
Detection of Dry Snow
using Spaceborne Microwave Radiometer Data

Lina Zschenderlein

Master’s Thesis
Espoo, 10.01.2022

Supervisor
Prof. Jaan Praks

Advisors
Dr. Louise Sandberg Sørensen
Dr. Kari Luojus





Copyright © 2022 Lina Zschenderlein



Author Lina Zschenderlein
Title Detection of Dry Snow using Spaceborne Microwave Radiometer Data
Degree Programme Cold Climate Engineering - Space Track,

Earth Observation Techniques
Supervisor Prof. Jaan Praks
Advisors Dr. Louise Sandberg Sørensen

Dr. Kari Luojus
Date 10.01.2022 Number of Pages 56+20 Language English
Abstract
Snow monitoring on global scale is an important task considering the essential role of
snow cover in the Earth’s climate and the scarcity of ground-based snow observations.
Snow has distinctive, frequency-dependent characteristics in terms of microwave emission.
This enables the use of brightness temperatures, as measured by spaceborne passive mi-
crowave sensors, not only for the estimation of snow cover extent (SCE) through (dry)
snow detection, but also for the retrieval of snow depth and snow water equivalent (SWE).
Approaches for SWE retrieval, such as the methodology of the GlobSnow v3.0 SWE prod-
uct, frequently implement dry snow detection as one of the main processing steps. Reliable
dry snow detection is thus crucial, however, common algorithms are known to generally
underestimate the presence of snow due to their sensitivity to vegetation and liquid water
content of the snowpack, amongst other. Although several suggestions for improvement
have been proposed, an extensive, long-term comparison has not been conducted. This
thesis hence investigates six current dry snow detection algorithms and their intraseasonal
performance in order to identify the most appropriate one for implementation in the Glob-
Snow SWE product. The aim is to improve the product which is primarily affected by
underestimation during the snow accumulation period from September to February. The
investigated algorithms are based on the brightness temperature difference involving pri-
marily, but not exclusively, the 18/19-GHz and 37-GHz channels which are available for
the SMMR, SSM/I and SSMIS instruments covering more than 40 years of observations.
In addition to conventional daily snow masks, cumulative snow masks are investigated as
a means to counteract underestimation. The assessment focuses on seasonal snow above
40° North, and is conducted for the snow seasons from 1979/1980 to 2017/2018 with refer-
ence to exhaustive, in situ snow depth data from multiple sources. In addition, spatially-
complete SCE maps by the Interactive Multisensor Snow and Ice Mapping System serve
as reference from 2007/2008 to 2016/2017, in order to evaluate the detected snow cover
extent as a whole. The results emphasise the potential of cumulative masks to counteract
underestimation and increase detection accuracy, and highlight the benefit of discriminat-
ing between different scattering sources, that could otherwise be mistaken for snow. Two
methods are found to be overall best-performing: the empirically-derived algorithm of the
EUMETSAT H SAF H11 product (applicable to SMMR, SSM/I and SSMIS), and the
decision tree published by Grody and Basist in 1996 (applicable to SSM/I and SSMIS).
Promising accuracies with respect to in situ data are achieved using cumulative masks,
reaching approximately 0.83 and 0.80 for the approaches of Grody and Basist and of the
H SAF product, respectively. Implementing the H SAF algorithm into the GlobSnow
SWE product is expected to lead to immediate improvements of the latter and is thus
planned, though falls outside the scope of this thesis. Further investigation is required to
adapt the approach of Grody and Basist to the whole long-term passive microwave data
record including SMMR data.
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1 Introduction
The cryosphere—derived from the Greek ‘krios’ for cold, icy and ‘sphaira’ for ball, globe—
describes the part of the Earth where water is in its solid state [1], [2]. This includes
snow cover, permafrost, sea ice, freshwater ice like frozen lakes and rivers, and large
terrestrial ice masses such as ice sheets and glaciers, and related phenomena including
ice shelves and icebergs [1]. The cryosphere covers different parts of the globe, as shown
in Fig. 1.1, and is both a seasonal or permanent phenomenon that is mostly present at
high latitudes centered around the poles due to generally lower temperatures [1]. It has
a central role in the global climate with close links to the atmosphere and hydrosphere,
affecting surface energy fluxes and freshwater storage, amongst others [2]. In the context
of climate change, models predict the largest changes to occur in the polar regions: the so-
called polar amplification [1]. Monitoring of the cryosphere and its elements is important,
though the hostile environment and geographical remoteness of most of the cryosphere
impede ground-based observations. Remote sensing methods and particularly the use of
satellite data are therefore favourable [1].

