [15]. The apparent reason for this is the difficulty of designing operational
improvements which could demonstrate tangible and scalable benefits of AI technology
compared to existing traditional approaches. For example, the authors of a case study
about adopting ML at Uber [16] claimed around 10% of productivity improvement,
although they omitted details about the cost of development and maintenance of
this solution. Such examples illustrate that adopting AI technology requires careful
studying, experimentation, and multifaceted evidence of its business value. Practice
shows that the success of such an undertaking, being uncertain, is the product of deep
technological insight, meticulous data-driven design, and strong software engineering
skills [17], [18].
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Figure 1: Venn diagram representing logical relations between the disciplines applied in
this thesis. Each circle embodies a subset of methods considered in the scope of this work.

2.2 Rule-based AI
From the early years of AI and for the most of its history, rule-based methods have
been the primary approach for intelligent systems design [11]. Such systems have also
been referred to as expert systems, thus emphasising their purpose for encapsulating
the knowledge of human experts in order to perform a sophisticated task [19]. Since
this thesis considers a rule-based system as a point of reference for a competing
approach, it is important to clarify the meaning of the term in the context of this
study.

Generally, the term rule-based AI refers to a class of AI solutions whose underlying
methods rely on pre-programmed knowledge for problem solving [11]. This definition
agrees with the canonical architecture of rule-based systems, consisting of two main
components: a knowledge base and an inference engine [19]. The knowledge base is
the storage of interconnected facts and formal rules, embodying expert knowledge
about the operational domain of a system. The inference engine represents the
control domain of a rule-based system, whose purpose is to execute the chain of
reasoning using the knowledge base to achieve the intended result.

Masri et al. [19] deem the canonical architecture that entails explicit knowledge
representation to be the characteristic feature of AI rule-based systems, as opposed to
other automation solutions that encapsulate knowledge implicitly in procedural code.
Conversely, the taxonomy used by Russel and Norvig [11] does not restrict rule-based
AI to a particular architecture but, instead, emphasises the underlying analytical
methods, which employ different strategies to utilise pre-programmed knowledge.
This latter vision is also adopted in this thesis.
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Although it might not hold for the entirety of the rule-based AI, this thesis also
assumes that rule-based methods are not adaptive. The lack of adaptivity, in this
context, refers to the inability of an intelligent agent to autonomously adjust the
parameters governing its behaviour. In other words, rule-based agents are unable to
learn.

2.3 Machine Learning (ML)
Machine learning is a family of AI techniques that use data to automatically infer the
parameters of a mathematical model representing the latent process that generated
this data in the first place [8]. This mechanism enables an intelligent agent to adapt
to its environment using the observed examples, in contrast to rule-based approaches
that rely on a set of rules hard-coded by a designer [11]. During adaptation, an
intelligent agent acquires the ability to interpret input data beyond the examples it
has already seen. This capacity to generalise predictions beyond training examples
is the most important quality of an ML solution, serving as the core metric in its
performance evaluation [20].

Numerous machine learning strategies have been developed over the history of
AI [11]. This section only explains the terms and concepts essential for this thesis,
placing the main focus on supervised learning and its underlying theory as well as
briefly presenting the notion of unsupervised learning. Finally, the section presents
artificial neural networks and the notion of deep learning, highly relevant for this
work.

General setup

A typical ML problem setup necessarily involves the following components [8], [20]–
[22]: a collection of data points, a machine learning model, a performance measure,
and an algorithm that ties all these components together to facilitate the learning
process.

Data is an essential component of ML setup, since it serves as empirical evidence of
system behaviour. Each data point represents an example of the system input x and
its corresponding output y. Formally, the whole dataset S with m observations can
be presented as a collection of ordered pairs S = {(xi, yi) ∈ X × Y : i ∈ {1, ..., m}}.
Depending on the context, the input vector observations x ∈ X may be called features
or covariates. While inputs are often assumed to be easily obtainable, the acquisition
of outputs y ∈ Y , also known as labels, often requires effort and expertise. When
the label y is not explicitly defined, it is possible to construct one without explicit
supervision but as a property emerging from the way the input data X is distributed
[22].

Generally, the observations in the dataset S are assumed to be independent,
identically distributed (i.i.d.) realisations of a random vector (x, y) sampled from
an unknown joint distribution p(x, y) [8]. Based on this premise, ML methods are
formulated in terms of probabilistic models broadly divided into discriminative and
generative models [21]. When expressed mathematically, these models often employ
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free parameters, thus spanning whole families, also known as hypothesis classes H,
of possible model instances.

The task of learning can hence be conceptualised as the process of searching from a
family of probabilistic models H for the one h ∈ H that most accurately explains the
underlying data distribution, and hence could serve as a reliable predictor h(x) = y
for any data point (x, y) ∼ p(x, y) [8]. The mechanism for predictor learning usually
employs a performance measure L(h) selected depending on the learning strategy.

Supervised learning

In supervised learning, the assumption is that there exists a strong association
between the input and the output that can be presented as a map h : X ↦→ Y , which
models the system behaviour [21]. The goal of an ML algorithm is to learn such a
predictor model h(x) = ŷ that captures the aforementioned association as accurately
as possible.

As a learning mechanism, the supervised learning algorithms employ loss functions
l(ŷ, y) that measure how well the model h(x) = ŷ predicts (fits) the individual data
points (x, y) ∈ S. Typically, the loss functions are defined so that for ŷ ≈ y, the
loss l(ŷ, y) ≈ 0. Hence, the learning algorithm seeks to minimise the empirical loss
function L̂S(h) defined in [21] as

L̂S(h) = 1
|S|

∑︂
(x,y)∈S

l(h(x), y), (1)

whereas the predictor that yields the best fit for the data in S by minimising the
empirical loss is defined as follows [20]:

hERM
S = arg min

h∈H
L̂S(h). (2)

Equation (2) defines the learning rule for acquiring the optimal predictor hERM
S

in its class H given the information in sample S. This learning approach is known
as empirical risk minimisation (ERM), and the minimisation procedure executed by
the learning algorithm, is referred to as training [20].

Although, by definition, hERM
S is the best predictor on S, it is important to bear

in mind that sample S is only an approximation for the underlying distribution
p(x, y). This implies that the empirical loss L̂S(h) is poised to vary depending on the
particular realisation of S. For this reason, it is more appropriate to think about loss
l(h(x), y) as a random variable related to the joint distribution of the observations
p(x, y) [21]. Therefore, the true performance of a predictor h(x) = ŷ should be
assessed based on its average performance across all data points in the population
(x, y) ∼ p(x, y). This idea gives premise to an important concept of generalisation
loss expressed by the following equation [21]:

Lpxy(h) = E(x,y)∼pxy [l(h(x), y)]. (3)

Equation (3) provides a theoretical measure for predictor generalisation capacity,
that is how inaccurately predictor h is expected to perform on average across the
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entire population. The notion of generalisation loss permits formulating a criterion
for the optimal predictor h∗(x) = ŷ∗ minimising prediction error over every input
x ∈ X. Such an optimal predictor is known as the Bayes estimator, formally defined
in [20] as

h∗(x) = arg max
y∈Y

P(y | x), (4)

which yields the prediction ŷ∗ minimising the generalisation loss over every point
(x, y), as shown in the following equation [21]:

ŷ∗(x) = arg min
ŷ

Ey∼py|x [l(ŷ, y) | x]. (5)

Notice that the optimisation problem (5) involves the conditional distribution
of the system output p(y | x), which is generally unknown. Hence, the true quality
of a predictor largely depends on how accurately sample S approximates p(y | x).
Moreover, there is no guarantee that the selected hypothesis class H contains the
optimal Bayes estimator h∗. Consequently, as shown in the following equation [20]:

Lpxy(h) − Lpxy(h∗) =
(︃

inf
h∈H

Lpxy(h) − Lpxy(h∗)
)︃

⏞ ⏟⏟ ⏞
approximation error ϵa

+
(︃

Lpxy(h) − inf
h∈H

Lpxy(h)
)︃

⏞ ⏟⏟ ⏞
estimation error ϵe

, (6)

there are two error terms that keep the generalisation loss Lpxy(h) of a predictor
h away from achieving the optimal result Lpxy(h∗). First, the approximation error
ϵa due to an intrinsic bias of the selected class H. Second, the estimation error ϵe

reflecting the data distribution bias implied by the dataset S, which results in a
predictor suboptimal in its class [20].

Tackling the approximation error ϵa requires selecting the hypothesis class H,
so-called inductive bias, that most accurately encapsulates the prior information
about the data distribution [8]. This is a challenging problem that involves careful
data analysis and practical experimentation with the hypothesis classes of different
expressive power [20]. The estimation error ϵe, on the other hand, is the outcome of
the learning process and hence can be managed with the help of statistical learning
theory. In practice, there is always a trade-off between an acceptable estimation
error tolerance ϵe > 0 and the risk of not satisfying this tolerance due to a chance
δ ∈ (0, 1] of having a non-representative sample. This idea is at the core of the
PAC learning framework, which with probability 1 − δ produces a predictor h ∈ H
suffering estimation error no more than ϵe provided that an i.i.d. sample of size m is
large enough and the selected hypothesis class H is PAC learnable [8].

Multinomial classification

When the sample space of the output variable y ∈ Y is discrete and finite, the
predictor function h : X ↦→ Y is referred to as classifier and when the cardinality
of the output set |Y | = k > 2, such a predictor is known as a multinomial (or
multiclass) classifier [20]. As per the canonical machine learning setup, classification
algorithms require a set of examples {(x, y) ∈ X × Y } to learn from, a hypothesis
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class of discriminator functions H ∋ h and a loss function l(h(x), y) to minimise
during training.

Although there is no shortage of binary classification methods, relatively few of
these generalise easily to the multinomial setup described above. For this reason, it
is more common to divide a single multinomial classification problem into multiple
binary classification problems [8]. For example, the aggregated methods rely on the
majority vote of multiple binary classifiers using either one-versus-rest (OVR) or
one-versus-one (OVO) strategy to discriminate between the pairs of classes at a time.
A more sophisticated example of an ensemble of binary classifiers adopted for the
multiclass case is a family of boosting algorithms [20], though these remain outside
of the scope of this work.

A great variety of ML models have been developed for classification. These models
are based on different underlying theoretical principles, with their application-specific
strengths and weaknesses as well as their own set of hyper-parameters to tune. Since
each model entails a certain inductive bias, choosing one should be justified by the
data underlying distribution [8]. In practice, however, it is more common to choose a
model family flexible enough to have a good chance to perform well on any properly
prepared data. The rationale for choosing a particular classifier type for this study
is discussed in more detail in Section 4.

Within the PAC learning framework, the classification problem learnability as well
as its sample complexity are characterised by the fundamental theorem of statistical
learning. Its multiclass version with relaxed learnability assumption is encapsulated
in the following relation [8]:

C1
Ndim(H) + log(1/δ)

ϵ2
e

≤ mH(ϵe, δ) ≤ C2
Ndim(H) log (k) + log(1/δ)

ϵ2
e

, (7)

for some C1, C2 ∈ R+.
Relation (7) implies that, even with a limited sample size m (less than that of

the population), it is possible to assess the performance expectations for a k-nomial
classifier learned from a hypothesis class H as long as its complexity, expressed in
terms of Natarajan dimension Ndim(H), is finite.

ML predictor selection

Having a good predictor h learned on a sample S using the ERM rule (2) does not
guarantee the same level of performance on a different sample taken from the same
population because there is always a risk that the training sample S provides an
inaccurate representation of the underlying distribution p(x, y) [8]. The statistical
learning framework captures the relationship between this risk δ and a multinomial
classifier performance expressed in terms of its generalisation loss Lpxy(h) in the
following inequality [20]:

Lpxy(h) ≤ L̂S(h) + 4k

ρ
Rm(H) +

√︄
log (1/δ)

2m
, (8)

where ρ > 0 is the margin parameter.
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Figure 2: The figures adopted from [20] present the effect of empirical complexity on
the generalisation error of a predictor. The generalisation bound cannot be decreased
indefinitely due to the bias-complexity trade-off.

For a predictor h ∈ H with empirical complexity Rm(H), trained on a sample
S of size m, and accrued empirical loss of L̂S(h), the relation (8) approximates
the theoretical upper bound for generalisation loss Lpxy(h) with certainty of 1 − δ.
The term Rm(H), known as the Rademacher complexity, can be thought of as an
empirical measure for the proclivity of a predictor learned from the hypothesis class
H to fit random noise [20].

Bias-complexity trade-off

Evidently, the best performing predictor is the one minimising all terms on the
right-hand side of the relation (8). The empirical loss term L̂S(h) is minimised by the
ERM rule (2). The uncertainty-quantifying term

√︂
log (1/δ)/2m can be addressed by

increasing the sample size m at some fixed risk tolerance δ. However, managing the
empirical complexity term Rm(H) is more difficult because of its intrinsic connection
with the empirical loss term. In order to minimise empirical loss L̂S(h), training
algorithms require the hypothesis class H to be sufficiently expressive. Coincidentally,
a more expressive hypothesis class necessarily causes the Rm(H) term to increase
[20]. Hence, it is impossible to decrease L̂S(h) without increasing Rm(H). This
conundrum is known as the bias-complexity trade-off [8].

The bias-complexity trade-off manifests itself in a peculiar phenomenon con-
sistently observed in ML practice. Although a predictor h learned from a more
expressive class H usually helps to reduce its empirical loss L̂S(h), the generalisation
bound Lpxy(h) tends to increase after the complexity of hypothesis class Rm(H)
exceeds a certain threshold [8]. Figure 2(a) illustrates this behaviour.

The explanation for the discussed trade-off lies in the intrinsic connection of the
generalisation bound terms of relation (8) with the generalisation error components
ϵa and ϵe defined in (6). The increase in predictor complexity Rm(H) helps reducing
the empirical loss L̂S(h) via a decrease in the approximation error term ϵa, while the
estimation error term ϵe is poised to increase as per the relation (7). As illustrated
in Figure 2(b), at the point marked as Rm(H∗), the ϵe term increases faster than ϵa

decreases. This marks the inflection point in the upper bound of the generalisation
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error, after which the increase in complexity yields no performance benefit and even
weakens the generalisation capacity of a predictor.

The situation when the learned predictor class complexity exceeds that reasonable
threshold R > Rm(H∗) is referred to as overfitting. The opposite situation, when
predictor falls short of the expressive power R < Rm(H∗) required to improve
its generalisation capacity, is known as underfitting. Clearly, both situations are
undesirable, which implies that learning a good predictor with respect to the bias-
complexity trade-off amounts to finding a hypothesis class H whose complexity
Rm(H) is as close as possible to Rm(H∗) [20].

The insight presented above is the main rationale for the predictor model selection
used in this thesis. Numerous methods have been developed to attain a good predictor
in terms of the bias-complexity trade-off. These methods are discussed in Section 4.

Unsupervised learning

Even though the input data x is usually abundant, the structural characteristics
of its input space X as well as the data-generating process are often not obvious.
Yet, this insight might prove useful in many ways, as even the supervised learning
models are generally biased towards a particular structure of the input space [20].
Because the input data does not possess explicit clues for interpretation, there exist
many ways to infer its structural properties by applying various criteria for analysis.
The study of unsupervised learning forms a branch of machine learning techniques
that emulate data-generating mechanisms to predict these structural properties and
discover latent structure in complex data distributions [21].

The unsupervised learning approach has many practical applications. For example,
popular methods, such as PCA and SVD, are frequently used for reducing the input
data dimension [22], which also lends such high-dimensional data to visualisation.

Another important application of unsupervised learning is feature engineering.
That is, using the information encapsulated in the raw input data to transform this
data into an alternative representation that is more favourable for the task at hand
[23]. An important example of feature engineering with text is transforming words
into numerical embeddings that capture semantic properties of these words in an
unsupervised fashion based on their co-location frequency across the training corpus
[24].

In the application to text data, topic modelling unsupervised ML methods are
designed to automatically extract sets of related themes based on the co-occurrence of
words in a collection of documents [24]. The most prominent of such topic modelling
methods often mentioned in the literature are latent semantic indexing (LSI) and
latent Dirichlet allocation (LDA).

As a learning mechanism, unsupervised algorithms often employ similarity/distance
functions d(xi, xj) that measure the magnitude of association/difference between
data points (xi, xj) [22]. If a method involves data transformation, it is also likely to
employ a task-specific loss function to formulate an optimality condition. The exact
setup varies depending on the method. This study will present the details of relevant
unsupervised learning algorithms while describing the used methods in Section 4.
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Deep learning

As follows from the preceding discourse, the expressive power of a machine learning
model is constrained by its hypothesis class H embodying its inductive bias. This
constraint is the primary cause of the approximation error ϵa component in (6) that
caps the generalisation capacity of a predictor h ∈ H [20]. To achieve the full learning
potential, the predictor needs the expressive power that would enable it to fit the
data distribution of any arbitrary complexity. Such an expressiveness is a special
quality of machine learning models, known as artificial neural networks (ANN) [8].

The building block of any neural network is an artificial neuron, a computational
unit that performs a transformation of a weighted sum of its inputs [8]. A special
arrangement of these neurons into a graph-like structure of successive layers is what
forms an artificial neural network. In theory, such a structure can be scaled to achieve
the expressive power sufficient to represent a mathematical function of any arbitrary
complexity [25].

Scalable expressive power is not the only distinguishing characteristic of ANNs.
From the multilayered structure of neural networks emerges the property of abstract
numerical representation of the input information [26]. This property makes ANNs
fundamentally different from the conventional learning machines that are predomi-
nantly designed to solve numerical optimisation problems related to the downstream
tasks, whereas the challenge of feature engineering largely remains the manual effort.
In contrast, although optimisation is an essential model component, the ability of
ANNs to generate abstract representations makes the tedious feature engineering
task an integral part of the learning process [26].