Snow cover, the second-largest component of the cryosphere, is a crucial factor in the
Earth’s energy balance owing to its high albedo [2], i.e. its ability to reflect a large
fraction of the incoming solar radiation. Even though the largest variations in surface
albedo are due to seasonal changes in snow cover, seasonal snow predominantly occurs
in the Northern Hemisphere only [1], as shown in Fig. 1.1. The maximum extent covers
about 50% of the hemispheric land area [3], making meltwater from seasonal snow essential
for freshwater resources, soil moisture and groundwater [1], [4]. Hence, it is important to
estimate both the snow cover extent (SCE) and the snow mass, measured by means of
snow water equivalent (SWE), on global scale.

Snow is defined as an Essential Climate Variable (ECV) by the Global Climate Observ-
ing System (GCOS), with the main snow parameters being SCE, SWE and snow depth
(SD) [5]. The Climate Change Initiative (CCI) programme of the European Space Agency
(ESA) encompasses 26 ECV projects, including the ESA CCI Snow project whose objec-
tive is to generate consistent long-time series of daily global snow products from archived
and current Earth observation data [6]. This includes SCE maps from optical satellite
data and SWE products from passive microwave (PM) satellite data, addressing the snow
parameters SCE and SWE, and indirectly SD which can be derived from SWE for known
or estimated snow density [6]. Within ESA CCI Snow, the retrieval of SWE from PM
data is investigated by the Finnish Meteorological Institute (FMI), and this activity suc-
ceeds the ESA GlobSnow project. Recently, the GlobSnow v3.0 Northern Hemisphere
SWE dataset [7] has been used to assess the annual hemispheric maximum snow mass for
1980–2018 [4]. The quantification of snow mass is achieved on hemispheric, continental
and regional scale, and the trend analysis provides critical information for the evaluation
of impacts and feedbacks due to snow mass changes and trends [4].

In contrast to visible and infrared bands, the microwave energy that is emitted from a
snowpack originates not only from its surface, but also from deeper snow layers and from
the ground beneath [8]. The emission in the microwave region is thus sensitive to a variety
of snow properties, namely SD, SWE, temperature, and state (wet or dry), and addi-
tionally to the soil conditions below the snow [8], [9]. Microwave emission characteristics
are estimated by means of brightness temperatures observed by PM sensors or radiome-
ters [10], and spaceborne PM data is therefore commonly used for snow monitoring on
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global scale. Due to significant differences in emission between wet and dry snow [1], [9],
[11], the use of PM methods generally applies to dry snow with liquid water content equal
to zero [12]. Because dry snow itself presents distinctive, frequency-dependent features
in the microwave part of its electromagnetic spectrum, PM methods generally implement
multifrequency data for SWE retrieval or snow detection in first instance [1], [12]. Algo-
rithms for dry snow detection are mainly based on the brightness temperature difference
between two channels, one of lower frequency that is less affected by snow cover, and one
of higher frequency whose measured brightness temperature is noticeably affected by snow
cover in form of attenuation [13]–[15].

The Cryosphere

Snow

Sea ice

Ice shelves

Ice sheets

Glaciers and ice caps

Permafrost (isolated)

Permafrost (discontinuous)

Permafrost (continuous)

Snow

Sea ice

Ice shelves

Ice sheets

Glaciers and ice caps

Permafrost,
continuous

Permafrost,
dis continuous

Permafrost,
isolated

The Cryosphere

Snow

Sea ice

Ice shelves

Ice sheets

Snow

Sea ice

Ice shelves

Ice sheets

Glaciers and ice caps

Figure 1.1. Overview of the cryospheric components [16]. Snow cover extent for the
Northern Hemisphere is represented by the 1966–2005 February average, for the Southern
Hemisphere by the 1987–2003 August average.

Albeit dry snow detection is a typical preprocessing step for global SWE retrieval meth-
ods in order to minimise uncertainties in the latter [12], we lack an extensive, long-term
comparison of PM dry snow detection approaches and their intraseasonal performance.
This also affects the GlobSnow product, which implements PM dry snow detection prior
to the actual SWE retrieval [7]. Products such as GlobSnow use primarily spaceborne
radiometer data, because it allows for the discrimination between dry and wet snow on
hemispheric scale. The presence of liquid water within the snowpack adds additional am-
biguity to SWE retrievals [12]. Moreover, auxiliary data sources are kept to a minimum
with the purpose to limit error propagation [12], and under the consideration that global
ground-truth measurements are very sparse for SD and SWE, or not even available for
snow wetness. The integration of PM dry snow detection is thus crucial as is the knowl-
edge on the spatial and temporal behaviour of different approaches, which generally tend
to underestimate snow cover [1].

The aim of this thesis is to investigate and evaluate the performance of existing algorithms
for the global detection of dry snow by means of satellite-based radiometer data. The com-
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parison of PM dry snow detection algorithms is carried out with the ultimate objective to
select the most suitable one for implementation in the follow-up datasets of the GlobSnow
v3.0 and ESA CCI Snow v2.0 products. By improving dry snow detection, it is expected
to further enhance the SWE retrieval itself, though the actual implementation and testing
with GlobSnow is outside the scope of this project. In accordance with the long-time
series approach of CCI Snow [6], GlobSnow uses data from the Scanning Multichannel Mi-
crowave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I) and the Special
Sensor Microwave Imager/Sounder (SSMIS) spanning the years from 1979 onwards [7].
In this context, the identification, selection and implementation of relevant algorithms is
restricted by the available channels of those radiometers, with an emphasis on brightness
temperature differences between 18/19 GHz (K-band) and 37 GHz (Ka-band) since those
are most frequently used in literature, see e.g. [13]–[15], and are available for the whole
time series. Algorithms that are applicable only to SSM/I and SSMIS data may be con-
sidered given the relatively long time span (1987 onwards), whereby algorithms that are
applicable to all radiometers are preferred. It is known that the GlobSnow SWE product
presents higher relative errors in the beginning of the snow season between October and
December in comparison to mid-winter from January to March [7]. The comparison of PM
dry snow detection approaches is thus tailored around the months of snow accumulation,
i.e. the months with an increase in snow cover extent, covering the very beginning of the
snow season in September up to its approximate peak in snow cover extent in February.
Furthermore, the ability of cumulative snow masks to tackle underestimation in SCE is
investigated besides common daily snow masks derived from daily brightness tempera-
ture data. Those cumulative snow masks follow the example of [7] and, as the name
suggest, consider snow to be cumulative and retain detected snow pixels for the whole sea-
son. Considering the focus on terrestrial seasonal snow cover in the Northern Hemisphere,
brightness temperature data above 40° North are applied, similar to [4]. The performance
of the algorithms is evaluated for 40 years, from 1979 to 2018, against extensive synop-
tic SD measurements from weather stations across the whole Northern Hemisphere. In
addition to the pointwise in situ observations, SCE maps of the Interactive Multisensor
Snow and Ice Mapping System [17] are used as spatially complete reference, which is a
blended product derived from multiple data sources including but not limited to ground
measurements, PM data and optical imagery.

This document gives some background on microwave remote sensing, and in particular
on passive microwave remote sensing, also called microwave radiometry. An overview of
the characteristics of snow is given, and the physical properties of snow are subsequently
put into context with passive microwave remote sensing. Common dry snow detection
algorithms using radiometer data are then outlined, followed by an extract of global snow
products using also other types of spaceborne data. The next chapters list the datasets
used in this thesis and explain their implementation, including the computation of snow
masks, together with the evaluation of the applied dry snow detection algorithms. The
actual analysis of dry snow detection approaches follows, where the different approaches
are compared to each other, and the findings are presented and discussed. The last chapter
gives a closing summary of the work.
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2 Remote Sensing of Snow
Snow is considered an Essential Climate Variable by the GCOS of the World Meteorological
Organisation (WMO), indicating that snow plays a critical role in the characterization of
the Earth’s climate [5]. The limited spatial density of in situ snow measurements on
global scale highlights the importance of spaceborne remote sensing for snow monitoring.
Important monitored snow attributes are snow cover extent, snow depth and snow water
equivalent.