The notion of deep learning (DL) hence refers to the concept of a multilayered
ANN that facilitates a chain of transformations deliberately designed to yield a
meaningful representation of the model input [26]. That is, the main interest of
DL is an automatic learning of abstract numerical features that are effective for the
learning task at hand. The ’depth’ of a deep ANN is determined by the number of
successive layers in its architecture [25].

Although deep neural networks have been highly successful, their benefits come
at a high computational cost [25]. Training of a large deep ANN is a time-consuming
process, requiring expensive hardware. In addition, the high expressive power of large
ANNs inevitably increases the risk of overfitting [20]. Hence, for effective learning,
deep ANNs also need a large number of training examples, which might be a blocker
in some applications.

2.4 Natural Language Processing (NLP)
NLP is a branch of AI concerned with text data and intimately related to linguistics
[27]. Unlike regular numerical input, text data has a more complex structure
because its components (e.g., words, collocations, sentences) might have different
interpretations depending on the context, not to mention other subtle qualities such
as tone and sentiment that also contribute to meaning. This aspect makes text data
modelling particularly challenging, since a proper mathematical representation of
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text should capture the context and retain information about the plausibility of word
collocations [28].

The domain of NLP study is immense. This section covers only the essential
NLP topics necessary to follow the discourse in the following chapters of this thesis.
Particularly, the problem of language modelling is central for a variety of NLP tasks,
including text encoding and text classification, that are in the focus of this study.

Statistical language modelling

Throughout the history of NLP, many sophisticated techniques have been developed
to construct a formal model of natural language. Many of these techniques could be
considered an example of rule-based AI, such as tagging words with their respective
parts of speech and inferring the syntactic structure of sentences to extract information
[29].

As for more subtle aspects of language in which context plays a decisive role, the
task of statistical language modelling (SLM) has been traditionally used to construct
probabilistic models for a word to occur alongside other words [29]. Formally, for
each word w in the corpus vocabulary V , its probability to continue a sequence of
length N is defined as follows [28]:

P(wn | wn−N+1:n−1) = C(wn−N+1:n−1, wn)
C(wn−N+1:n−1)

, (9)

where the terms C(•) represent counts of the respective word sequences.
The sought probabilities defined in (9) are obtained by computing the relative

frequency of the word sequences in the corpus, thus representing the maximum
likelihood estimate (MLE) for the word wn to continue the sequence wn−N+1:n−1.
Although effective, this approach suffers from numerous irredeemable drawbacks.
Goldberg [28] highlights three primary issues that limit SLM predictive capacity. First,
the rigid nature of the MLE-based approach impedes using more flexible conditioning
on the context or including other relevant information that could potentially aid SLM
performance. Second, scaling up the context length N in such a rigid framework
results in extremely sparse distributions as N becomes larger, which is costly in terms
of memory. Finally, MLE-based models do not generalise the contextual information
to the previously unseen examples.

Neural language modelling

As it turns out, artificial neural networks possess the structure and capacity to
overcome some of the problems of SLM [28]. That is, a neural network can be used
as an alternative approach to estimating the probability distribution of a word given
its context more effectively and efficiently than SLM.

In this approach, the sequence representing the context wn−N+1:n−1 is encoded in
the form of a long numerical vector x that is fed into an ANN consisting of l ≥ 1
hidden layers and the softmax output layer that generates a probability distribution
for the word wn over the corpus vocabulary V . In the case of the feed-forward
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architecture, the whole forward pass operation can be represented with the following
equation:

pV (wn | wn−N+1:n−1) = softmax[(gl ◦ ... ◦ g1)(x)], (10)

where (gl ◦ ... ◦ g1)(x) is the chain of composite vector functions representing the
input x transformations across l network hidden layers prior to the softmax output
layer, and pV (•) is the probability mass distribution over the corpus vocabulary V .

The setup described above forms the basis of any neural language model (NLM),
which presents the following advantages [28]: NLM is flexible in terms of input
structure, it allows an increase in context size N at a much lower cost compared to
SLM, and it automatically incorporates the context information, thus being able to
estimate reasonable probability distributions for the previously unseen collocation
examples if the context is otherwise familiar to the model.

In addition, the compact numerical representations learned in the course of model
training can encode the semantic features of every word in the corpus vocabulary
[24], placing semantically related words close to each other in vector space. This
property has inspired a variety of word and document embedding methods [30]–[33]
that have largely contributed to the success of NLMs in NLP.

Neural language models have undergone a considerable evolution in the past
decade, during which various architectures have been proposed to improve the quality
of contextual representation of text as well as to tackle scalability issues of early NLMs
[10]. This study is particularly interested in the latest advancement on this front,
namely the recently proposed self-attention transformer neural network architecture,
which will be presented in Section 3.2.
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3 Related Work
This chapter presents the literature review on the topics that are closely related to the
application domain in the focus of this thesis. Section 3.1 surveys the publications
related to software log analysis and classification, emphasising the concepts especially
relevant to this study. Section 3.2 gives an overview of the self-attention transformer
models, their use in the transfer learning practice for NLP applications as well as
the strategies used to pre-train and adapt these models for a downstream task in a
specific application domain.

3.1 Software Log Analysis and Classification
Multiple research groups from the academy and industry addressed the problem
of analysis and classification of log messages generated by software systems. Their
publications give valuable insight into the problem anatomy and provide references
for a variety of approaches to tackle challenges that arise in different application
settings.

Broadly, it is possible to split the domain of log analysis research into two main
focus areas: data structuring and inference tasks. This section gives a brief overview
of these areas. Figure 3 summarises the related work topics identified in the course
of literature review and their respective relevance to the subject of this thesis.

Log mining and data structuring

The first major research area is concerned with various forms of log mining and
managing vast collections of unlabelled log data by parsing, encoding, clustering
and presenting these in a structured manner. This area appears to be dominated
by the unsupervised ML methods [3], [34], [35], although there were studies that
attempted more rigid AI techniques that employed manual log format modelling
with subsequent decomposition into tree structure and applying handcrafted mind
maps for various inference tasks [36], [37].

The task of log parsing often employs a combination of AI approaches, including
frequency analysis, clustering and various heuristic rules to infer the intrinsic log
structure and convert the unstructured text into an organised table of features [34],
[38]. Unfortunately, automatic parsing is rarely perfectly accurate even if logs are
generated according to a consistent set of rules [3], and hence might be impractical
if no structure is present in the first place. Nevertheless, log parsing results could
serve as an indicator of structural features in a log corpus and provide additional
clues for other analysis techniques.

Section 2.4 suggested that context in text data can be seen as an additional
source of information. This aspect motivated some researchers [38]–[40] to utilise
the semantic component of software logs for developing more abstract and compact
encoding schemes, namely log embeddings. Not only do semantic-aware embeddings
provide alternative encoding methods, but, no less important, a compact yet accurate
information representation is instrumental for deep learning methods [28].
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Figure 3: The map of the software log related research topics identified in the course of
literature review. The topics are placed to match the underlying AI techniques and the
corresponding research area.

Inference tasks

Many achievements in log data structuring and representation underlie the second
large focus area of research concerned with inference tasks. The topic of anomaly
detection enjoys particularly many publications. Several of these publications are
noteworthy as application examples of neural network architectures especially effective
for learning from text data, such as LSTM [7] and adaptive universal transformers
[41].

The subject of supervised multinomial log classification is of particular interest
for this work. Although it is possible to find examples of log classification in general
[6], [42], [43], relatively few studies addressed the problem with the consideration of
a peculiar language and the inherent structure of software logs. Among these few,
LogClass [5] is a prominent publication that proposes a structure-aware log encoding
scheme to improve the performance of a multinomial software log classifier. The
source code of the LogClass solution has been shared for open access and may serve
this work as a reference for the baseline solution.

The majority of the log classification examples found in the literature employ
classical feature engineering and classification methods, implementing each data
processing step manually in the form of an NLP pipeline. A rare exception in this
row is one study [44] using a convolutional neural network for the log classification
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task. In addition, many recent publications have been dedicated to adaptation
of neural language models for text classification, though neither of these have yet
examined the domain of software logs. The concept of neural language model domain
adaptation is explained in more detail in Section 3.2.

Other related work

It is also worth mentioning a few notable studies that examined other important
aspects, such as the deployment of a software log classifier in the enterprise [6], [17]
and use of log data for faulty component localisation [45]. These topics might be
relevant to the follow-up studies succeeding this work.

3.2 Transformers in Transfer Learning
This section explains the concept of transfer learning. The section also introduces
the self-attention transformer architecture and its application in neural language
modelling. In addition, this section discusses the concepts of pre-training and domain
adaptation of a neural language model for a downstream task.

Transfer learning

According to the theory presented in Section 2.3, the quality of a learned predictor
depends on a sufficient number of diverse examples in a data sample S = {(x, y) ∈
X × Y } that serves as a proxy for the data underlying distribution p(x, y) [8].
However, it is often difficult to collect sufficient data to train a good predictor,
especially if its hypothesis class H is very expressive. Because training from scratch
is so expensive, researchers have developed an approach, known as transfer learning
(TL), that permits reusing knowledge about target distribution p(x, y) acquired by
an ML model from alternative data sources, thus facilitating effective learning even
in the absence of sufficient examples to recreate this essential knowledge anew [46].

In essence, the TL approach attempts to generalise the knowledge of another
predictor to the operational domain of the target application using a limited amount
of domain-specific data [47]. The success of knowledge transfer depends on the
similarity between the data underlying distribution of the source and the target
domains as well as many other application-specific factors [46]. Over the years, dozens
of variations of TL methods have been proposed to fit various application-specific
circumstances. Zhuang et al. [46] offer a comprehensive survey on the topic as well
as provide insightful examples of using the TL approach.

In recent years, transfer learning has become a popular field of study in its own
right, especially for deep learning applications. It has become very successful in
multiple domains, including computer vision and NLP. This thesis seeks to assess the
feasibility of the TL approach to utilise the knowledge of pre-trained neural language
models in order to adapt them for the software log classification task.
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Figure 4: Self-attention transformer architecture diagram adopted from [50]. The input
sequence is passed through the encoder. The encoder output is fed to the decoder that
generates the output sequence in multiple passes.

Self-attention Transformer

In the past decade, the most notable advancements in NLP have been achieved with
the help of deep artificial neural networks [10]. The first important breakthrough
happened in 2010 when the Recurrent Neural Network (RNN) was introduced for
language modelling [48]. In 2012, the LSTM cell has been proposed [49] for RNN
to improve its context modelling features. Although the RNN-based models have
been state-of-the-art in NLP, the structure of RNN incurs a high computational cost,
thus making it slow and expensive to experiment with. A radical change in approach
came in 2017 with the introduction of the self-attention transformer architecture
[50] that has been based entirely on the attention mechanism and has abandoned
the temporal structure of RNN in favour of a rigid structure with fixed-length input.
The novel transformer architecture has enabled relatively lightweight models that, to
this day, achieve state-of-the-art performance in many NLP tasks [51].

The original transformer architecture is presented in Figure 4 as it was envisioned
by its creators Vaswani et al. [50]. It represents a sequence-to-sequence model
featuring the encoder-decoder structure. The input sequence is passed through
the encoder all at once to form contextual representations for each word in the
context of other words in the sequence. This is achieved by means of positional
encoding in combination with self-attention mechanism used throughout all encoder
and decoder layers. The output sequence is produced one word at a time by selecting
the most likely candidate based on the output of the decoder softmax layer. This
way, generating the whole output sequence requires multiple passes through the
decoder, where each subsequent pass utilises the information from the previous passes



25

alongside the output of the encoder stack.
The primary motivation behind the transformer architecture has been to tackle

three important limitations of its predecessors [50]: high computational cost, poor
parallelism of computations, and the inability to keep track of long-range context
dependencies in a sequence. The use of self-attention layers dramatically reduces the
computational complexity as well as increases opportunities for parallelism. Even
more importantly, processing the input sequence all at once enables the attention
mechanism to retrieve context information from any part of the sequence within the
desired range. This property is deemed the primary reason for the superior language
modelling performance of transformer-based models over the previous generation of
ANNs, such as RNNs and LSTM-RNNs [52].

The transformer is a deep neural network. Hence, both the encoder and decoder
modules consist of multiple layers of similar blocks stacked on top of one another.
The technical details about the internal composition of these blocks as well as the
description of their operating principles are omitted, as these present little relevance
for the following discourse. Besides, the original architecture presented in Figure 4
has undergone many variations in recent years. An interested reader can find more
technical details about different variations of transformers in a survey by Lin et al.
[52].

Another remarkable transformer quality is that its training capacity can be
increased by a relatively straightforward upscaling [53]. That is, if the model
performance saturates, then merely increasing the number of attention layers might
help achieve tangible improvements. This discovery has motivated researchers to
scale up transformers to extremes, resulting in powerful models with the capacity to
encode a vast amount of knowledge from large-scale datasets [52].

Transformer-based neural language models

The immense potential of the transformer has been immediately recognised by the
NLP community (and beyond) [54]. Since the initial transformer publication, a
plethora of prominent studies have followed, proposing various augmentations of
the original architecture and reporting new state-of-the-art results in a variety of
NLP tasks [52]. Naturally, the topic of language modelling using transformers has
attracted much research interest, as the ability of neural language models to produce
effective contextual text representations is instrumental for other NLP tasks[10].

A pivotal point in transformer-dedicated research has been the introduction
of Bidirectional Encoder Representations from Transformers (BERT) [55] neural
language model that has utilised the encoder structure of the original transformer
for the masked language modelling task to produce contextual representations of the
input words as well as of the whole sequence. BERT has set new performance records
in a variety of NLP tasks, which has affirmed the advantage of the transformer
architecture over its predecessors. Since BERT has been made publicly available, it
has triggered a chain reaction of follow-up studies [52] that have managed to optimise
BERT and even surpass its performance achievements (e.g., RoBERTa [56]).

A notable competing branch of transformer-based language models is the family
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of Generative Pre-training Transformers (GPT) [57]–[59] that utilise the decoder
structure of the original transformer and take a unidirectional approach to contextual
encoding. Although the achievements of GPT models are remarkable, relatively few
follow-up publications have followed, perhaps because the creators of GPT kept their
work proprietary for too long.

Transformer-related research has become so dynamic that new prominent results
are reported on a regular basis. Besides the aforementioned BERT and GPT, other
promising transformer-based language model configurations have been developed.
An interested reader can refer to the relevant surveys [10], [52], [54] for more details.

Many follow-up studies have undertaken considerable research and development
effort, including training their transformer model modifications from scratch on
various corpora. Much of this work has been made open source in the form of
software packages. As a result, a vast collection of pre-trained transformer models
have become available for public access and commercial use, which has increased the
NLP community engagement and has fuelled the research activity even further. A
comprehensive survey by Kalyan et al. [54] helps to appreciate the diversity of the
produced research.

To accelerate the adoption of transformer-based solutions, multiple software
libraries have included transformer models into their collections, among which the
most prominent is the transformers library by Hugging Face [51] that features
the APIs of all leading transformer architecture variants available as open source.
This popularisation effort has made the state-of-the-art deep learning methods
approachable for a broader community and has promoted this technology for practical
applications across industries. Notably, transfer learning plays a significant role in
this process.

Domain adaptation using transfer learning

The original transformer architecture incurred few assumptions about the structural
properties of the input data distribution [52], thus making transformer exceptionally
expressive and requiring even more training examples than its predecessors. Even the
optimised and task-oriented transformer variants that incorporate a stricter inductive
bias into the architecture are difficult to train from scratch without a large amount
of good quality data. Because the availability of sufficient data is often a blocker for
training a transformer from scratch, transfer learning has become a natural approach
to harness the pre-trained models for practical applications [54].

As discussed earlier in this section, the NLP community has been actively experi-
menting with transformers and has released a series of monumental models, such as
BERT, GPT, and their successors, pre-trained using language modelling objectives
on diverse corpora. Each such model encapsulates a vast knowledge applicable
for a variety of downstream tasks across multiple domains. The notion of domain
adaptation hence refers to a set of strategies to achieve a satisfactory performance
in a downstream task with a relatively small amount of domain-specific data by
utilising the knowledge of a pre-trained model. Kalyan et al. [54] name several differ-
ent approaches commonly used in NLP to facilitate such knowledge transfer. The
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considerations for using a particular domain adaptation approach will be discussed
in Section 4 of this thesis.

It is also important to bear in mind that domain adaptation might also be
unsuccessful due to various reasons, ranging from obvious, such as the discrepancy
between source and target domains, to more sophisticated, such as catastrophic
forgetting [54]. Finally, even though transfer learning does usually help to achieve
good performance in downstream tasks, it is unlikely to outperform a model both
pre-trained and fine-tuned on a proper corpus domain, as has been shown in the
SciBERT [60] study.
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4 Methods
The aim of this thesis is to develop and evaluate a learning-based solution that uses
a collection of software log data to produce a classifier capable of distinguishing
between observation categories. Therefore, this chapter describes the methods and
design choices applied for developing the solution.

Section 4.1 introduces the current rule-based solution and the software develop-
ment environment used by the client as well as describes the process of data collection
and labelling. Section 4.2 describes the machine learning pipeline developed for this
thesis as the baseline solution. Section 4.3 presents a competing solution approach
that employs the transfer learning strategy and a transformer neural network to
accomplish the same task.

4.1 Application and Data Acquisition
This section describes the client’s software development environment and the role
of the current rule-based solution in collecting and labelling data. The section also
presents a concept for integrating the learning-based solution into the existing setup.

Software development environment

Although every software production system is unique, there is a canonical structure to
the organisation of continuous integration (CI) process [2]. Typically, CI environments
employ a software version control system and a CI server for centralised control
over software development operations. These operations necessarily include stages to
build and test new software iterations [1]. A schematic representation of the software
development environment used by the client organisation is presented in Figure 5.

Data flow

When a software update is committed to version control, the CI server initiates the
integration process in one of the pipelines. The pipeline builds a software package
and runs basic validation and verification procedures.

Eventually, the process reaches the testing stage. At this point, the CI server
initiates the integration test procedure (Connection 1 in Figure 5) on one of the test
setups via the CI nodes hosting test automation framework.

First, the software is loaded into a device under test (DuT). Next, the test
framework runs a battery of tests selected for that particular setup and its DuTs.
During test execution, all test framework events, including steps of the testing
procedure along with the feedback data from DuT, are recorded, thus generating logs
of textual and graphical information. These logs combined with relevant metadata
form test reports.

The test reports are aggregated by the CI server and combined into test run
reports for providing a summary of the integration test run. All failed test cases
in the test run report summary should be investigated in order to prevent similar
failures in the future.
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Figure 5: Software development environment consisting of IT automation infrastructure,
test setups, report analysis system and the envisioned classifier training module. Connections
illustrate data flow between the system components.

Failures are typically investigated by tracking the issue to its source, identifying
its likely cause, and informing the right people about the problem. To reduce manual
effort, the client’s testing team developed the test report analysis system which
uses regular expressions to match failure log text with one of the predefined failure
categories. The system employs a collection of heuristic rules encapsulating the
knowledge of experienced testers and a mechanism for utilising these rules for the
log classification task. Notably, the client’s solution description agrees well with the
definition of a rule-based system given in Section 2.2.

The report analyser resides on a server of its own. It regularly collects test run
reports from the CI server (Connection 2 in Figure 5), parses failed test records, and
stores selected log fragments along with their metadata and automatically assigned
category labels into SQL tables.

It is important to emphasise that the data used in this study has been labelled
automatically by the report analyser system using the described rule-based approach.
To keep the quality of automatic labelling in check and to mitigate the use of
mislabelled examples, some randomly picked data samples collected for this project
have been verified by experienced human testers.
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Self-improving classifier

This thesis contributes to the client’s failure log classification process by developing
a learning-based classifier training pipeline that generates classifier objects for de-
ployment in the report analysis system. As depicted in Figure 5, this pipeline could
be implemented as a training service within the offline training module integrated
with the rest of the software development environment via the corporate network.
Using fresh user-labelled data from the report analyser (Connection 3 in the figure),
this new service would routinely update and redeploy the classifier, thus facilitating
automatic continuous improvement of the report analysis system.

In addition, the learning-based solutions developed in this thesis can be utilised
to strengthen the existing software development environment telemetry by visualising
test run summaries and providing the results of data statistical analysis implemented
as an integral part of the classifier training pipeline diagnostic routines. Not only this
insight is instrumental for troubleshooting a classifier, but it could also aid system
architects and designers in their pursuit to improve the overall stability of the client’s
continuous integration pipelines.

A detailed description of the classifier training pipelines developed in this thesis
are further presented in Section 4.2 and Section 4.3 of this chapter.

4.2 Baseline: Machine Learning Pipeline
The learning-based solution is envisioned as a machine learning pipeline that reads
in the dataset of classification examples and outputs a classifier object that can be
deployed as a component of the report analyser system presented in Section 4.1. This
section explains the notion of machine learning pipeline and presents the baseline
solution developed for this thesis.

The baseline solution has been implemented using Python [61] programming
language. The solution description includes references to the major software libraries
used for the implementation.

NLP classifier pipeline

The life cycle of a machine learning classifier can be divided into two phases [62]:
the build phase when the classifier object is trained using a set of training examples,
and the operational phase when the classifier object created during the build phase
is deployed for operation in the field. This cycle repeats continuously, i.e., when a
better classifier is obtained from the build phase, it replaces the currently deployed
one. This thesis focuses primarily on the build phase of a machine learning pipeline
with the goal of training a well-performing classifier, whereas deployment aspects are
discussed only at the concept level.

The main purpose of a machine learning pipeline is to train a well-performing
predictor object. Before training can even begin, ML models require the input data
represented in a compatible format. In the case of text data, the words and other
lexical units should be converted into numerical vectors. Furthermore, it might
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Figure 6: The software pipeline setup to train a log classifier object. The NLP pipeline
stages perform necessary data transformations, while the diagnostic stages provide visuali-
sation and statistical insight into each transformation step.

be desirable to filter out the noisy content that adds little value to the predictor’s
performance.

Figure 6 provides a schematic representation of the baseline classifier training
pipeline developed for this thesis. It is divided into two main parts: NLP pipeline
stages and Diagnostic stages. The former has been developed according to the
canonical classification pipeline structure [4], whereas the latter has been designed
with consideration for the application-specific data content. The output of each NLP
pipeline stage is the result of input data transformation, which aids in training a
good classifier. The results of the diagnostic stages provide feedback to a designer,
i.e., generate the insight necessary to validate the outputs of the NLP pipeline stages
and facilitate continuous improvement.

Stage 1. Read in raw input data

The purpose of the first stage in the NLP pipeline is to construct a proper dataset
from raw input data [62]. In this case, the input data consists of failure log reports
parsed and labelled by the report analyser system presented in Section 4.1.

Multiple SQL tables store different types of data about each of the log report
instances. As shown on Figure 7, after the test report analyser parses a test run
report, the log text data is stored in one table whereas the assigned category label for
the same log instance is stored in a different table. Since there is no unique identifier
to match the log instances in these tables, a custom merge key has been constructed
using the unique combinations of metadata variables present in both tables.

Figure 8 illustrates the process of transforming raw input data into a proper
dataset. First, SQL tables of raw input data are loaded in. The module reads and
validates this input. If successful, the data passes a series of transformations to
combine the log instances from separate tables into one, validate label categories,
and strip the dataset of duplicate entries.
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Figure 8: Decision diagram illustrating Stage 1 of the NLP pipeline. The module
transforms raw input data into a proper dataset by merging two SQL tables. Preliminary
cleaning includes fixing data labels and removing duplicate entries.

The outcome of the first stage is a table of distinct observations. In this thesis, a
data point is considered distinct only if it contains a unique pair of Text data and
Label variables. Only distinct observations make a valid set of examples for the
learning algorithm.

Data validation and feature selection

Before proceeding to the next NLP pipeline stage, the result of data transformation
in Stage 1 should be validated to ensure that it contains no redundant bits or missing
essential information. Although certain validation procedures were implemented
along with the data transformation routines of Stage 1, it is necessary to carefully
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examine the outcome of these transformations.
To facilitate visual inspection and statistical analysis of the resulting dataset, a

diagnostic module, named data validation and feature selection, was developed for
this thesis.

Chi-square test for feature selection

The dataset contains multiple input variables, which might either be redundant or
prove useful for the classification task. The variables that have weak associations
with the output can be filtered out. To assess the presence of associations between
input variables and category labels, this diagnostic module employs a statistical test
of independence, known as the chi-square χ2 test.

The chi-square test involves computing the χ2 statistic, which is used to test
the null hypothesis of independence between a pair of categorical variables. The
procedure consists of the following steps [63]:

1. Verify that the setup complies with the assumptions and limitations of the χ2

test.

2. For each modality pair (i, j) between the two variables, collect the frequencies
of observations oij into the bi-variate contingency table.

3. For each modality pair (i, j) between the two variables, compute the expected
frequency of occurrence eij under the assumption of statistical independence.

4. Compute the χ2 statistic value as follows:

χ2 =
k∑︂

i=1

m∑︂
j=1

(oij − eij)2

eij

, (11)

where k and m are the respective number of modalities in the two variables
under test.

5. Choose the significance value α and find the critical χ2 score from the χ2

distribution table. If the computed χ2 value exceeds the critical score, then
the null hypothesis may be rejected.

Correspondence analysis for studying associations

Although the χ2 test is a good indicator of possible associations between the variables,
it provides little insight into the modalities that contributed to the χ2 score. To
determine the role of individual modalities in bivariate correspondence, this diagnostic
module implements the statistical technique, known as correspondence analysis.

Assuming that the intermediate results from computing the χ2 statistic are
available, the correspondence analysis procedure consists of the following steps [64]:

1. Compute the row profile table.
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2. From the row profile table, compute the χ2 distance, mass, and inertia values
for each of the row variable modalities.

3. Compute the column profile table.

4. From the column profile table, compute the χ2 distance, mass, and inertia
values for each of the column variable modalities.

5. Compute the matrix of standardised Pearson residuals R with elements rij =
oij−eij

N
√

eij
, where N is the total number of observations in the dataset.

6. Perform the singular value decomposition of the matrix R obtained in Step 5
to yield the following representation:

R = UΣV T , (12)

where the matrices U and V hold the principal axes for the row and column
variables, respectively, and Σ is the matrix of singular values, representing the
standard deviations of Pearson residuals along the principal axes.

Correspondence analysis provides a means for visualising the relationship between
modalities. Figure 9 shows an example of a correspondence analysis plot generated
by this diagnostic module for the (Target, Label) variable pair. This plot illustrates
a projection of the principal axes to a 2-dimensional subspace, preserving as much
information as possible about the associations between modalities. The scope of this
work does not permit discussing bivariate correspondence in detail. This example
merely illustrates the availability of a powerful statistical analysis tool in the developed
solution. The instructions for interpreting correspondence analysis plots can be found
in [64].

Stage 1 implementation

Stage 1 was implemented as a Python module using the decision diagram in Figure 8
as a specification.

The input data tables were provided in the form of serialised Pandas [65]
DataFrames. The DataFrame data structure was the primary format for man-
aging tabular data throughout this project. Likewise, many data transformation
tasks, such as constructing custom merge keys and removing duplicate entries, were
performed with Pandas and NumPy [66] software libraries.

In the implementation of Stage 1 diagnostic features, Pandas and NumPy were
used to construct tables and perform matrix operations. The χ2 critical score values
were obtained with the help of SciPy [67] software library. Scikit-learn [68] library
has been used to implement singular value decomposition.

For data visualisation, a set of graph rendering functions was implemented using
Plotly [69] graphing software library.
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Figure 9: Correspondence analysis plot illustrating bi-variate correspondence between
the variables Target and Label. The modalities are presented in terms of the two most
significant principle components.

Stage 2. Text data preprocessing

The preprocessing stage is an important precursor to converting text data into a
structured form suitable for multidimensional representation [24]. In this form, the
individual tokens become variables used as characteristic features of every observation
in the dataset. However, not all tokens are equally valuable for the learning task.
Moreover, every new variable increases the memory demand for data representation
and adds a computational burden to the learning algorithm [22]. Hence, the purpose
of the text data preprocessing stage is to clean the logs from noisy and redundant
content, thus preserving only those units of text that aid the learning task both in
terms of accuracy and efficiency [4].

Figure 10 illustrates the data transformations performed in this stage. First, each
text data sample is tokenised, i.e., split into a sequence of individual tokens. Next, a
series of transformations is performed on every token of every text data sample. As a
result, the text samples become shorter. Composed of only a fraction of the original
vocabulary, many logs end up as duplicates, which permits retiring them from the
dataset. The output of this module is a cleaned and tokenised dataset, optimised for
text vectorisation to be performed at Stage 3 of the NLP pipeline.

The text preprocessing procedure involves various transformations of text data,
including merging, splitting, stripping tokens of certain symbols, and entirely remov-
ing certain kinds of tokens from the corpus vocabulary. Although some preprocessing
techniques, such as lowercasing and removal of stopwords, are typical for any NLP
application, identifying the transformations that would achieve the optimal text data
composition requires substantial prior knowledge about the application domain [24].

For this thesis, an extensive collection of preprocessing functions has been designed
based on the client’s input and a systematic analysis of the corpus content. Most
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Dataset with text data cleaned and tokenised

Forming new dataset 

Figure 10: Decision diagram illustrating Stage 2 of the NLP pipeline. The module
performs a series of preprocessing procedures on the text data to reduce noise content and
optimise corpus vocabulary.

of these functions (shown in Figure 10) are rather unsophisticated and are named
in a self-explanatory manner. For example, it is typical for stack traces to contain
long compound tokens composed of multiple words connected using ’.’ or ’_’ symbols.
Therefore, there is a preprocessing function that splits these long tokens into multiple
short tokens, thus helping to optimise the log corpus vocabulary.

Stage 2 diagnostics

The main difficulty of the text preprocessing task, in general, and with the text data
in this dataset, in particular, is that the logs’ content is very application-specific
and lacks prior structure. Although there exist techniques, such as topic modelling
[24] and log parsing [3], which facilitate automatic pattern extraction from text
data, neither of the attempted methods, including latent Dirichlet allocation [70] and
LogParse [34], achieved results that could obviate the need for manual inspection of
the text data.

For the text data analysis, the token inspector utility developed in this thesis
provides a pervasive insight into the logs’ content. Not only this tool aids in designing
and improving the text preprocessing procedure, but it also helps in investigating the
cases of misclassification when evaluating the model at Stage 4 of the NLP pipeline.
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Figure 11: Matrix of shared token ratios between each pair of 25 selected labels. The
heatmap emphasises the entries for the pairs of classes that share much of the same
vocabulary. The values in square brackets show the labels’ vocabulary sizes.

Comparing class-specific vocabularies

Since text data is deemed the primary source of information used to distinguish
between failure categories, it would be helpful to know how many common tokens
these categories share. For this purpose, this diagnostic module computes a pairwise
similarity metric s : C ×C ↦→ [0, 1] that may serve as a proxy for separability between
two classes based on their vocabulary content. The metric s is defined as follows:

s(c1, c2) = |Vc1 ∩ Vc2|
|Vc1|

, (13)

where Vc1 , Vc2 ⊆ V are the vocabularies of the respective classes c1, c2 ∈ C.
Figure 11 presents the token-share matrix S that aggregates the pairwise metrics

s(c1, c2) for all classes c ∈ C. Notice, the matrix is not symmetric. This is because
each entry is the ratio of the number of tokens shared between the two classes
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|Vc1 ∩ Vc2| and the total number of unique tokens in the vocabulary of the class
located in the matrix row |Vc1 |.

For example, the matrix entry (Label16, Label01)=0.37 indicates that 37% of
tokens in the vocabulary of the Label16 class were also found in the vocabulary of
the Label01 class. However, the symmetric entry (Label01, Label16) = 0.75 indicates
that a much larger share of Label01 tokens also occur in Label16 class vocabulary,
which is expected since the latter has the vocabulary twice as large than that of the
former.

Tokens ranking

Since tokens are to become the learning features in the classification task, it is helpful
to have a mechanism to rank them in terms of their predictive potential. For this
purpose, the token inspector tool keeps record of classes associated with a particular
token and implements special ubiquity metric.

Define matrix Ū ∈ R|C|×|V |, where C is the set of category labels (classes) and V
is the set of unique tokens in the log corpus vocabulary. The matrix is composed as
follows:

Ū = [utoken1 , utoken2 , ..., ut..., utoken|V | ],

where each ut ∈ R|C| is a column vector containing the ubiquity weights uct for the
token t ∈ V , each weight indexed by the name of the respective class c ∈ C. Each
ubiquity weight uct ∈ [0, 1] is computed as the share of class-specific observations
containing token t, formally expressed in the following equation:

uct = |Sct|
|Sc|

, (14)

where Sc = {(x, y) ∈ S : y = c} is the set of observations from the dataset S
attributed to class c, and Sct ⊆ Sc is the subset of observations in Sc that contain
the token t.

For example, for the token ’call’ in the log corpus vocabulary, the token inspector
produces the following vector:

ucall = [ 0⏞⏟⏟⏞
Label01

, ..., 0.09⏞ ⏟⏟ ⏞
Label12

, ..., 0.01⏞ ⏟⏟ ⏞
Label15

, ..., 0.99⏞ ⏟⏟ ⏞
Label22

, ..., 0⏞⏟⏟⏞
Label25

]T ,

which contains 3 nonzero ubiquity weights for the classes that happen to have this
token in their vocabularies. Based on this output, the token ’call’ is especially
ubiquitous among the Label22 class observations (99%). Furthermore, since only 3
labels contain this token in their vocabularies, the occurrence of this token in an
observation narrows the set of plausible classification results to the 3 options shown
in the list above.

Clearly, the fewer labels share the same token and the more ubiquitous this token
is within its class, the more predictive power such token possesses relative to others.
This idea is at the core of the ranking scheme developed for this thesis, which assigns
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a value score vt to each token t in the log corpus vocabulary. The token value score
is computed as follows:

vt = ∥ut∥∞

∥ut∥1
∥ut∥∞ (15)

where ∥ut∥∞ yields the maximum ubiquity weight in the vector ut, and the ratio
∥ut∥∞/∥ut∥1 quantifies the maximum ubiquity relative to the cumulative ubiquity of
the token t across all classes.

This scoring approach permits establishing a relative ranking between the tokens
in the log corpus vocabulary. Inspired by the discourse on the discriminative char-
acteristics of statistical weighting of tokens in [27], this ranking scheme has been
developed as a data-driven alternative to the heuristic method for feature selection
used by the creators of the original rule-based solution. It has been used to design
and validate several preprocessing steps and serves as the dimensionality reduction
step in Stage 2.

There exist other approaches to ranking of variables in terms of their discrimi-
native properties. For example, Gini index is often used in NLP applications [24].
However, Gini index is a relative measure, which does not reflect the true predictive
power of a token. Alternatively, information gain [29] and conditional entropy [24]
measures could be computed for the tokens to quantify their predictive power from
the information-theoretical perspective. While certainly effective, these measures
were found more difficult to interpret when analysing the reason for the given score,
which might be an impediment when debugging the solution.

Visual inspection

There are many ways to examine text data. Besides computing formal metrics,
the token inspector tool provides the means of visual inspection. One example is
illustrated in Figure 12, in which the vocabularies of two classes are compared in
terms of tokens ubiquity.

Stage 2 implementation

Stage 2 was implemented as a Python module, using the decision diagram in Figure 10
as a specification.