This chapter introduces microwave remote sensing as a whole in Section 2.1 and discusses
then passive remote sensing in the microwave region in more detail in Section 2.1.1. The
underlying concepts of thermal emission and radiative transfer are presented briefly in Sec-
tions 2.1.2 and 2.1.3, following primarily [10]. Section 2.2 then outlines the properties of
snow, also in context of the Northern Hemisphere as region of interest in Section 2.2.1. Sec-
tion 2.2.2 links the physical properties of snow with the theory in Sections 2.1.2 and 2.1.3,
and Section 2.3 shows how snow properties can be derived from radiometry [1], [10].

2.1 Microwave Remote Sensing
Remote sensing in general describes the process of collecting information about an object
or a material without physical contact, and refers in more specific terms to airborne
or spaceborne observations using electromagnetic radiation. Terrestrial remote sensing
most often makes use of the ‘windows’ with (nearly) no atmospheric attenuation in the
visible and microwave regions of the electromagnetic spectrum [11]. The visible region
includes wavelengths between about 0.4 to 0.7 µm [10], whereas the microwave region
covers wavelengths between roughly 1 mm to 1 m which is equivalent to frequencies between
300 and 0.3 GHz. Those useful wavelength/frequency regions as well as the influence of
different atmospheric components and precipitation on attenuation are shown in Fig. 2.1.

Figure 2.1. Attenuation of a clear atmosphere [11]. The dashed curves show additional
attenuation from fog, heavy rain and drizzle.
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There are two types of instruments used for microwave remote sensing, referred to as active
and passive systems. As the name suggests, active ones such as radar systems actively
emit electromagnetic radiation [10]. The transmitted radiation pulses are reflected upon
illuminating a ground area, and the scattered signal is then received and measured by the
sensor. Passive ones on the other hand simply measure radiation incident on the sensor.
This includes the energy radiated and reflected by the Earth’s surface and atmosphere,
i.e. direct thermal emission as well as reflected thermal emissions from other objects like
the sun. The concept of passive microwave remote sensing or radiometry is described in
more detail in the following.

2.1.1 Microwave Radiometry
The concept of radiometry describes the measurement of incoherent radiant electromag-
netic energy [10]. In the case of PM imaging, the measured radiation typically has wave-
lengths of 3 mm up to 6 cm with equivalent frequencies between 5 and 100 GHz [1]. Radi-
ation in this region is transmitted through the atmosphere and most clouds [1], [2]. Snow
mapping is thus possible in all weather conditions and without solar illumination which
allows for a high temporal resolution including during polar nights, a clear benefit in com-
parison to optical imagery. Another advantage over optical methods is the ability to not
only identify the presence of snow cover but to also estimate SD and SWE on global scale
thanks to characteristic properties of snow regarding microwave emission [2], as described
in Sections 2.2 and 2.3.

Due to comparatively long wavelengths, photons are much less energetic in the microwave
region when compared to visible light. Electro-optical systems as used for the visible
range are not applicable as such for PM remote sensing [1]. PM sensors or so-called
radiometers follow a different detection technique, where the radiation is collected by an
antenna. The antenna converts the received power into a fluctuating voltage difference
which is then amplified and detected [1]. The size of the antenna directly influences
the spatial resolution since the beamwidth is approximately λ/D, for wavelength λ and
antenna width (often diameter) D [1]. Beamwidth, usually defined as half-power (3-dB)
beamwidth, describes the angular width of the main beam where the normalized radiation
intensity is half of its maximum value [10]. The spatial resolution is generally expressed
in terms of the (instantaneous) field of view (FOV) which is the area on ground that is
observed by the antenna. The effective FOV, on the other hand, takes the relative motion
into account and is hence slightly larger.

The long wavelengths together with practical limits of antenna sizes result in relatively
coarse spatial resolutions of typically several tens of kilometres. Large antennas also
restrict the feasibility of constructing antenna arrays. In order to still ensure sufficient
spatial coverage, beam scanning methods can be applied. A common form of mechanical
scanning is the conical scan, as illustrated in Fig. 2.2. Here, the antenna beam i.e. direction
of maximum sensitivity is rotated in a wide cone around nadir, typically with an incidence
angle of around 50° measured between the vertical and the antenna beam [10]. This
causes a circular arc footprint pattern in front of the satellite, centered around nadir and
along the satellite flight path (noted by x in Fig. 2.2). Due to mechanical constraints,
amongst other, the swath width of conical-scanning systems is limited to approximately
1 700 km [10], though still allows for large spatial coverage [2], [3].