Text tokenisation was implemented using NLTK [71] software library. The
majority of the preprocessing functions were implemented with the help of the Regex
package from Python’s standard library, except for the stemming routine, which
employs sophisticated linguistic knowledge implemented in NLTK.

The Stage 2 diagnostic module was implemented with Pandas [65] and Numpy
[66] software libraries.

Stage 3. Text encoding

Learning algorithms work with numbers. Therefore, all nonnumerical data, such
as text, should be transformed into a numerical form. The groundwork for this
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Figure 12: The bar chart stacks the ubiquity scores for the 20 most ubiquitous tokens
occurring in two labels. The ubiquity scores of the label marked green have been inverted
negative to facilitate pairwise comparison for the shared tokens.

step has been performed at the previous stage by extracting text features deemed
most relevant for the learning task. The purpose of Stage 3 is to encode these
features in such a way that their discriminative qualities propagate to the vector
space representation, which is pivotal for effective learning [24].

Figure 13 presents the main steps of the encoding procedure. First, tokenised
text data is extracted from the dataset. Next, the content of every log is transformed
into the vector space representation according to the selected encoding scheme. The
module permits selecting a number of different encoding options to obtain multiple
dataset variants to experiment with. Additionally, all remaining nonnumerical
variables in the dataset are converted into numerical form. Finally, this module
constructs and stores a collection of dataset variants in which all observations are
represented as numerical vectors. In this format, the dataset is ready for the learning
task.

It is difficult to predict in advance which encoding scheme is going to yield the
vector space representation most suitable for the task at hand. In NLP practice, it is
common to attempt multiple encoding strategies when designing a machine learning
solution [4], [62]. Therefore, in this thesis, Stage 3 generates a collection of dataset
variants, each based on a different encoding scheme.

Count-based vector space representation models

A traditional approach to text vectorisation is based on counting the occurrence of
individual tokens in a text sample [4]. This way, each text sample is represented as a
combination of token counts stacked in a |V |-dimensional numerical vector. Thus,
the whole corpus is represented as document-term matrix D ∈ RN×|V |, where N is
the number of observations in the dataset and |V | is the number of unique tokens in
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Figure 13: The decision diagram illustrating Stage 3 of the NLP pipeline. The module
transforms the nonnumerical data content of the dataset into vector-space representation
using one or more of the selected encoding schemes.

the corpus vocabulary. This encoding scheme, known as bag of words (BoW), does
not capture the context information, since the word order is not taken into account.
Despite its simplicity, this representation model is an important baseline considered
alongside other encoding schemes used in this thesis.

The BoW approach can be used to represent text samples in terms of pairs (or
any other number) of consecutively occurring tokens. In practice, it means enlarging
the vocabulary with the instances of tokens’ collocations found in the corpus. On
the one hand, this approach helps to encode semantic information into the vector
representation [24]. On the other hand, the sheer number of rare unique collocations
in the corpus often results in a document-term matrix that is extremely bulky
and sparse. For this reason, the bag of bigrams (BoBi) representation used in this
work appears in the classification task only in its dense form (LSI_BoBi), which is
presented in the following subsection.

It is not unreasonable to hypothesise that the logs of a particular class contain
tokens that are rare among other classes. It might be beneficial to emphasise the
weights of such tokens in the vector representation, as this might help to distinguish
the observations containing such tokens as common for a specific class [4]. The
encoding scheme, known as TFiDF, implements the described weighting principle
by computing two weighting terms [27]: tft,d = log10 [count(t, d) + 1], the token
frequency t in a text sample d, and idft = log10

N
dft

, the inverse of the number of
text samples d containing token t relative to all documents in the corpus. Hence, in
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TFiDF dataset, each text sample d is represented as a vector of real-valued token
weights computed as the product of these two terms: wt,d = tft,didft.

In addition to classical count-based text representation methods presented above,
other similar encoding schemes have been proposed to adapt to domain-specific
structure of text. For example, the LogClass [5] study has proposed the TFiLF
encoding method that takes into account the consistency of a token placement order
across the log corpus. However, the assumptions that underlie this encoding scheme
do not hold for the peculiar structure of the logs used in this study. Therefore,
although it was attempted in this work, the TFiLF is not included for further
evaluation along with other methods but rather appears in this work as an honorary
mention.

Latent semantic indexing (LSI)

The count-based representations are simple and intuitive. However, the resulting
document-term matrices tend to be sparse, which is an inefficient way to store and
process information [24]. Besides, it might be the case that even after careful cleaning
during the preprocessing at Stage 2, the corpus vocabulary ends up so large that the
explicit vector representation based on term counts becomes too computationally
costly for the learning algorithm.

The technique, known as latent semantic indexing (LSI) or latent semantic analysis
(LSA) is a popular method to compress the document-term matrices into a compact
dense format [24]. In practice, LSI is the NLP-adopted name for the singular value
decomposition (SVD) technique, which is often used for dimensionality reduction
in various applications. For a document-term matrix D ∈ RN×|V |, LSI yields the
following decomposition [24]:

D = QΣP T (16)

where, for k = min{N, |V |}, Q ∈ RN×k is an orthonormal matrix of eigenvectors of
DDT , P ∈ R|V |×k is an orthonormal matrix of eigenvectors of DT D, and the diagonal
matrix Σ ∈ Rk×k holding the singular values ordered from largest to smallest.

In this arrangement, the rows of matrix ΣP T ∈ Rk×|V | form a new basis for
representing every text sample of the dataset D in vector space using the rows of
the matrix Q as the coordinates. Thanks to the transformation performed by LSI,
the new basis permits using only a fraction of the k components held in the LSI
matrices while retaining most of the original information of the matrix D. As an
additional benefit, the LSI representation often makes semantically related terms
and documents cluster closer to each other [24], which might aid data separability.

Static semantic embeddings

The encoding schemes described above have limited capacity for context modelling.
Although LSI can be seen as a form of abstraction of the count-based representation,
it is performed on top of encoding schemes that ignore word order and hence lack
important semantic clues. Yet, context is an important source of information [24],
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which could make the numerical representation of text more effective for the down-
stream task. This idea underlies the category of distributed representations, also
known as semantic embeddings, that use context information for word encoding [28].

In practice, the idea of context-aware word representation is closely related to the
neural language modelling task presented in Section 2.4. Similarly, the distributed
representation approach utilises a neural network to learn abstract numerical repre-
sentations of words from their surrounding context, but it optimises the architecture
for efficiency and modifies the model objective to predict the most likely word-context
pairs [28]. As a result of this approach, words that appear in similar contexts through-
out the training corpus end up embedded close to each other in vector space, which
turns out to be beneficial in many applications [4].

Numerous methods have been developed to factor in the contextual information
into the representation of words and word sequences. This thesis utilises the two
popular approaches to learning distributed representations, namely Word2Vec [30]
and Doc2Vec [31]. Both methods utilise a shallow neural network architecture with
single hidden layer but use slightly different goals and strategies to learn semantic
embeddings.

Word2Vec is designed to learn context-aware embeddings for individual words in
one of two ways [30]: the CBOW model using context sequence to predict target words
and the skip-gram model using a word to predict context. This thesis experimented
with both models but employs only the latter because it performed better in the
exploratory trials. The skip-gram model estimates the probability of a particular
fixed-length context around the target word w. During training, the network learns
a set of weights U from the input vector to the linear embedding layer h as well as
a set of weights V from h to the output. After training, the rows of the projection
matrix U hold the embeddings for individual words of the corpus vocabulary.

As a result of the learning procedure, Word2Vec produces a lookup table that
maps the corpus vocabulary tokens to the corresponding embedding vectors of
dimension dim (h). To form the representation of a log instance consisting of many
tokens, this thesis sums all vectors corresponding to the tokens comprising that log
and scales it by the log length, which is a popular technique in application engineering
practice [4].

Doc2Vec extends the Word2Vec concept to learn embeddings for the entire
sequence (doc) along with individual words by treating docs as additional vocabulary
entries [24]. The original Doc2Vec paper has proposed two approaches to the task [31]:
the PV-DM model learning a doc embedding alongside the target word embedding
with respect to input context (similar to CBOW of Word2Vec) and the DBOW model
learning the doc embedding directly using the objective to predict fixed-length text
fragments randomly sampled from the input sequence (similar to Skip-gram). This
thesis employs the PV-DM model, as it demonstrated better results in exploratory
trials. The training approach is similar to that described for Word2Vec, except that
in PV-DM model, the input vector contains an extra doc identifier, which provides
an additional set of weights U ′ connected to the embedding layer h. After training,
the rows of the matrix U ′ hold the numerical representations for every document in
the corpus.
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Notably, in the literature dedicated to software logs, multiple log-oriented semantic
embedding models have been proposed. E.g., Log2Vec [39] is a prominent novel
approach to log encoding that attempts to incorporate log-specific semantic features
into embeddings as well as to tackle the out-of-vocabulary word problem during online
encoding. Although Log2Vec offers many benefits for the software log classification
task, it requires substantial prior knowledge of the application domain as well as
considerable effort in incorporating this knowledge into the algorithm. Therefore,
this approach would be better suited for an in-house team project rather than an
independent scope-limited master’s thesis work.

Stage 3 diagnostics

Because the encoding procedure is a preparatory step for the classification task, Stage
3 output can be roughly assessed by estimating the clustering quality of the resulting
numerical representation of the dataset. In the ideal case, the points of the same
class cluster together in vector space while maintaining a reasonable margin from the
points of other classes. Hence, it is possible to think of any clustering method as a
classifier [24]. Likewise, any classifier can thus be regarded as a supervised clustering
method.

Based on the reasoning above, the classification algorithm trained at Stage 4 is the
ultimate diagnostic tool for Stage 3 output. However, training an expressive classifier
is a computationally expensive and time-consuming procedure. Hence, due to a large
number of possible encoding variants in Stage 3, it would be helpful to filter out in
advance those variants that result in the least favourable clustering properties and are
poised to underperform in the classification task. For such a preliminary evaluation,
this thesis employs the k-nearest neighbour (KNN) instance-based classifier method
to assess the clustering properties of the encoded datasets produced by Stage 3 of
the NLP pipeline.

The KNN is a supervised method that uses labelled points in the dataset as a
reference for classifying new examples [24]. The most frequent class among the k
nearest points in the training set determines the class of any point in the vector space.
For the proximity metric, this thesis selected the Euclidean distance. Although
generally, cosine similarity is considered a preferable similarity measure for text
[62], the Euclidean distance becomes just as meaningful similarity measure when the
encoded samples are normalised to the unit norm [24].

Unlike more sophisticated classification methods, KNN is fast to train and even
faster to test. Furthermore, many popular classification algorithms can be seen as an
extension of KNN [24], hence it is a good baseline to determine whether the dataset
encoding would work well for other classifiers. The only downside is KNN’s memory
cost, as the classifier instance stores in memory the Voronoi regions across the whole
dataset to facilitate quick prediction.

Initially, 20 different encoding schemes were considered for this thesis. However,
based on the preliminary assessment using KNN, only seven encoding schemes
described earlier in this section (see also Figure 13) were selected for the experiments.
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Stage 3 implementation

The text encoding routine was implemented as a Python module, using the decision
diagram in Figure 13 as a specification.

The count-based vector space representations as well as their LSI-compressed
variants were implemented using Scikit-learn [68] library. Training of semantic
embeddings has been implemented using the Gensim [72] software package.

Stage 4. ML model training and evaluation

The previous stage of the NLP pipeline has produced multiple variants of the dataset
using various encoding schemes for its vector space representation. The purpose of
Stage 4 is to train a potent classifier for each of these dataset variants and select one
most likely to perform well in the field.

Learning a good predictor is an intricate problem. The primary challenge is to
estimate the capacity of the ML model to generalise its predictions beyond training
examples to any sample drawn from the same distribution [8]. Section 2.3 has
presented the bias-complexity trade-off as a credible approach to addressing this
challenge. In this thesis, this approach motivates the choice of methods used in Stage
4 design.

Algorithm 1 n-fold cross-validation
1: input:
2: ML classifier model embodying a hypothesis class H.
3: A collection of hyper-parameter sets Θ ∋ θ for the model.
4: Algorithm A learning a predictor h ∈ H.
5: Training set split into n fragments: ST = S1 ∪ S2 ∪ ... ∪ Sn

6: for each θ ∈ Θ
7: for i = 1...n
8: hi,θ = A(ST \Si; θ) // note, Si is a validation fragment
9: eCV (θ) = 1

n

∑︁n
i=1 LSi

(hi,θ) // cross-validation error for θ
10: output:
11: θ∗ = arg minθ{eCV (θ)} // optimal hyper-parameter set
12: hθ∗ = A(ST ; θ∗) // optimal predictor object

Numerous strategies have been developed to learn a predictor model striking
a good balance in terms of the bias-complexity trade-off. For theoretical research,
Shalev-Shwartz and Ben-David [8] advice the structural risk minimisation (SRM)
method for it employs a scientifically sound basis. However, this method imposes
strong assumptions on the hypothesis class of an ML model and, even then, finding
an optimal solution is an NP-hard problem, which makes SRM intractable in many
cases [20].

Alternatively, the approach, known as n-fold cross-validation, is popular in
application engineering practice for its simplicity and robustness. Even though
[8] warn about the pitfalls related to the lack of rigorous base for this method, a
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Training and validation

Dataset variants

BoW

TFiDF

LSI_BoW

LSI_BoBi

LSI_TFiDF

Word2Vec (skipgram)

Doc2Vec (pvdm)

Define the search space for the model's hyper-parameters.

Select the dataset variants.

Select the ML classifier model type.

Reference to the dataset variants

Rank the classifiers according to
their evaluation scores.

The best-performing classifier object

Evaluation

Iterating over every combination of hyper-parameters, train separate classifier
for each of the dataset variants using n-fold cross-validation procedure.

Retrain the classifiers using the best hyper-parameters
and verify their performance on the test set. 

Aggregate the evaluation stats.

Using stratified sampling, split the dataset into two subsets sized
as follows: 90% for training and validation, 10% for the final test.

Module setup

Figure 14: The decision diagram illustrating Stage 4 of the NLP pipeline. The module
produces a collection of candidate classifier objects for each of the selected dataset variants,
ranks them and selects the best-performing one.

more recent publication by Mohri et al. [20] provides evidence of learning guarantee
for cross-validation with the upper bound for generalisation loss close to that of
SRM. Therefore, this thesis employs n-fold cross-validation method as a systematic
approach to learning a classifier.

The pseodocode of Algorithm 1 adopted from [8] presents the n-fold cross-
validation procedure, which motivates the design structure and the flow of the
training and evaluation stage of the NLP pipeline developed for this thesis. Figure 14
illustrates the main steps of this stage.

Module setup

First, one defines the type of ML classifier model. Based on the selected classifier type,
one should specify its hyper-parameter settings θ. Typically, the optimal settings
are not known in advance. Hence, a range of prospective values is defined for each of
the model’s arguments, thus forming the hyper-parameters’ search domain Θ. This
module has been designed so that any type of classifier implementing a compatible
interface can be used for the task.
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Training set (ST)Test set (SE)

Training fragments Validation fragment

Figure 15: Dataset partitioning for training, validation and evaluation steps. The larger
subset (the Training set ST ) is used for training and validation procedure, while the smaller
one (the Test set SE) is withheld for the final evaluation.

After defining the model type, one selects the dataset variants for the experiments.
In preparation for training, validation and evaluation, each dataset variant is split
using stratified sampling to ensure that all label classes are distributed proportionally
between the subsets [8]. As depicted on Figure 15, a larger portion of the dataset ST

(90% in this thesis) is used for the training and validation step, while the remaining
part SE (10%) is reserved for the evaluation step.

Training and validation

In the training and validation step, a classifier object is instantiated. The module
trains and evaluates the classifier, using stratified n-fold cross-validation procedure
for every possible combination of hyper-parameter settings in the search domain.
The goal is to find such settings that yield the best classifier performance. Such an
exhaustive approach to finding the optimal hyper-parameter set is known as grid
search [62].

Figure 16 provides a schematic representation of the training and validation
routine developed for this thesis. The training set is split into n = 5 fragments
using stratified sampling, where n − 1 = 4 fragments are applied for training and the
remaining one for validation. The classifier is trained on the training fragments using
the ERM rule (2), explained in Section 2.3. The validation fragment is applied to
evaluate the predictive performance of the trained classifier. For each hyper-parameter
set, the routine repeats n times so that every fragment serves for validation exactly
once [8].

As a result, for m datasets and p hyper-parameter combinations, the 5-fold cross-
validation procedure yields m tables each filled with p training and validation scores
computed as average across 5 cross-validation rounds (1 per fold). In each such table,
the results are ranked based only on the validation score because it is representative
of the classifier performance in the field, whereas the average training score serves as
a proxy for the expressive power of the model relative to the data at hand [20].

The choice of n = 5 folds for the cross-validation procedure has been motivated
by two factors: the time to perform a cross-validation round and the variance in the
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Figure 16: Training and validation step employing stratified 5-fold cross-validation
procedure performed on the selected classifier type for each possible combination of the
hyper-parameter settings θ ∈ Θ.

validation scores. For a greater number of folds, the time to train a classifier increases,
which leaves less time for other experiments. Additionally, a greater number of folds
results in a smaller size of the validation data fragment, causing a greater spread in
validation scores. Notably, n = 5 is the smallest number of folds recommended in
the literature [20]. Although n = 5 happened to be the optimal choice for this study,
the solution setup does not prevent from using a different number of folds.

Evaluation

In the final step of Stage 4, the classifier is retrained anew, this time, on the whole
training set ST , using the best hyper-parameters θ∗ found during the training and
validation step. The resulting model is then evaluated on the test set SE, specifically
withheld for this purpose. The final classifier ranking is based on the combination of
validation and testing scores. Various aspects of results evaluation and ranking are
discussed in more detail in Section 5.