The sensitivity of a radiometer, or radiometric resolution, depends on factors such as
the physical temperature of the instrument, integration time and bandwidth, amongst
other. It is defined by the smallest detectable change in brightness temperature, with
typical values between a few tenths to one Kelvin [1]. Radiometers thus measure the
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electromagnetic energy in the microwave region, as a whole or along a single polarisation
direction, by means of brightness temperature. The radiometers of interest in this project
are SMMR, SSM/I and SSMIS.

Figure 2.2. Radiometric imaging by conical scanning [10]. Dashed black lines mark the
vertical (azimuth) and the beam direction; Red arrows indicate the rotation (conical scan)
of the antenna beam and the flight direction of the satellite, along the flight path x.

2.1.2 Characterisation of Thermal Emission
A blackbody is an idealised material that absorbs all incident radiation without reflect-
ing any and is thus a perfect absorber. Due to thermodynamic equilibrium, where the
amount of absorbed energy equals the amount of emitted energy, a blackbody is also a
perfect emitter. The radiation of a blackbody with spectral radiance or spectral brightness
(intensity) If

1 is given by Planck’s radiation law as

If =
2hf3

c2

(
1

ehf/kT − 1

)
(2.1)

for frequency f and the blackbody’s kinetic temperature T , and with Planck’s constant
h, Boltzmann’s constant k and light speed c in vacuum [10]. If as a function of frequency
describes the amplitude of the emitted radiation over the entire spectrum of a blackbody
of given T . An example for T = 300 K is shown in Fig. 2.3, with a peak in radiation for
fmax. The corresponding dominant wavelength is found using Wien’s displacement law
λmax = b/T , with b as Wien’s displacement constant. The total brightness intensity I
results from the integration of If over the entire spectrum, since dI = If df . Increasing
the temperature leads to an overall raise of the curve and thus of I, together with an
increase in fmax.

For lower frequencies with hf/kT ≪ 1, a linear approximation of (2.1) can be used, namely
Rayleigh-Jeans law [10]

If ≈ 2kTf2

c2
. (2.2)

This expression also applies to the microwave region with frequencies in the range of
109 Hz (GHz), where its deviation from Planck’s law is less than 1% [10]. The fit between
Planck’s law and Rayleigh-Jeans law is visualised in Fig. 2.3.

1Frequency- or wavelength-dependent formulations with subscripts f and λ, respectively, can of course
be transformed to one or the other. Though f = c/λ cannot simply be used for conversion since If ̸= Iλ,
and instead If df = Iλ dλ applies with df/dλ = −c/λ2.

7



Figure 2.3. Comparison of Planck’s law with the Rayleigh-Jeans law [10]. The radiation
spectrum (blue) with peak for frequency fmax and its low-frequency approximation (red)
are given for 300 K.

To summarise, If is the power which is emitted over a bandwidth of 1 Hz and through a
solid angle of 1 sr by a blackbody with a surface area of 1 m2. The total received power P
by an antenna is hence

P = ArΩs

∫ f2

f1

If df (2.3)

with receiving effective aperture Ar, source solid angle Ωs and bandwidth B = (f2 − f1).
When accounting for the directionality of the antenna with radiation pattern F (θ, ϕ) over
the full solid angle Ω = 4π, (2.3) becomes

P = Ar

∫ f2

f1

∫∫
4π

If F (θ, ϕ) dΩ df. (2.4)

An antenna pattern is illustrated in grey in Fig. 2.4, with a mainlobe, sidelobes and
backlobes. Typically, (polarised) antennas measure a single polarisation, horizontal H or
vertical V , and a factor of 1/2 has to be introduced to (2.4). Together with (2.2) and the
pattern solid angle Ωp =

∫∫
4π F (θ, ϕ) dΩ = λ2/Ar, (2.3) simplifies to

P = kTB, (2.5)

given a narrow bandwidth over which If remains approximately constant. In microwave
remote sensing, this direct linear relationship (2.3) between ‘power’ and ‘temperature’
results in the interchangeable use of those two terms [10].

In reality, materials are neither perfect absorbers nor emitters, but rather reflect and
absorb/emit fractions of the incoming radiation depending on their physical temperature
and dielectric properties. Since the concept of a blackbody is an idealisation, it is used
as reference to express the emittance of any other materials, so-called grey bodies, by
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means of brightness temperature. Brightness temperature is defined as the blackbody
equivalent radiometric temperature [10], in other words, the brightness temperature of
a material equals the temperature of a blackbody that would radiate the same thermal
energy. The ratio of the (non-uniform) brightness intensity I(θ, ϕ) of a grey body to the
(uniform) brightness intensity Ibb of a blackbody, or equivalently the ratio of the grey
body’s brightness temperature TB(θ, ϕ) and the blackbody’s physical temperature T , is
defined as the emissivity ϵ:

ϵ(θ, ϕ) =
I(θ, ϕ)

Ibb
=

TB(θ, ϕ)

T
. (2.6)

Depending on its viewing direction, the antenna observes a brightness temperature distri-
bution TB(θ, ϕ) as illustrated in Fig. 2.4. Different components of the radiation within the
mainlobe observation area are surface emission (SE), upward radiation (UP) emitted by
the atmosphere, and the surface-scattered (SS) part of downward radiation (DN) emitted
by the atmosphere. The observed brightness temperature TB is formed of the correspond-
ing brightness temperatures TSE, TUP, TSS and TDN, respectively. Taking into account the
atmospheric transmissivity Υa, this results in:

TB = TUP +Υa (TSE + TSS) . (2.7)

As mentioned earlier regarding (2.5), the power incident on the antenna is interchangeable
with temperature and hence with brightness temperature TB for grey bodies. For a lossless
antenna, the antenna temperature T ′

A would thus equal TB. However, losses and other
contributions to T ′

A have to be considered with respect to the actual antenna temperature
TA. In addition to the mainlobe, contributions from the side and backlobes have to be
considered as well as cosmic background radiation. The latter is corrected for by pointing
the radiometer towards space. Note that in case of cold space correction in the microwave
region, the Rayleigh-Jeans law actually does not apply for cold space with a temperature
of only about 2.7 K [10].

Figure 2.4. Surface and atmospheric emission, adapted from [10]. Subscripts label the
contributions to the observed brightness temperature distribution TB(θ, ϕ): surface emis-
sion (SE), upward radiation (UP) emitted by the atmosphere, and the surface-scattered
(SS) part of downward radiation (DN) emitted by the atmosphere.
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2.1.3 Radiative Transfer
The propagation of electromagnetic radiation through a medium is affected by different
processes, namely absorption, emission, and scattering. The resulting intensity of the
radiation is described mathematically by the radiative transfer equation [11], which is
given in a simple form as

dI

dτ
+ I = J, (2.8)

with intensity I and source function J accounting for thermal emission and scattering [10].
Both are defined at location R and for propagation in direction R̂. Along R̂, dτ is an incre-
ment of optical depth, or rather electromagnetic depth since not only optical wavelengths
are addressed. For thickness dR of the medium, dτ = κe dR which describes the observed
absorption of dR by means of the extinction coefficient κe, or also called power attenua-
tion coefficient. The extincted energy is due to either absorption by the material itself,
or scattering by particles contained in the material, or due to both. Equation (2.8) can
also be expressed in terms of TB, and is usually solved numerically [2], [10]. The simplest
model of radiative transfer considers a local thermodynamic equilibrium, a homogeneous
medium and no scattering effects.

The energy loss caused by scattering refers to changes in direction of the energy incident on
R—in Fig. 2.5 equivalent to the position of the radiometer. For an inhomogeneous medium,
scattering occurs because the dielectric properties of the particles are considerably different
to the ones of air as background medium [18]. This causes the energy to get refracted
away from the original direction R̂, as illustrated in Fig. 2.5 for the emission of ground
underneath a snow layer. The dielectric properties of snow and their meaning for the
emission of snow are explained in more detain in Section 2.2.2, including permittivity ε
and relative permittivity εr.

Radiometer

εr, snow grains

εr, ground

ε0

R̂

ε0

Figure 2.5. Geometrical configuration for thermal emission from ground underneath snow,
adapted from [19]. Different media properties influence the thermal emission in direction
R̂ that is measured by the radiometer. This includes the permittivity of free space ε0,
for air as such and within the snow (a layer of particles enclosed in air), and the relative
permittivity εr of ground and of snow grains, amongst other.