Support vector machines (SVM)

Although the designed solution is not restricted in terms of model type, the scope of
this work does not permit performing in-depth evaluation of more than one classifier
for the baseline solution. One empirical study [73] has revealed that random forest
(RF) and support vector machines (SVM) are the two prominent classifier types
that are likely to achieve the best performance result on an arbitrary dataset. In
this thesis, the kernelised version of SVM has been selected for the task. Compared
to other potent options (e.g., RF), SVM permits more flexible fine-tuning of its
expressive power via the selection of kernel type and the availability of the hyper-
parameters for regularisation [20]. Such a control over the hypothesis class complexity
is particularly desirable when analysing the classifier performance with respect to
the bias-complexity trade-off.

SVM belongs to a family of linear classifiers [74]. Therefore, the hypothesis class
H of an SVM is a set of labelling functions h : Rd ↦→ Y that employ separating
hyperplanes wT x + w0 = 0 to discriminate between the classes y ∈ Y . In binary set-
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tings, when Y = {1, −1}, SVM predictor learns the optimal separator by maximising
the geometric margin γ(x) = y(wT x + w0)/∥w∥ for all training examples (x, y) ∈ ST ,
whereas the data points that end up closest to the hyperplane are referred to as
support vectors.

In multiclass settings, when |Y | = k > 2, there exist various strategies to select a
particular set of separators, such as one-versus-rest (OVR), one-versus-one (OVO) as
well as direct methods. For SVM, the selected multiclass learning strategy determines
the particular formulation of the learning problem [74]. Although the direct learning
of k separating hyperplanes all at once receives much attention in the literature, an
objective comparison between the multiclass learning strategies for SVM, done in
[75], has found that OVO approach is among the preferable ones for practical use.
Therefore, this thesis employs the OVO strategy for multiclass SVM implementation.

In OVO approach, the training data ST is split into
(︂

k
2

)︂
= k(k − 1)/2 subsets

Sc,c′ ⊂ ST containing the data points for each possible pair of classes c, c′, c ̸= c′.
Within each pair, the class labels are reassigned so that label c = −1 and label
c′ = +1. The algorithm learns

(︂
k
2

)︂
binary classifiers hc,c′ : X ↦→ {−1, 1}, whose

decisions represent votes in favour of one of the two classes in each pair. Predictor
outputs the class that attains the majority of votes in its favour. A tie can be resolved
by randomly choosing one of the tied contenders.

For each of
(︂

k
2

)︂
binary SVM classifiers hc,c′ , finding the optimal separator involves

solving an optimisation problem, which can be formulated as follows [20]:

min
w,w0,ξ

1
2∥w∥2 + Cr

|Sc,c′ |∑︂
i=1

ξi

s.t. yi(wT xi + w0) ≥ 1 − ξi, ∀i ∈ {1, ..., |Sc,c′|}
ξi ≥ 0, ∀i ∈ {1, ..., |Sc,c′|},

(17)

where ξi are the slack variables facilitating the mechanism of soft margin and Cr is
the regularisation parameter.

The problem (17) consists of quadratic objective function and a set of affine
inequality constraints. This observation implies that the optimisation problem is
convex and hence admits the unique optimal solution [76]. In addition, Mohri et al.
[20] show that this setup satisfies the Karush-Kuhn-Tucker conditions, suggesting
that strong duality holds at the optimal point. Reformulating the problem (17) using
Lagrangian relaxation yields its dual form [20]:

max
α∈R|Sc,c′ |

|Sc,c′ |∑︂
i=1

αi − 1
2

|Sc,c′ |∑︂
i=1

|Sc,c′ |∑︂
j=1

αiαjyiyjK(xi, xj)

|Sc,c′ |∑︂
i=1

αiyi = 0, ∀i ∈ {1, ..., |Sc,c′ |}

0 ≤ αi ≤ Cr, ∀i ∈ {1, ..., |Sc,c′ |},

(18)

where αi is a dual variable for each i-th example in the dataset Sc,c′ , and the term
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K(xi, xj) is a kernel function efficiently performing the inner product operation in a
high-dimensional space.

Once the solution for α is obtained, the predictor output can be computed as
follows [20]:

hc,c′(x) = sgn(
|Sc,c′ |∑︂
i=1

αiyiK(xi, x) + w0), (19)

where sgn : R ↦→ {−1, 1} is the sign function, which returns −1 if the input is negative,
1 otherwise, and w0 is obtained by computing w0 = yv − ∑︁|Sc,c′ |

i=1 αiyiK(xi, xv) from
any valid support vector xv, for which 0 < αv < Cr.

After
(︂

k
2

)︂
classifiers hc,c′ are trained, their votes are counted for each of the

observations x ∈ X. Formally, the prediction ŷ(x) ∈ C that yields the majority vote
can be obtained as follows [20]:

ŷ(x) = arg max
c′∈C

|{c : hc,c′(x) = 1}| (20)

Although there are many possible variations of the SVM optimisation problem
setup [74], the dual representation (18) is especially convenient as it lends itself to the
direct application of a variety of kernel functions [20]. This quality permits kernelised
SVM learning also non-linear separators, thus making it a truly versatile classifier.

Stage 4 diagnostics

Thus far, little has been said about the metric used to evaluate a trained classifier.
This is because there exist a variety of metrics to assess classifier performance, and
either of them can be selected for training and evaluation.

Concerning each class c ∈ C in the multinomial setting, all classifier predictions
can be characterised in terms of four basic outcomes: either true positives (tpc) or
true negatives (tnc) for correct predictions and either false positives (fpc) or false
negatives (fnc) when predictions are incorrect. Various performance metrics can be
defined using only these four quantities.

In this thesis, the metric used for training and evaluation scores is accuracy
computed across all classes. It measures the fraction of correct predictions relative
to all N predictions and is computed as follows:

Accuracy = 1
N

∑︂
c∈C

tpc. (21)

Accuracy, as defined in (21), treats all classes equally and hence favours a classifier
that yields the maximum of correct predictions, no matter how unbalanced these
predictions might be across classes [24]. The choice of accuracy as the primary metric
for evaluation and ranking in this thesis is motivated by the application requirements.
If the requirements change, the solution permits customising the ranking metric
as well as specifying the class importance weights that are applied to the classifier
objective function and hence affect prediction results.
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In addition, the precisionc = tpc/(tpc + fpc) and recallc = tpc/(tpc + fnc)
metrics computed during the evaluation provide insight into the predictor’s ability
to distinguish a particular class c among others [77]. A special metric that combines
these two into one is known as F1c = 2(precisionc × recallc/(precisionc + recallc)
[24]. This thesis, employs the macro F1 measure to estimate the average F1-metric
across all classes, defined as follows:

macro F1 = 1
|C|

∑︂
c∈C

F1c. (22)

As an alternative to macro F1, the Matthews Correlation Coefficient (MCC)
has become also popular in the ML community [77]. It is deemed to provide more
balanced measure of multinomial predictor performance compared to both F1 and
accuracy. The MCC is defined as follows [77]:

MCC = N
∑︁

c∈C tpc − ∑︁
c∈C (tpc + fpc)(tpc + fnc)√︂

(N2 − ∑︁
c∈C (tpc + fpc)2)(N2 − ∑︁

c∈C (tpc + fnc)2)
(23)

Stage 4 implementation

The ML model training and evaluation routine was been implemented as a Python
module using the decision diagram Figure 14 as a specification. Classifier training
was implemented with Scikit-learn [68] software library, including stratified splitting
of the dataset, cross-validation, and the grid search routine that facilitates a series of
of cross-validation rounds with various hyper-parameter settings.

For the kernelised SVM model, Scikit-learn provides a wrapper for the SVC
class from the LibSVM library [78], which is considered one of the best open-source
implementations of SVM [73]. In addition, the implementation utilises Intel’s
extension for Scikit-learn [79] patch that optimises the performance of many Scikit-
learn models, including SVC, when training is executed on a compatible Intel
processor.

4.3 Transfer Learning Solution
The previous section presented the baseline solution implementing a canonical NLP
classification pipeline that relies on extensive data analysis and text preprocessing.
This section describes an alternative approach that employs a deep neural network to
learn high-quality text representation features from unprocessed text sequences. The
most prominent of these learning machines have become banks of general knowledge
applicable to a wide range of application domains [52]. The strategy, known as
transfer learning (TL), permits adapting these pre-trained neural networks for domain-
specific tasks [54], thus achieving competitive performance results while obviating
the need for laborious preprocessing.

The transfer learning solution has been implemented using Python programming
language. This chapter includes references to the software libraries used for the
implementation.
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Figure 17: The software pipeline implementing transfer learning approach with fine-tuning
for a domain-specific content. The TL pipeline stages perform domain adaptation of a
pre-trained language model for the classification task. The diagnostic stages provide insight
into the output of the TL pipeline stages.

Transfer learning pipeline

Section 3.2 introduced the concepts of transfer learning and domain adaptation. This
section presents the practical application of these concepts for solving the problem
subject of this thesis. The schematic representation of the transfer learning solution
is shown in Figure 17.

As seen from the figure, the TL solution is a software pipeline consisting of two
main parts: the TL pipeline stages and the Diagnostic stages. The TL pipeline stages
implement the domain adaptation procedure using the transfer learning approach
that involves intermediate fine-tuning of a pre-trained language model (LM) on the
domain-specific corpus and adapting the fine-tuned LM for the classification task.
The diagnostic stages facilitate the evaluation of the TL pipeline stages results.

Notice that Stages 1 and 4 of the TL pipeline (along with their respective
diagnostic stages) are identical to those of the NLP pipeline stages from Section 4.2.
That is, the procedure for constructing a proper dataset from the raw input data as
well as the classifier training routine remain the same as described in Section 4.2.
The distinct feature of the transfer learning solution is the absence of both the text
preprocessing and data encoding stages. Instead, the TL pipeline stages 2 and 3
implement the compound domain adaptation module that uses the dataset of distinct
observations and the unprocessed text data to adapt a neural language model to
the application domain. The diagnostic counterpart of the domain adaptation stage
implements the language model evaluation routine.

Domain adaptation

In NLP, neural language models (NLMs) have served both as the mechanism for
knowledge encoding as well as the medium for knowledge transfer [10]. Therefore, the
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TL pipeline structure depicted in Figure 17 was designed such that it enables both
pre-training and adaptation for the downstream task. The corresponding features
are implemented within the domain adaptation module that consists of two distinct
stages. Stage 2 provides the means to set up the corpus vocabulary and train the
language model tokeniser. Stage 3 facilitates the language modelling task in order
for the model to capture the domain-specific knowledge.

Such a setup enables a flexible approach to domain adaptation. For example,
in the abundance of training data from the application domain, the TL solution
permits configuring and pre-training a language model from scratch, as it has been
done for SciBERT [60]. Although such an approach is the most favourable in terms
of performance expectations, neither the dataset nor the computational resources
available for this study make it feasible to pre-train an NLM from scratch. Hence,
this study places the main focus on utilising the prior knowledge of a pre-trained
NLM for domain adaption.

When using a pre-trained NLM, there are three main approaches for domain
adaptation with knowledge transfer [54]. In the feature-based approach, the NLM is
used to generate numerical representations of the input data similar to the semantic
embeddings produced in Stage 3 of the NLP pipeline. In the fine-tuning approach, the
NLM encoder module is trained on the domain-specific data, thus further improving
numerical representation with respect to both the application domain and the
downstream task. In the prompt-based tuning approach, an elaborate training
method is used specifically to narrow the gap between the source and the target
domains to improve the quality of knowledge representation.

The TL pipeline design does not restrict the choice of approach for knowledge
transfer. However, the scope of this work provides the opportunity to experiment
with only one of the three methods described above. Based on the literature review,
the fine-tuning approach appears to be the most popular as well as the most effective
for classification [55], [56], [60]. Therefore, this thesis employs the fine-tuning method
for domain adaptation with a pre-trained NLM.

Fine-tuning for classification

The transfer learning practice with NLM has established multiple fine-tuning strate-
gies suited for different circumstances and application setups. Kalyan et al. [54] have
determined four main fine-tuning strategies that branch further into eight different
sub-strategies. Due to the scope constraints, this section only describes the main-
stream strategies selected for this study for their proven track record in classification,
namely vanilla and intermediate fine-tuning with the focus on domain adaptation.

Vanilla fine-tuning for classification employs a pre-trained NLM encoder with
the classification output layer on top. The model is trained for several epochs on
domain-specific data, during which all neural network layers participate in learning.
Since the resulting model is an actual classifier, the training is performed using the
cross-validation routine precisely as it is implemented in Stage 4 of the NLP pipeline
described in Section 4.2. In this thesis, vanilla fine-tuning is the default adaptation
strategy facilitated automatically, as it requires nothing more than instantiating an
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NLM with the classification head and passing it directly to Stage 4 for training.
The intermediate fine-tuning strategy extends the vanilla principle into a multi-

step adaptation process, in which the NLM can be trained for other related tasks
or using additional datasets from a relative domain (or both). In this thesis, the
intermediate fine-tuning is implemented as a two-step process. In the first step, the
NLM vocabulary is extended to accommodate the terms of the target domain. The
model is then trained in the masked language modelling task using the dataset of
the target domain. In the second step, the model encoder is refitted for classification
and is then passed on to Stage 4 to continue its domain adaptation, following the
procedure described for the vanilla fine-tuning strategy.

Masked language modelling (MLM) task

The selection of the masked language modelling objective for step 1 of the intermediate
fine-tuning strategy is motivated by the need to accommodate the context information
specific to the application domain. This is traditionally achieved by exercising
language modelling on the domain-specific corpus [10]. The MLM training procedure
utilises the whole input sequence, a small part of which is hidden (masked) at
random. The model learns to predict the hidden sequence elements by using only the
context formed by the visible parts around the hidden ones. This training approach
enables the model to utilise context from either side of the hidden elements, thus
accommodating bi-directional information in the resulting numerical representations
[54].

Although Kalyan et al. [54] point out several shortcomings of MLM compared
to several alternative language modelling methods, MLM remains the mainstream
approach commonly available in open-source language models. Besides, many of
the state-of-the-art transformer models have been pre-trained using MLM [55], [56].
Hence, MLM is a reliable choice, although is not fixed and can be switched to an
alternative option upon availability.

Domain adaptation diagnostics

Before the domain adaptation procedure, the target dataset is split into training and
test sets in the 9:1 proportion. Such an arrangement permits evaluating the first
adaptation step when using the intermediate fine-tuning strategy to ensure consistent
adaptation results. The same test set used to assess the MLM results is later used
for the classifier evaluation. Hence, the test set is never used for training neither in
step 1 nor in step 2 of the adaptation routine.

Just like any other language modelling task, MLM is evaluated using perplexity
measure, formally defined as follows [28]:

2− 1
n

∑︁n

i=1 log2 LM(wi|w1:i−1), (24)

where LM(wi | w1:i−1) is the probability of the word wi given its preceding context
w1:i−1, predicted by the language model LM .

The perplexity scores are computed for the NLM fine-tuned on the domain-specific
corpus for both training and test sets to ensure the consistency of results.
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Neural language model selection

As explained in Section 3.2, the attention-based transformer has become the dominant
model architecture in NLP and has been particularly successful in transfer learning
[54]. Therefore, this study considers only transformer language models for the
experiments. The TL solution in this thesis is designed to use the transformers API
by Hugging Face [51], thus opening a vast selection of transformer models from the
library as well as from the Hugging Face community. However, given the limited
scope of this study, only one model type can be considered for the experiments.

Because this thesis relies on knowledge transfer, an important criterion would
be the domain of the corpus used to pre-train a candidate model [46]. Ideally, the
source model should be pre-trained on a corpus related to the software development
or software testing domain. However, during this study, no public model was found
to be pre-trained from scratch on such a specialised corpus. Therefore, this study
narrowed the choice of language models to those pre-trained on general corpora.

Another important consideration is the maximum sequence length the model
can process. The (tokenised) input sequence length of a typical transformer relying
on the full attention mechanism is limited to 512 tokens. However, in the dataset
used in this study, about 15% of logs are longer than 512 tokens in length, not to
mention that the subword tokenisation approach used in many modern transformer
modifications tends to split words into fragments, thus further increasing the actual
sequence length. The tokens that do not fit into the limit are cropped out, which
carries a risk of losing essential information. For this reason, the choice of the
candidate models was further reduced to those that admit input sequences of at least
2000 tokens in length. This requirement preserves the entire length of ≈ 99% of
observations in the used dataset.

Among the general-purpose models that admit sufficiently long input sequences,
two prominent candidates were identified: the BigBird [80] model from the BERT-
family of transformers and the GPT3 [59] model from the GPT family. However, at
the time of writing this thesis, GPT3 has not been open for public access. Therefore,
this thesis selected the BigBird transformer model for the TL solution experiments.

BigBird transformer

BigBird has come into prominence for its sparse attention mechanism, which gains
8-fold improvement in computational efficiency compared to the full attention. The
creators of BigBird have managed to show that the costly full attention mechanism can
be retired in favour of a more lightweight approach that scales at lesser computational
cost, permits longer sequences without losing the most important properties of the
original transformer, and even achieves the new state-of-the-art performance in
several NLP tasks [80].

BigBird has been pre-trained on general corpora using MLM task, starting from
a public checkpoint of RoBERTa [56]. Same as RoBERTa, BigBird utilises the
subword byte-pair-encoding tokenisation method and incorporates bi-directional
context information in its text encodings.
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Implementation

The solution has been implemented using a large version of pre-trained BigBird
model, made available via Huggingface [51] transformers NLP library as google/bigbird-
roberta-large. Training such models even in the domain adaptation mode requires
potent and expensive hardware, particularly high-end GPUs. The Google Colab
Pro+ service has been used to run the transfer learning solution implementation to
make the domain adaptation experiments possible.

Although conceptually, Stage 4 of the transfer learning pipeline is identical to
that of the baseline solution, its implementation could not be directly reused due to
the specifics of the neural networks training procedure and because the Pytorch [81]
model class of the BigBird interface is different from that of Scikit-learn models used
in the baseline solution. Therefore, Stage 4 has been implemented anew along with
the domain adaptation stages 2-3 in the Colab environment.

In addition, the Simple Transformers [82] wrapper package for the Hugging-
face library has been used as a reference for implementing domain adaptation and
transformer classifier. The Weights & Biases [83] ML platform has been used for
experiment tracking.
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5 Results
Section 4 presented two learning-based solutions developed for this thesis. This
chapter describes the experiments conducted to evaluate these solutions on the
dataset provided by the client as well as presents and interprets the results of these
experiments.

This chapter is organised as follows. Section 5.1 evaluates the baseline solution at
each stage of the NLP pipeline. Section 5.2 evaluates the transfer learning solution
with the primary focus on the domain adaptation and classifier evaluation stages.

5.1 Baseline Solution Evaluation
This section presents the experimental results obtained from the baseline solution
described in Section 4.2. The experiments involve passing the dataset through
the NLP pipeline stages and collecting the information about the output from the
respective diagnostic modules.

Stage 1 - constructing the dataset

In the first pipeline stage, the raw input data is organised into a dataset of distinct
observations consisting of features applicable for learning. Accomplishing this task
requires proper insight into the composition of the input data. This block presents
the insights gained from the Stage 1 diagnostic module and explains the decisions
concerning the dataset content.

The data collected for this study spans a period of 7 months, accruing a total
of 105407 failed test report instances. Figure 18 presents the dynamics of raw data
accumulation each week during this period. The figure also reflects the distribution
of failed tests across different software targets, thus highlighting the problem areas in
the software development environment.

As shown in the figure, thousands of failed test reports accrue per week. However,
the majority of these are duplicates produced from repeated test runs. Of the 105407
data points in the dataset, only 29318 are distinct (Text Data, Label) pairs. Figure 19
summarises the composition of raw data in terms of its duplicate content and presents
the distribution of distinct data points across target variants. For this thesis, the
distinct data points are of particular interest because they represent unique examples
required in order for the ML algorithms to learn.

Failure category labels

Section 4.1 introduced the in-house report analyser tool used by the client for data
labelling. Creators of the tool have defined 75 unique category labels corresponding
to the suspected causes of failure. The dataset contains observations for 68 unique
failure categories presented in Figure 20.

Evidently, the distribution of failure classes is very unbalanced. The first 10 most
frequent labels account for 90% of all distinct data points. Moreover, many classes
accrued only a handful of observations. In order to obtain a representative summary
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Figure 18: The timeline showing the number of data points (failed test reports) acquired
per week from different software target variants. It spans the time period of 28 weeks,
accruing 105407 data points in total.
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Figure 19: Composition of the dataset used in this thesis. The pie chart in Figure 19(a)
illustrates the share of distinct data points. The bar chart in Figure 19(b) illustrates the
distribution of distinct data points across target variants.

of the classifier performance, there should be a sufficient number of examples for
training, validation, and testing. Therefore, in the interest of this study, the client
organisation has agreed to exclude the failure categories that accrued less than 30
observations.

In addition, the client has identified 8 special classes, which involved sophisticated
data preprocessing by the report analyser system. Because the provided dataset does
not include the information from these preprocessing steps, the special classes are
also excluded from the scope of the learning task.

Finally, 4 parent categories are used to help in organising the multitude of classes
into logical groups. The composition of each parent category is presented in Figure 21.
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Figure 20: Distribution of failure category labels sorted by the frequency of occurrence in
the dataset. The cumulative sum plot displays the percentage of data points accumulated
along with label observations.
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Figure 21: Number of observations for the class labels selected for the learning task. The
labels are grouped by the respective parent categories.

The figure illustrates only the classes selected for the learning task.
Figure 22 presents the dataset partitioned in terms of different label groups. As

a result of this partitioning, 25 failure category labels have been selected for the
classifier learning task, accounting for 81.3% of all distinct observations in the dataset.
While this is a considerable reduction in the scope of classification task, the client
has agreed that this is an acceptable compromise, given the data available. Table 1
summarises the composition of the dataset before and after partitioning into label
groups.
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Figure 22: Dataset composition in terms of label groups. Figure 22(a) presents the share
of classes selected for the learning task. Figure 22(b) presents the dataset partitioned in
terms of 4 parent categories and 1 additional super-class composed of the special and the
rare classes excluded from learning.

Table 1: Dataset composition in terms of label groups. Each entry is presented in (n, [c])
format, where n is the number of distinct observations and c is the number of classes under
the given parent category.

Not for learning Parent category
Special class Rare class Category01 Category02 Category03 Category04 Total

Before partitioning 0, [0] 0, [0] 11839, [25] 1476, [13] 11904, [4] 4099, [26] 29318 , [68]
After partitioning 5141, [8] 334, [36] 10268, [7] 1395, [6] 10149, [2] 2031 [10] 23843 , [25]

It is important to emphasise that the number of classes selected for the learning
task is not a limitation of the learning-based approach, but rather a design parameter
freely adjustable upon need. As more observations accumulate over time, the pipeline
can be reconfigured to include more classes.

Feature selection

In addition to text data and labels, test reports contain metadata entries, such as
the earlier mentioned Target identifier, which also characterise the dataset and may
be of value for a classification algorithm. Notably, all these variables, except for the
Date and Text data, happen to be purely categorical. The great number of modalities
makes it impractical to study them with the naked eye. Instead, these variables are
tested for meaningful associations with the output using the χ2 test.

Table 2 summarises the results of the χ2 test of independence performed for the
categorical input variables and Label output variable. For all selected input variables,
the p-value approaches 0, indicating a low risk of rejecting the null hypothesis
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of independence. These results were further validated with the help of bi-variate
correspondence analysis. Therefore, all these variables were considered prospective
learning features.

Table 2: Results of the χ2 tests to assess independence between each of the categorical
input variables and the output Label variable. For all tests, the p-value approaches 0,
indicating a low risk of rejecting the null hypothesis.

χ2 test for Label with: Target Test Setup Test Group Test Data Build Info Key
significance alpha 0.01 0.01 0.01 0.01 0.01
degrees of freedom 1072 2680 3350 248168 12998
chi-square critical 1182.65 2853.25 3543.36 249809.88 13376.02
chi-square score 22662.90 44498.30 38997.00 471763.73 94269.53
total inertia 0.77 1.52 1.33 16.09 3.22
p-value ≈ 10−12 ≈ 10−14 ≈ 10−19 ≈ 10−17 ≈ 10−19

Table 3 summarises the composition of the dataset free of duplicate data points
and redundant variables. The table presents the number of unique modalities for
each of the variables. This data serves as the input for the next NLP pipeline stage.

Table 3: Structure of the dataset obtained as a result of data transformation in the 1st
NLP pipeline stage. The table summarises the data content in terms of number of variable
modalities.

Input features X Output labels Y
index Date Build info key Target Test setup Test group Test data Text data Label Parent

number of
modalities

23843 154 191 17 41 51 3643 23637 25 4

Stage 2 - text data preprocessing results

Text preprocessing has involved considerable experimentation effort. This subsection
summarises the raw text data content at the input of Stage 2 and the most prospective
results of the preprocessing procedure.

Text data analysis

While metadata in the failed test reports provides some clues about a probable cause
of the issue, the most precise information is contained in text data, as it includes
error messages and stack traces generated exactly at the moment of failure. For this
reason, this solution relies primarily on log text data for classification. Figure 23
gives a glimpse of the most typical log contents.

In the context of this study, the collection of all text logs in the dataset are
referred to as a log corpus. This corpus size is equal to the number of distinct data
points in the dataset, that is 29318 log instances. The collection of all unique terms
that occur in the corpus as independent lexical units, such as words, prepositions,
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Figure 23: Cloud of token collocations most frequently occurring in the failed test logs.
Text of larger size implies higher frequency of occurrence in the log corpus. Diverse text
colouring aids readability.
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Figure 24: Log length distribution across the log corpus. The marginal box plot outlines
the robust measures for centre and spread of the distribution.

articles, and standalone numbers form the corpus vocabulary. The vocabulary of this
log corpus contains 77617 unique tokens, 67955 of which are numerals of some form.

Another measure that characterises the corpus composition is the length of
individual logs. Figure 24 gives an overview of the log length distribution across the
log corpus. The lengths appear to be binomially distributed with 3/4 of all logs not
exceeding 265 tokens in length. There is a prominent positive skew with a long right
tail which extends to an observation containing 14141 tokens, whereas the shortest
log instance is only 6 tokens long. The marginal box plot whiskers span an extra
3/2 of interquartile range (IQR), reaching the 90th percentile of observations at the
length of 562 tokens. A more detailed quantitative summary can be found in Table 4.
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Figure 25: Number of unique tokens in a log versus its length. Each circle represents one
log message and its radius is proportional to the number of numerals in its text. Different
colours correspond to different failure categories. The marginal histograms outline the
distribution mass of the axes variables.

Although the logs in this corpus vary significantly in length, even the longest
instances consist of only a small fraction of the corpus vocabulary. Figure 25
illustrates the trend in the number of unique tokens occurring in logs of different
lengths. Notably, even extremely long log instances spanning thousands of words
rarely use more than 250 unique tokens, whereas the vast majority use less than 200
unique tokens. Such a low concentration of unique tokens gives reason to suspect a
considerable amount of repeated text fragments in longer logs.

Table 4: Statistical figures that characterise this corpus in terms of log length and numeral-
to-length count ratio. The values are provided for complete logs and for the same logs but
composed of unique tokens only.

Log length Numeral-to-length ratio
range median IQR mean std IQR mean std

Complete logs [6, 14141] 135 [67, 265] 266 464.68 [0.08, 0.14] 0.1 0.05
Unique tokens [5, 340] 57 [39, 78] 63 36.31 [0.11, 0.24] 0.18 0.11

Table 4 quantitatively summarises the values for log length distribution and the
share of numerals in these logs. This data suggests anomalies in length distribution
and reveals a relatively high ratio of numerical tokens. These preliminary findings
motivate the choice of preprocessing steps, the results of which are presented in the
next block.
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Figure 26: Text preprocessing overview. Figure 26(a) presents the change in vocabulary
size with each preprocessing step. Figure 26(b) presents the change in number of distinct
observations and unique text samples in the corpus.

Preprocessing results

Figure 26 presents the effect of the preprocessing procedure on the composition of
the dataset used in this thesis. As shown in the figure, the corpus vocabulary size
has been reduced to 789 unique tokens, which is close to 1% of its original size (77617
tokens).

As seen in Figure 26(a), the most dramatic reduction in the vocabulary size
occurs after removal of numerical tokens. This preprocessing step also turns about
60% of the data points into duplicates, which is manifested as a drop in distinct
observations count in Figure 26(b). This effect suggests that a considerable number
of logs are identical except for a few numerals. The analysis of these numerals using
the token ranking method (described in Section 4.2) revealed that most of these do
not help to discriminate between classes. The few that were found to have predictive
potential, such as reoccurring error code numbers, were retained in the vocabulary.

Notably, as seen in Figure 26(b), the number of unique text logs is consistently
lower than the number of distinct data points, which indicates that certain log
instances have identical text but are labelled differently. This is an important
observation that highlights the presence of a stochastic component in the data. This
aspect will be discussed in more detail in Section 6.

The effect of preprocessing on the log length distribution is presented in Figure 27.
The figure indicates a considerable reduction in spread of the preprocessed text data
compared to that of the original corpus. A more detailed summary is given in Table 5.
As seen from the table, the concentration of unique tokens per log has also decreased
proportionally. This implies that, despite preprocessing, the contingency of repeated
text in the log samples has remained roughly the same.
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Figure 27: Log length distribution before and after preprocessing at Stage 2 of the NLP
pipeline. The marginal rug plot illustrates the density of the observations found for different
log lengths.

Table 5: Text data length before and after preprocessing. The values are provided for
complete logs and for the unique tokens content only.

Before preprocessing After preprocessing
range median IQR mean STD range median IQR mean STD

Complete logs [6, 14141] 130 [63, 246] 248 459.55 [6, 5324] 61 [33, 131] 132 245.84
Unique tokens [5, 340] 55 [39, 77] 62 34.83 [3, 115] 29 [22, 43] 34 16.29

Stage 3 - dataset encoding

In Stage 3, the dataset is converted into a high-dimensional vector space representa-
tion interpretable by a machine learning algorithm. The quality of representation
might vary depending on the selected text encoding scheme. One of the goals of this
study is to evaluate the effect of different encoding schemes on the classifier perfor-
mance. In order to facilitate the experiments with different representations, Stage 3
produces multiple variants of the dataset using the encoding schemes presented in
the description of Stage 3 in Section 4.2.

Table 6 summarises the output of Stage 3. In this case, all dataset encoding
variants have the same number of observations and the same number of classes
selected for the learning task at Stage 1. Although Stage 2 text preprocessing
has revealed many of the raw data points to be nearly identical, these have been
originally identified as distinct learning examples and hence should be preserved for
the experiments.
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Table 6: Different encoding scheme representations of the dataset summarised in terms of
dataset composition and vector dimensions. The dimension values are provided for two
configurations of the dataset: one consisting of text data features only and second including
the metadata variables.

Encoding Dataset composition Text only Metadata included
schemes: # of observations # of classes log vector dimension log vector dimension
BoW 23843 25 789 794
TFiDF 23843 25 789 794
LSI_BoW 23843 25 100 105
LSI_BoBi 23843 25 500 505
LSI_TFiDF 23843 25 500 505
Word2Vec_SG 23843 25 200 205
Doc2Vec_pvdm 23843 25 200 205

In the table, each encoding scheme is characterised by a number of variables,
corresponding to the dimension of a log instance vector space representation. Note
that in addition to text data features, the dimension of the log representation vector
might also include the metadata variables selected at Stage 1. To assess the predictive
potential of these metadata variables, separate experiments are conducted with and
without the use of metadata by the learning algorithm.

LSI variants of the dataset have been constructed for BoW, BoBi and TF-
IDF vector space representations. The number of LSI features has been selected
to preserve at least 99% of the original information. The semantic embeddings
Word2Vec and Doc2Vec were trained using settings recommended by the Gensim [72]
library documentation. The dimension of the vector space representation was set
according to the log corpus vocabulary size and was also verified by empirical trials.

Stage 4 - SVM classifier evaluation results

In Stage 4, a machine learning model is trained and evaluated using the methods
presented in the description of the NLP pipeline Stage 4 in Section 4.2. The
experiments are conducted individually for every encoding scheme produced in Stage
3 in two dataset configurations (Table 6): the first using text data features only and
the second with metadata variables included.

This thesis employs the kernelised version of SVM classifier for multinomial
classification. The first set of experiments is conducted with the linear kernel
SVM K(xi, xj) = xT

i xj to establish the baseline performance using the simplest
form of discriminator function (i.e., linear). An additional set of experiments is
conducted with the radial basis function (RBF), also known as Gaussian, kernel
K(xi, xj) = e−γ∥xi−xj∥2 to determine the effect of a more expressive hypothesis class
on the predictor performance.

Every set of experiments utilises its own hyper-parameter search space. For the
SVM implementation used in this work, the hyper-parameter interface is that of the
SVC class from the LibSVM [78] library, wrapped as a Scikit-learn [68] estimator.
Table 7 lists the hyper-parameter settings used for the classifier training. The most
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important hyper-parameter is the regularisation constant C that permits fine-tuning
the classifier soft margin. For the RBF kernel variant, the parameter gamma (γ)
plays an important role in defining the coverage of the decision boundary. Other
hyper-parameters were set as per the problem setup or kept default.

Table 7: Hyper-parameter settings for the sklearn.svm.SVC classifier object used in
the experiments. The entries in brackets [...] signify multiple possible options, which, in
combination with others, form the hyper-parameter search space.

SVM hyper-parameters: Linear kernel RBF kernel

C (regularisation constant) [range of values] [range of values]
kernel ’linear’ ’rbf’
gamma (γ) - [’scale’, ’auto’]
shrinking False False
tol (stopping tolerance) 1e-4 1e-4
class_weight None None
decision_function_shape ’ovo’ ’ovo’

The hyper-parameter selection is facilitated by the grid search routine, an integral
part of the 5-fold cross-validation procedure used for classifier training and evaluation.
The procedure requires the dataset to be split into fragments. Table 8 gives the
breakdown of the number of observations after splitting. Stratified sampling ensures
that each subset contains examples for each of the 25 classes selected for learning.

Table 8: Number of points and classes in each of the subsets after splitting.

Dataset splitting Training set Validation set Test set
Number of observations 17167 4291 2385
Number of classes 25 25 25

The results of training, validation, and testing are summarised in the Tables 9
to 12. For the training and validation procedure, these tables aggregate the best
average accuracy values µtrain and µval as well as the respective standard deviations
σtrain and σval of the scores computed across 5-fold cross-validation runs. For the final
evaluation, the classifier yields predictions for the test set data. These predictions
are used to compute a range of evaluation metrics described in Section 4.2 for Stage
4 diagnostics.

Linear kernel SVM results

Table 9 and Table 10 present the results of the experiments conducted with linear
kernel SVM. In both tables, Word2Vec_SG and Doc2Vec_pvdm encoding variants
achieve the highest average validation score µval ≈ 0.960, though this result is not
far ahead of those attained by TFiDF and LSI_BoW.
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Table 9: Evaluation results for the linear kernel SVM classifier trained and tested on
different encoding variants of the dataset using text data only. The results are ranked in
descending order of µval score.