In conventional radiative transfer theory, particles are assumed to scatter independently
from each other [18]. However, this assumption is not valid for snow because of the densely
packed ice crystals which makes snow a so-called dense medium [2], [18]. The term ‘dense’
generally refers to a high refraction index; A material is considered more dense than an-
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other if it has a larger refraction index [10]. In order to understand the interaction between
snow grains and electromagnetic waves in the microwave region, the correlated scattering
or volume scattering in dense media has to be understood [19]. Dense medium radiative
transfer theory accounts for this correlation in scattering and for the deficiencies of con-
ventional theory in this regard [18]. Variations of this model like [19] account for multiple
volumetric scattering, i.e. volume scattering for multiple particles of different sizes. It
considers a two-layer medium, such as snow on top of ground and as shown in Fig. 2.5,
where the boundary conditions are set by the Fresnel equations to account for the trans-
mission and reflection of electromagnetic waves at dielectric boundaries. Dense medium
radiative transfer is commonly used in the context of (passive) microwave remote sensing,
e.g. to model brightness temperatures [18]–[20]. A further example besides dense medium
radiative transfer models is the Helsinki University of Technology (HUT) snow microwave
emission model [21], a semi-emipirical model based on radiative transfer. SWE retrieval
through the inversion of such models is an alternative to PM-based SWE retrieval [2].

2.2 Characteristics of Snow
Snow is a mixture of ice crystals, liquid water and air, with densities ranging between 0.2
and 0.6 Mg m−3 [1]. Over time, the density of a snow pack increases due to compaction
by wind and gravity, and due to thermal metamorphism [1]. Its internal structure is
characterised primarily through the grain or crystal size, commonly defined as the crystal
radius with values typically between 0.1 and 3.0 mm, and by the form and orientation
of the crystals [1]. A further property is snow wetness i.e. liquid water content. For
temperatures below the freezing point, a snow pack is unlikely to contain any liquid water
and is thus referred to as ‘dry snow’. Though for temperatures at or above the freezing
point, a considerable amount of liquid water might be present within the snow, which is
then ‘wet snow’. The total amount of water that is hold by a unit area of the snow pack is
the so-called snow water equivalent. It is defined as the depth of liquid water that would
result if the snowpack was melted instantaneously.

2.2.1 Seasonal Snow in the Northern Hemisphere
Commonly, it is distinguished between temporary, seasonal and permanent snow cover [1].
Temporary and seasonal snow cover last on the scale of days and months, respectively,
and typically melt during summer. Permanent snow cover on the other hand is preserved
over several years and mainly occurs in Antarctica and Greenland, resulting in snow ac-
cumulation over the ice sheets. In the Southern Hemisphere, permanent snow cover hence
predominates whereas in the Northern Hemisphere, temporary and seasonal snow are pri-
marily observed. This project investigates terrestrial seasonal snow cover and therefore
the Northern Hemisphere, disregarding accumulation over Greenland. Average seasonal
changes in snow cover extent for this area of interest are given in Fig. 2.6. The spatial
extent presents a minimum of about 4 million square kilometers in August, and reaches a
maximum of around 46 million square kilometers approximately in January [1].

The maximum snow cover extent equals approximately 40 − 50% of the land area which
makes snow cover the dominant land-cover type during snow season [1], [3]. Seasonal
snow cover plays a significant role in the global climate as it causes the largest annual
and interannual variations in land surface albedo [22]. Albedo is a measure of how much
incident solar radiation is reflected or scattered upwards by a surface, generally given
for shortwave radiation between 0.3 and 3.0 µm, and is a critical parameter to specify
the surface energy balance [23]. The high albedo of snow is a key regulator of the ab-
sorption of solar energy for snow-covered areas [2], though earlier melting and less area
coverage have been observed due to climate change which in turn decreases the albedo
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and further accelerates melting and decreases snow cover extent [3], [23]. This effect is
the so-called snow-albedo feedback [23]. Aside from its climatological impact, snow is
a main contributor to hydrology and influences local groundwater recharge, (snowmelt)
river run-off, flooding or energy supply through hydropower, amongst other [1], [3]. Both
the variability and extent of seasonal snow cover are hence important factors in climate
and hydrologic systems, highlighting the importance of spatial and temporal mapping of
snow-cover conditions—on global as well as on regional scale.
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Figure 2.6. Average snow cover in the Northern Hemisphere excluding Greenland during
1972–1991 [1]. Circles show mean values with error bars of ±1 standard deviation in
interannual variation. The curve is the best-fitting harmonic with terms at one and two
cycles per year.