Text only Training and validation Evaluation on the test set
dataset µtrain σtrain µval σval acc µprec µrecall mcc macro F1
Word2Vec_SG 0.9688 0.0017 0.9622 0.0016 0.9656 0.9617 0.9656 0.9538 0.8514
Doc2Vec_pvdm 0.9680 0.0009 0.9584 0.0018 0.9577 0.9561 0.9577 0.9432 0.7815
LSI_BoW 0.9675 0.0009 0.9562 0.0016 0.9560 0.9519 0.9560 0.9409 0.7730
TFiDF 0.9659 0.0008 0.9552 0.0018 0.9610 0.9599 0.9610 0.9476 0.7950
BoW 0.9680 0.0007 0.9546 0.0013 0.9551 0.9530 0.9551 0.9398 0.7740
LSI_TFiDF 0.9657 0.0009 0.9508 0.0020 0.9589 0.9578 0.9589 0.9448 0.7999
LSI_BoBi 0.9710 0.0005 0.9460 0.0013 0.9551 0.9520 0.9551 0.9399 0.7827

The evaluation on the test set demonstrates that the classifier accuracy matches
or even surpasses the validation score attained by the cross-validation procedure.
Both precision µprec and recall µrecall scores appear balanced, suggesting no excessive
occurrence of false positives nor false negatives.

Table 10: Evaluation results for the linear kernel SVM classifier trained and tested on
different encoding variants of the dataset using text+metadata variables. The results are
ranked in descending order of µval score.

Text+metadata Training and validation Evaluation on the test set
dataset µtrain σtrain µval σval acc µprec µrecall mcc macro F1
Word2Vec_SG 0.9710 0.0019 0.9621 0.0020 0.9669 0.9638 0.9669 0.9555 0.8600
Doc2Vec_pvdm 0.9696 0.0010 0.9603 0.0016 0.9648 0.9641 0.9648 0.9528 0.8372
TFiDF 0.9774 0.0003 0.9594 0.0023 0.9648 0.9635 0.9648 0.9528 0.8085
BoW 0.9733 0.0010 0.9571 0.0011 0.9618 0.9603 0.9618 0.9488 0.8060
LSI_BoW 0.9692 0.0012 0.9570 0.0021 0.9610 0.9581 0.9610 0.9478 0.8085
LSI_TFiDF 0.9759 0.0006 0.9549 0.0018 0.9648 0.9637 0.9648 0.9527 0.8119
LSI_BoBi 0.9726 0.0004 0.9509 0.0021 0.9614 0.9590 0.9614 0.9484 0.8132

Comparing the results in the two tables demonstrates an insignificant effect of
the metadata variables on the general performance of linear kernel SVM. The only
notable difference concerns the macro F1 score, which is higher in the evaluation
results of the experiments using metadata information along with the text data
variables. This difference implies that metadata might improve the accuracy of the
underrepresented classes that are otherwise difficult to separate.

RBF kernel SVM results

Table 11 and Table 12 present the results of the experiments conducted with the
RBF kernel SVM. Compared to the linear kernel results, the increase in classifier
expressive power helps to improve the performance of the semantic-aware encoding
variants but has a mixed effect on the others. As a result, Word2Vec_SG and
Doc2Vec_pvdm variants achieve the best class separability across the board.
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Table 11: Evaluation results for the RBF kernel SVM classifier trained and tested on
different encoding variants of the dataset using text data only. The results are ranked in
descending order of µval score.

Text only Training and validation Evaluation on the test set
dataset µtrain σtrain µval σval acc µprec µrecall mcc macro F1
Word2Vec_SG 0.9724 0.0006 0.9648 0.0030 0.9698 0.9698 0.9698 0.9595 0.8635
Doc2Vec_pvdm 0.9763 0.0003 0.9642 0.0013 0.9677 0.9652 0.9677 0.9566 0.8291
LSI_BoW 0.9780 0.0004 0.9579 0.0016 0.9627 0.9593 0.9627 0.9499 0.7845
BoW 0.9764 0.0004 0.9490 0.0010 0.9497 0.9480 0.9497 0.9323 0.7358
LSI_BoBi 0.9770 0.0004 0.9487 0.0016 0.9560 0.9534 0.9560 0.9409 0.8051
TFiDF 0.9726 0.0006 0.9462 0.0022 0.9493 0.9472 0.9493 0.9318 0.7401
LSI_TFiDF 0.9713 0.0004 0.9304 0.0033 0.9342 0.9333 0.9342 0.9113 0.7006

Notably, in both tables, the lowest-ranking encoding variants exhibit a relatively
large disparity between their training µtrain and validation µval scores. Such a disparity
is a typical manifestation of the overfitting phenomenon explained in Section 2.3. In
contrast, among the top-ranking variants, the gap between µtrain and µval scores is
considerably lower.

Table 12: Evaluation results for the RBF kernel SVM classifier trained and tested on
different encoding variants of the dataset using text+metadata variables. The results are
ranked in descending order of µval score.

Text+metadata Training and validation Evaluation on the test set
dataset µtrain σtrain µval σval acc µprec µrecall mcc macro F1
Word2Vec_SG 0.9773 0.0007 0.9673 0.0037 0.9732 0.9733 0.9732 0.9640 0.8933
Doc2Vec_pvdm 0.9786 0.0004 0.9652 0.0013 0.9690 0.9657 0.9690 0.9583 0.8300
LSI_BoW 0.9798 0.0004 0.9629 0.0022 0.9702 0.9676 0.9702 0.9601 0.8300
BoW 0.9811 0.0003 0.9522 0.0008 0.9551 0.9539 0.9551 0.9397 0.7739
LSI_BoBi 0.9846 0.0003 0.9522 0.0003 0.9572 0.9569 0.9572 0.9427 0.8186
TFiDF 0.9850 0.0005 0.9486 0.0025 0.9505 0.9510 0.9505 0.9337 0.7697
LSI_TFiDF 0.9819 0.0003 0.9341 0.0033 0.9392 0.9387 0.9392 0.9182 0.7295

Overall, the test set evaluation scores agree with those obtained by the cross-
validation procedure. Similarly to the results of the experiments with the linear
kernel, the use of metadata variables has a positive effect on the macro F1 score of
all encoding variants in the RBF kernel experiments.

Best SVM estimator performance summary

Based on the results presented above, the best performance scores are attained by
the RBF kernel SVM classifier on the dataset variants utilising metadata variables.
Therefore, the best baseline solution can be selected from Table 12.

In all experiments, the semantic-aware encoding variants have been observed to
consistently outperform the other options, achieving the highest validation scores
µval with a minor spread in results σval. Although the score difference between
Word2Vec_SG and Doc2Vec_pvdm is marginal, the former is selected as the best
performing encoding variant, as it also achieved the highest macro F1 score.
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Figure 28: Multiclass report summarising the best performing SVM classifier predictions
for each label in terms of precision, recall, and f1 score. The numbers below each column
quantify the label-specific examples used in the evaluation.

Figure 28 provides a summary of RBF kernel SVM multiclass performance on the
test set using Word2Vec_SG vector space representation. Despite a seemingly high
general accuracy score acc ≈ 0.97 (see Table 12), not every class enjoys such a high
prediction accuracy. As seen from the figure, the observations of Label 9 are among
the most likely to be misclassified, although its poor results have a minor impact on
the final score due to a small proportion of examples representing this label in the
test set support. Notably, some of the most frequently misclassified labels are those
that happen to be the least represented, often having less than 10 examples in the
test set. A more detailed insight into the classification results can be obtained from
a confusion matrix in Figure A1.

5.2 Transfer Learning Solution Evaluation
This section presents the experimental results obtained from the transfer learning
(TL) solution described in Section 4.3. The experiments involve passing the dataset
through the TL pipeline stages and collecting information about the output from
the respective diagnostic modules.

Preparing language model for domain adaptation

Stage 1 of the TL pipeline is identical to that of the baseline solution. Hence, the
dataset composition remains the same as presented in Section 5.1 for the Stage 1
results, as summarised in Table 3. Stage 2 in the TL solution prepares the language
model (LM) for training on the domain-specific corpus. The main challenge in the
second stage is to set up the LM tokeniser to recognise tokens from a domain-specific
vocabulary.

Generally, transformer tokenisers are able to automatically preprocess a set of
documents to learn new tokens directly from the corpus. However, training a tokeniser
turned out to be not straightforward in this case. For example, the analysis of text
data in Section 5.1 showed that the raw log corpus of the given dataset contains an
excessive number of arbitrary numerals, which exceeds the vocabulary size limit that
a tokeniser could manage. Besides, the ability to recognise and encode numerical
tokens is expected to be a core feature of the BERT-based language models [84].

Following this reasoning, two tokeniser configurations, shown in Table 13, were
prepared for the domain adaptation stage. First, using the original LM vocabulary
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without changes. Second, extending the original vocabulary with domain-specific
tokens, excluding numerals.

Table 13: The data and the two tokeniser vocabulary configurations prepared for the
LM training: the basic variant using the original LM vocabulary and the extended variant
adding the domain-specific vocabulary to the basic one.

Data for LM training LM vocabulary
Training
set size

Test set
size

Original model
vocabulary size

Domain-specific
vocabulary size

Tokens
total

Basic 21458 2385 50358 0 50358
Extended 21458 2385 50358 6168 55581

As seen from the table, data for LM trainng is split into Training and Test
subsets using the stratified random sampling method. In either configuration, the
same unprocessed log text data is utilised. The only difference is the selected
vocabulary content. Because of the overlap between the original and the domain-
specific vocabularies, the total number of tokens in the composite vocabulary of the
Extended tokenisers configuration does not equal the sum of comprising vocabulary
sizes. In the following stages, the models with different vocabularies will be trained and
tested to illustrate the effect of vocabulary choice on performance in the downstream
task .

Language model fine-tuning

In Stage 3, a pre-trained neural language model is instantiated with the masked
language modelling (MLM) head for fine-tuning on the domain-specific corpus. This
study uses the large variant of RoBERTa-based BigBird model. The model is
configured to use either Basic or Extended version of the BigBird tokeniser prepared
in the previous stage (Table 13).

Generally, configuring a neural language model for training requires substantial
expertise [51]. Therefore, this study relies on the preconfigured variant of the BigBird
model, provided via the Huggingface library, and places the main focus on setting up
the batch size parameters and the adaptive learning rate of the AdamW optimiser
to achieve a consistent reduction in loss during the MLM training and evaluation
process.

Figure 29 presents one of the typical MLM fine-tuning rounds carried out in this
thesis. As seen in the figure, the most considerable reduction in loss occurs within
the first five epochs of training. After that, the downward slope diminishes, thus
yielding only marginal improvement in the performance metrics. Such behaviour is
normal in neural network training practice [25], and it signals that the optimiser has
likely converged close to a local minimum of the loss function.

The results of the MLM fine-tuning procedure for all BigBird configurations used
in this study are presented in Table 14. The main difference between the fine-tuning
rounds are the choice of vocabulary (Table 13) and the number of training epochs.
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Figure 29: BigBird language model fine-tuning trend spanning 20 epochs of training in a
masked language modelling task. Training loss gauges model performance on the Training
set batches, whereas evaluation loss and perplexity scores reflect model performance on
the Test set.

The performance metrics are presented for both training and test sets, whereas the
former was used to learn software log representations and the latter was used to
verify the language model performance on the previously unseen samples.

Table 14: Training and evaluation results for the BigBird model fine-tuned for MLM task
in different configurations. The results are ranked in ascending order by evaluation loss.

BigBird large Training set evaluation Test set evaluation
MLM results training loss perplexity evaluation loss perplexity
Basic ft20 0.1609 1.1745 0.1646 1.1789
Extended ft45 0.1898 1.2090 0.2349 1.2648
Extended ft20 0.2584 1.2949 0.2765 1.3185
Extended ft0 6.4034 603.9 6.45 631.92
Basic ft0 12.0215 166287.9 11.98 159390.53

As seen from the table, no adaptation at all (Basic ft0) predictably yields the worst
MLM performance on the domain-specific corpus. Merely extending the vocabulary
with domain-specific tokens (Extended ft0) already improves the results. Further
fine-tuning (ft>0) on the training set drives the losses even lower until the optimiser
saturates, as per the example in Figure 29. Remarkably, the model using the original
vocabulary achieves the best results in MLM task. The effect of the fine-tuning on
the downstream classification task are evaluated in the next stage.

BigBird classifier evaluation results

After the language model is fine-tuned on the corpus of software logs, its MLM
head is replaced with the classification layer on top of the encoder module. In this
configuration, the transformer model becomes a complete end-to-end classifier that
is passed to Stage 4 for training and evaluation on the labelled data.

In the transfer learning solution, Stage 4 is no different from that of the baseline
solution described in Section 4.2. The classifier undergoes the same cycle of cross-
validation procedure to determine the best set of hyper-parameters and gauge its
generalisation capacity. In classifier configuration, most of the default settings were
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retained, while the main effort was placed on tuning the optimiser and finding a
good span for the training procedure.

Table 15: Evaluation results for the BigBird classifier fine-tuned on the log corpus using
two different tokeniser configurations. The results are ranked in descending order of µval

score.

Text only Training and validation Evaluation on the test set
dataset µtrain σtrain µval σval acc µprec µrecall mcc macro F1
Extended ft45 0.9697 0.0003 0.9605 0.0017 0.9631 0.9596 0.9631 0.9504 0.8574
Extended ft20 0.9685 0.0008 0.9603 0.0022 0.9656 0.9620 0.9656 0.9538 0.8461
Extended ft0 0.9623 0.0007 0.9558 0.0017 0.9623 0.9576 0.9623 0.9493 0.8306
Basic ft20 0.9602 0.0012 0.9480 0.0040 0.9526 0.9493 0.9526 0.9365 0.8211
Basic ft0 0.9557 0.0010 0.9449 0.0046 0.9476 0.9428 0.9476 0.9296 0.7904

The results of BigBird classifier training and evaluation are presented in Table 15.
The first observation is that the ranking based on classification performance does
not match that of the MLM task obtained in Stage 3 (Table 14). That is, the low
perplexity of a base language model does not necessarily translate into a superior
classification accuracy. An important finding here is that extending the vocabulary
alone without fine-tuning (Extended ft0) already makes the language model a better
classifier than its non-extended version fine-tuned to excel in the MLM task (Basic
ft20).

As seen from the table, fine-tuning the model with extended vocabulary improves
the classification scores, although the gains seem marginal. Based on the µval and
acc scores, fine-tuning adds up to ≈ 0.005 points in accuracy. On the one hand,
longer fine-tuning (Extended ft45) yields little improvement compared to a moderate
stride (Extended ft20), on the other, it does seem to improve the macro F1 score.

Overall, both training and validation scores are stable, exhibiting very minor
variation σtrain and σval during cross-validation. The evaluation on the test set
revealed no anomalies, since acc agrees with µval score as well as µprec and µrecall

appear balanced, which is also reflected in mcc score.

Best BigBird estimator performance summary

Based on the evaluation results shown in Table 15, the best performance in terms
of µval score was achieved by the model with extended vocabulary fine-tuned for a
longer period of time (Extended ft45). Figure 30 illustrates the classifier performance
results for each label individually.

As seen from the figure, more than half of the labels achieve nearly perfect scores
both in terms of precision and recall. However, some labels, such as Label04 and
Label18, achieved mixed results, while Label09 and Label11 were almost entirely
confused with other labels. Just like in the case of the baseline solution, the poorly
performing labels are heavily underrepresented in the dataset. A more detailed
insight into the classification results can be obtained from a confusion matrix in
Figure A2.
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Figure 30: Multiclass report summarising the best performing BigBird classifier predictions
for each label in terms of precision, recall, and f1 score. The numbers below each column
quantify the label-specific examples used in the evaluation.

While the lack of balance in the dataset is a strong factor explaining the classifier
bias towards labels with a greater number of observations, there are also labels, such
as Label22 and Label24, that achieve perfect classification scores despite being in a
substantial minority. Clearly, there are also other reasons for misclassification, which
will be discussed in detail in Section 6.
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6 Discussion
The previous chapter presented the results of data analysis and the outcomes of the
experiments with two candidate solutions. This chapter compares the competing
solutions in terms of standard classification metrics and discusses the key findings
obtained from the experiments as well as the implications of these findings. The
chapter also provides a deeper analysis of the obtained classification results and
attempts to assess reasonable classification performance expectations with respect to
the theory and the specifics of the given dataset.

6.1 Comparison of the Solution Candidates
To facilitate comparison between the candidate solutions, Table 16 aggregates the
results of the best performing classifiers evaluated in the previous chapter. For the
baseline solution, the table presents the RBF kernel SVM classifier results in two
dataset configurations: SVM (Text only) and SVM (Text+metadata), taken from
Table 11 and Table 12 respectively. For the transfer learning solution, the table also
contains the evaluation results of the BigBird (Text only) transformer model with
extended vocabulary fine-tuned in the masked language modelling task (Table 15).

Table 16: Summary of the best classification results obtained from the experiments with
the candidate solutions. The results are ranked in descending order of µval score.

Training and validation Evaluation on the test set
µtrain σtrain µval σval acc µprec µrecall mcc macro F1

SVM RBF (Text+metadata) 0.9773 0.0007 0.9673 0.0037 0.9732 0.9733 0.9732 0.9640 0.8933
SVM RBF (Text only) 0.9724 0.0006 0.9648 0.0030 0.9698 0.9698 0.9698 0.9595 0.8635
BigBird (Text only) 0.9697 0.0003 0.9605 0.0017 0.9631 0.9596 0.9631 0.9504 0.8574

Based on the ranking in the table and the results of the independent two-sample
t-test, the baseline solution appears to outperform the transfer learning solution
by a narrow margin. Compared to BigBird, the SVM text-only solution variant
achieves a higher score in every metric, and the comparison of the µval scores yields a
p-value of ≈ 0.025, suggesting that the score difference is significant in this case. The
text+metadata variant achieves even higher scores, although its advantage over the
text-only SVM solution variant in terms of µval score is not statistically significant
(p-value ≈ 0.278) due to the relatively high spread σval.

However, the performance scores alone do not explain the reasons for the ob-
tained results. Therefore, it is also important to examine the factors that make
these particular solutions stand out from other options. One of the crucial fac-
tors determining classification performance is the quality of data representation in
vector space [24]. To address this concern, this thesis has dedicated much of the
development effort to text preprocessing in Stage 2 of the baseline solution, which
helped to gain insight into the characteristics of the vast corpus vocabulary and to
reduce this vocabulary to a manageable size by removing noisy content. This effort
permitted constructing count-based vector space representations composed of the
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features with the highest discriminative potential. However, when examining the
classification performance (Tables 9 to 12), the best scores were obtained with the
semantic embeddings Word2Vec and Doc2Vec, which required no preprocessing at
all. In other words, an automatic contextual encoding procedure turned out to be
more effective than the encoding that relied on careful token selection facilitated
through preprocessing.

Apparently, in the process of preparing data for count-based representations,
preprocessing inadvertently destroys information when reducing vocabulary size
and removing the noise component from the text. In contrast, the context-aware
representations can capture meaningful associations and encode them in a compact
vector form even if the data is noisy. Another advantage of the semantic embeddings
is the ability to extract information encapsulated in the context itself [28]. For
example, a rare word that is likely to be removed during preprocessing can become
a powerful discriminative feature in a context-aware encoding scheme through the
mechanism of distributed representation, which maps semantically related words
close to each other in vector space [30], [31].

If context-aware representation is indeed the key to superior performance in the
log classification task, then the best possible solution should be the one most adept at
extracting context information from data. Compared to static semantic embeddings,
such as Word2Vec and Doc2Vec, the attention-based neural language models have
been shown to be more potent in learning contextual embeddings for words [32] as
well as for word sequences [33]. Based on this premise, the BigBird attention-based
transformer model used in the transfer learning solution has the potential to learn
more effective vector space representations for logs and to outperform the baseline
solution in the log classification task. Yet, the empirical results presented in Table 16
do not agree with this proposition.

One possible explanation for the underwhelming performance of the transfer
learning solution could be that achieving better quality contextual representations
of software logs using transformer language models requires a specialised approach
different from other application domains. For example, the experiments with BigBird
fine-tuning revealed that vocabulary management is crucial for effectively adapting to
the domain of software logs (see Table 14). This finding can be explained by the fact
that software logs utilise a vast number of custom tokens that are unlikely to be found
in the vocabularies of general-purpose language models. Another aspect that makes
the domain of software logs special is the prevalence of stack traces of long compound
tokens composed of shorter dot-separated terms. Commonly, these compound tokens
are formed by permutations of the same short terms, thus artificially generating new
vocabulary entries for a language model. This peculiar aspect creates the risk of
combinatorial problems for vocabulary management and might become a source of
continuous performance issues.

To mitigate this risk, the input text data might require preprocessing in order
to split the compound tokens into shorter constituents, as is done in the baseline
solution. Although it is rather unconventional to preprocess the input of a language
model, an additional experiment with the BigBird model using both preprocessed
data and the domain-specific vocabulary (similar to those constructed for the baseline
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solution) demonstrated a noticeable improvement in performance compared to that
using unprocessed data, as shown in Table 6.2. Word splitting increases vocabulary
overlap (and hence similarity) between the source and the target model domains,
which is a likely explanation for the observed performance improvement.

Table 17: Performance results of the BigBird model fine-tuned and trained for classification
on the preprocessed text data using the reduced domain-specific vocabulary originally
designed for the baseline solution.

Training and validation Evaluation on the test set
µtrain σtrain µval σval acc µprec µrecall mcc macro F1

BigBird (with
preprocessing)

0.9721 0.0007 0.9657 0.0021 0.9652 0.9645 0.9652 0.9533 0.8457

BigBird (no pre-
processing)

0.9697 0.0003 0.9605 0.0017 0.9631 0.9596 0.9631 0.9504 0.8574

Numerous strategies have been proposed for domain adaptation [54] apart from
that utilised in this thesis, some of which could be more effective for software logs.
Unfortunately, the constraints of this thesis have not permitted exploring all these
strategies. The computational demands for training large neural networks, such
as neural language models, stretch the experiment feedback cycles for days, thus
limiting the possibilities for testing many hypotheses. Therefore, uncovering the full
potential of a neural language model for software log classification remains a topic
for follow-up study.

6.2 Assessment of the Classification Results
Upon computing the evaluation metrics, unless the scores are perfect, it remains
uncertain whether the classifier achieved its potential. This section presents a
critical analysis of the classification scores and offers a theoretical explanation for
the performance issues observed in the experimental results.

Assessing performance expectations

The data labelling procedure described in Section 4.1 suggests that all log examples
have been originally classified based on the occurrence of particular keywords assumed
to be unique for each class. If this assumption holds, it implies that the data should be
perfectly separable. Based on this premise, the average validation score µval ≈ 0.967
attained by the best classifier instance (see Table 16) cannot be considered excellent.

Conversely, the text data analysis presented in Section 5.1 revealed that removing
noisy content exposes a considerable number of duplicate entries in the dataset.
Among these duplicates, certain observations have identical text but are assigned
to different labels. This finding exposes an intrinsic stochastic component in the
dataset, which necessarily leads to a loss in classifier training and validation scores
[20].

One possible explanation for this uncertainty could be that the Stage 2 prepro-
cessing procedure destroys the essential information that made these classes separable
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in the first place. However, detailed analysis together with the client revealed that
even the unprocessed log samples were missing the keywords used by the rule-based
solution to assign the ground truth labels. In other words, the text samples in the
provided dataset were incomplete, which renders the initial separability assumption
false. This circumstance was accepted as a plausible situation in real production
settings where text information can be insufficient to discriminate between failure
categories.

In the presence of a stochastic component in data, it is possible to quantify the
empirical risk of misclassification by counting the log text observations x that happen
to be assigned to more than one class and that are most likely to be misclassified. Since
this discussion seeks to assess the highest expectations for the solution performance, it
employs the best theoretically possible estimator to determine the minimum number
of unavoidable classification mistakes due to uncertainty in the dataset.

The theory presented in Section 2.3 defined the Bayes estimator (4) as the one
attaining the minimum loss on a population of observation pairs (x, y) ∼ p(x, y)
[21]. Assuming the dataset S is a credible approximation of the log population
distribution, it is possible to construct a perfect classifier that minimises uncertainty
impact. If all data points in S were composed of unique text data entries, then such
a classifier would achieve 100% accuracy, no matter how poorly the data might be
clustered. In the presence of uncertainty, such a perfect classifier h∗(x) produces the
optimal prediction ŷ, which minimises the empirical loss L̂S(h∗) as expressed in the
following set of equations:

l(ŷ, y) = 1ŷ ̸=y (25)
BRS(ŷ(x)) = min

ŷ∈Y

∑︂
y∈Y

l(ŷ, y)PS(y | x) (26)

L̂S(h∗) =
∑︂

x

BRS(h∗(x))PS(x), (27)

where x denotes a log instance that occurs more than once in the dataset S and has
more than one label y ∈ Y assigned to it. The probabilities PS(x) and PS(y | x)
are estimated from the dataset S. The BR term defined in (26) is referred to as
empirical Bayes risk [85], which quantifies the minimal expected loss for a prediction
h∗(x) given the uncertainty. Finally, the loss computed in (27) quantifies an estimate
for the empirical Bayes risk on the whole dataset S.

In this study, the empirical Bayes risk of the dataset produced at Stage 2 of
the baseline solution has been found to be L̂S(h∗) ≈ 0.020, which implies that no
classifier using preprocessed text data for the prediction can achieve an accuracy
score better than 0.980 on the given dataset. On the one hand, this performance cap
appears to be inflicted solely by preprocessing, which strips away important pieces of
information, thus making certain observations indistinguishable. On the other hand,
if the majority of the removed content is indeed noise, then the uncertainty uncovered
with the help of preprocessing and approximated by (27) should also explain the
classification errors observed with the unprocessed text data. In order to clarify
this issue, this thesis performs a comparative analysis of the mistakes the classifiers
tend to make with and without text data preprocessing and attempts to determine
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Figure 31: The bar chart presenting the risk of misclassification for each label due to
intrinsic uncertainty in the dataset. Green bars represent the share of logs among the label
observations that happen to be also assigned to some other label. Red bars quantify the
label-specific empirical Bayes risk.

whether the uncertainty can explain these mistakes.

Misclassification due to the uncertainty

For each label, the Bayes risk implied by the uncertainty can be quantified by
accumulating the respective error terms from (26). These error terms are the
consequence of the best possible classification decisions, given the uncertainty caused
by the duplicate logs labelled differently. That is, a classifier is bound to suffer a
greater loss in accuracy than that estimated in (27) if its prediction mistakes deviate
from those implied by the Bayes risk. Figure 31 presents the Bayes risk component
along with the share of duplicate observations computed individually for each label.

As seen from the figure, labels 3, 4, 6, 9, 11, and 18 are at the highest risk of
misclassification due to the uncertainty in the dataset. Visual analysis of Figures A1
to A3 suggests that the labels from this risk group indeed tend to be frequently
misclassified. Comparing these figures to Figure A4 reveals a considerable similarity
of the pairwise classification errors with that implied by the uncertainty. Moreover,
the misclassification pattern observed in Figure 31 correlates highly with those
obtained from the experimental results presented in Section 5.

The correlation analysis is presented in Table 18. As seen from the first two rows
of the table, there is a moderate to the high correlation of the classification mistakes
observed in the experiments with those implied by the uncertainty in text data and
the Bayes risk. Understandably, the correlation is a bit higher for the results obtained
with the preprocessed text data (last two columns). Nevertheless, even for those
without preprocessing (first three columns), the correlation is considerably stronger
than could be explained by a random chance. That is, under the assumption of no
positive correlation, the t-test yields a p-value of less than 0.0008 for the correlation
score as moderate as 0.621 and even less so for larger scores.
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Table 18: Correlation coefficients measuring the linear relationship between the misclassifi-
cation pattern implied by the empirical risk analysis and the classification error distribution
exhibited by the best performing classifiers (with and without text data preprocessing).
Last 3 rows present pairwise correlations for the solutions that use no text preprocessing.

Not preprocessed text data Preprocessed text data
SVM (Text+metadata) SVM (Text only) BigBird SVM (Text+metadata) SVM (Text only)

Bayes risk 0.640 0.711 0.621 0.701 0.782
Duplicate share 0.673 0.794 0.746 0.742 0.827

SVM (Text+metadata) 1.000 0.818 0.741 0.885 0.854
SVM (Text only) 0.818 1.000 0.918 0.762 0.844
BigBird 0.741 0.918 1.000 0.664 0.841

When analysing the effect of metadata variables, their use seems to produce
correlation scores that are only marginally lower compared to those produced by the
text-only variants (see the first two and the last two columns of the first two table
rows). This observation agrees with the results of the comparative analysis performed
earlier in Section 6.1 that revealed a relatively minor impact of the metadata variables
on the classifier performance.

Furthermore, when comparing misclassification patterns obtained with and with-
out preprocessing, both tend to accrue similar mistakes, as follows from the pairwise
correlation analysis presented in the last three rows of Table 18. The high correlation
scores of > 0.84 presented in the last column of the last three rows are the most
indicative of this similarity. Such a strong correlation indicates that the uncertainty
revealed with the help of preprocessing might indeed be responsible for the same
classification mistakes that also occur with the unprocessed text data.

Other reasons for misclassification

Although the intrinsic uncertainty in text data explains many cases of misclassification,
it is not the only reason for the observed classification mistakes. According to the
theory of supervised learning presented in Section 2.3, a classifier learned by the
ERM rule (2) is also subject to approximation and estimation errors defined in (6),
which are added on top of the minimum loss estimated by (27). Therefore, these two
error terms can explain any classification mistake that cannot be attributed to the
Bayes risk [8], [20].

For example, the classifier bias towards labels overrepresented in the dataset is
likely to contribute to the estimation error term because this bias can be alleviated by
tuning the classifier parameters, e.g., by balancing the observation weights. However,
when comparing the linear and RBF kernel SVM classifiers, the lower score of the
former is likely due to the approximation error caused by the insufficient expressive
power of the linear hypothesis class with respect to the data used in the experiments.

Generally, it is rather challenging to quantify the individual error terms when
analysing ML model performance. For practical purposes, it is more important to
ensure that these errors are well balanced in terms of the bias-complexity trade off
[20]. For this reason, model evaluation and selection, described along with Stage 4
results in Sections 5.1 to 5.2, relied on the bias-complexity trade-off principle when
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identifying the best-performing classifier.

Improving classifier performance

The success of learning a good classifier is largely determined by the quality of
information encapsulated in the input data. Careful engineering of this aspect could
considerably enhance the performance of an ML model. For this purpose, the main
effort should be directed at eliminating the sources of performance loss identified in
the discussion above.

To tackle the uncertainty in the data, it is necessary to ensure that the text
fragments collected from the field are diverse and include important class-specific
information. In addition, critical numerical information in test reports could be
represented in the form of numerical variables rather than individual tokens in
unstructured text. Such a structured representation of numerical data would enable
more sophisticated feature engineering and permit a classifier to automatically extract
clues that involve simple numerical reasoning.

To address the estimation and approximation errors, the underlying theory
(Section 2.3) implies two main strategies. First, increasing the number of distinct
observations, especially for the underrepresented classes, should help in reducing the
estimation error, while securing a lower risk of misclassification in accordance with
the fundamental result in (7). Second, achieving better clustering of classes in the
vector space representation would reduce the approximation error and permit using
a classifier of lower expressive power, which should lower the generalisation upper
bound, defined in (8).

Taken together, these approaches would provide a powerful combination that is
bound to improve classifier performance.
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7 Conclusion
This thesis has developed a solution for classifying failed test reports generated by
the test automation framework of the client organisation. This solution adopted a
learning-based approach to address common problems affecting the client’s rule-based
solution. While the rule-based solution relies on a collection of handcrafted rules to
discriminate between classes, the learning-based solution utilises the entire corpus of
classification examples to automatically learn an effective discriminator function.

To determine the feasibility of the learning-based solution, this thesis has imple-
mented and evaluated two competing machine learning approaches: a conventional
natural language processing (NLP) pipeline and a transfer learning (TL) pipeline
employing a neural language model. One conceptual difference between the two
approaches lies in the methods used for numerical representation of text data. The
NLP pipeline is flexible in the choice of text data encoding techniques but relies on
manual vocabulary management through text data analysis and preprocessing as a
mechanism for improving numerical representation. This approach has been widely
used in the research dedicated to software log classification and was hence selected
as the baseline solution for this study. The TL pipeline exploits the capacity of pre-
trained neural language models to generate contextual vector space representations
by utilising its general knowledge about the semantic features of a large vocabulary
of tokens learned from multiple corpora of curated text data. This approach has
recently become state-of-the-art in NLP and is enticing for its potential to obviate
the need for manual vocabulary management.

Each solution implementation consists of multiple software modules corresponding
to the respective solution pipeline stages that facilitate data input, analysis and
transformation as well as classifier model training and evaluation. The choice of
particular classifier models in this thesis relied on the experience of the machine
learning community and the practical considerations discussed in Section 4. For the
NLP pipeline, the kernelised SVM classifier was selected for its versatility and a
proven track record in numerous empirical studies. For the TL pipeline, the BigBird
transformer neural network was chosen as a good match for the problem setup and a
renowned achiever in the NLP practice.

The experiments showed that both solution candidates can effectively train and
evaluate a classifier object on a dataset of labelled examples. The experimental results
presented in Section 5 demonstrated high classification accuracy for both solutions
approaching closely the theoretical limit estimated in Section 6.2. In addition, the
diagnostic tools developed in this thesis permit an extensive input data analysis and
provide the means for investigating the classification mistakes. For example, these
tools helped to reveal a stochastic component in the provided dataset. Following this
finding, Section 6.2 demonstrated the link between the intrinsic uncertainty in the
dataset and the loss in classification accuracy.

The evaluation of the candidate solutions has also led to unexpected findings.
For instance, the NLP pipeline solution positioned to improve classifier performance
through text preprocessing and active vocabulary management achieved its highest
performance score using a text encoding method that required no preprocessing at
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all. Just as curious, the TL pipeline solution expected to alleviate the vocabulary
management effort achieved its best results on the preprocessed data using the
vocabulary manually designed for the NLP pipeline solution. These peculiar findings
could likely be attributed to the specific nature of the software log domain and open
new directions for follow-up studies.

Although the results of this thesis do provide credible evidence of the capability
of a learning-based approach to succeed in the log classification task, it remains
uncertain whether the developed solutions could be a complete substitute for the
rule-based solution used by the client. Answering this question requires a series
of field experiments with a learning-based solution deployed in the actual software
development environment. Generally, the problem of integrating an artificial intelli-
gence solution into the workflow as well as its deployment and evolution present a
considerable challenge, which merits a thesis project of its own. This study has done
the necessary groundwork to make such a project possible. Section 4.1 of this thesis
also presented a concept for integrating a classifier training pipeline into the client’s
continuous integration infrastructure. This concept could serve as a basis for future
work.
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A Appendix 1: Confusion Matrices
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Figure A1: Confusion matrix summarising the best performing SVM classifier predictions
on the unprocessed Word2Vec test set (text+metadata). The values represent the share of
observations of the ’True labels’.
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Figure A2: Confusion matrix summarising the best performing BigBird classifier on the
unprocessed test set (Text only). The values represent the share of observations of the
’True labels’.
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Figure A3: Confusion matrix summarising the SVM classifier (Text only) predictions
on the preprocessed LSI_BoW test set (Text only). The values represent the share of
observations of the ’True labels’.
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Figure A4: Matrix presenting the share of duplicate text logs between every pair of labels.
Each matrix value represents the ratio of logs in the row-index label that were also found in
the column-index label. The values in square brackets of the row indices show the number
of data points per label.
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