The latitudinal occurrence of seasonal snow varies throughout the Northern Hemisphere.
In North America, seasonal snow occurs for latitudes generally north of 40°, whereas in
Western Europe, it is north of 60° and in mountainous areas. In Eastern Europe, seasonal
snow is found northward from about 50° and extends in Asia as far south as 30° latitude [1].
The latitudinal range may differ for temporary snow cover. Since the vast majority of
seasonal snow in the Northern Hemisphere is found north of 40° North, this is set as study
area following the example of Pulliainen et al. [4] whereby the authors exclude alpine areas
with high topographic variability within the satellite data footprint. The average snow
distribution for this area without mountainous regions is shown in Fig. 2.7. The amount
of snow mass generally increases for regions further north, with the largest average SWE
ocurring in Siberia, the north of Scandinavia and around the Canadian province Quebec.
Figure 2.7 considers essentially the time period of interest of this thesis: the winters from
1979/1980 until 2017/2018.
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Figure 2.7. Average snow distribution in the Northern Hemisphere during 1980–2018 [4].
The snow distribution is given in terms of SWE for non-alpine regions above 40° North.

2.2.2 Dielectric Properties
The electromagnetic properties of a material or object define its effects on electromagnetic
radiation. For microwave remote sensing, the most important characteristic is the complex
electric permittivity ε, which is expressed by means of the permittivity of free space ε0
and the dimensionless, material-specific relative permittivity εr as ε = εrε0. Since εr is
also complex, it can be denoted as:

εr = ε′r − iε′′r . (2.9)

Its real part ε′r, also called dielectric constant, represents the energy scattered and reflected
by the material, whereas its imaginary part, the dielectric loss factor, describes the energy
losses due to absorption [10], [11]. Both are dependent on the frequency and on the
temperature of the material.

Most encountered solid materials in remote sensing are non-conducting, so-called di-
electrics [11]—for perfect dielectrics with zero conductivity the imaginary part of (2.9)
equals zero. Since ε′′r of the observed dielectric materials is most often insignificantly small,
the dielectric constant becomes the dominant property. The majority of the Earth’s dry
land-based materials, such as soil, vegetation, ice and snow, have a comparatively low ε′r
between about 1 and 8 [24], making them to some degree transparent to microwaves [11].
The dielectric constant of dry snow depends directly on the dielectric constant of air, of
ice, and on the ratio of snow to ice density, whilst being essentially independent of fre-
quency and temperature in the microwave region [10]. For a typical density of 0.3 Mg m−3,
it is approximately 1.57 [1]. Liquid water on the other hand has a very high dielectric
constant of around 80 [24], practically blocking the penetration of microwaves, which leads
to fundamental differences between dry and wet snow [11].

The dielectric constant moreover influences the emissivity ϵ, as defined in (2.6), which
describes how efficiently a material radiates energy in comparison to a blackbody. When
an electromagnetic wave propagates through a dielectric material, it inevitably undergoes
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an energy loss that is also referred to as attenuation [11]. The lower ε′r and the more
transparent the medium, the smaller the loss. A low dielectric constant therefore roughly
translates into high emissivity, and vice versa [24]. Because dry snow is comparatively
transparent to microwave radiation having a very small loss factor i.e. very little absorp-
tion, the observed attenuation is dominated by scattering [1].

The scattering effect observed for dry snow, volume scattering, is highly dependent on
frequency. Air acts as a surrounding medium for the ice particles which are on the order
of millimetres, as stated earlier. For propagating waves with wavelengths much larger than
the ice particle diameter, snow appears as a homogeneous medium without scattering but
only absorptive effects [10]. For wavelengths of similar magnitude, the ice particles act
as scatterers due to the inhomogeneity of dielectric properties of the ice itself and the
air background [10]. Volume scattering leads to an attenuation in emissivity as well as
in brightness temperature, see (2.6). The characteristic of dry snow that its emissivity
decreases with increasing frequency is unique among land cover types [9]. It furthermore
becomes evident that the emission from dry snow stems from different depths and thus is
not simply described by a single emissivity [1].

Different aspects on the microwave emission of snow including environmental effects are
visualised in Fig. 2.8. The emission is illustrated as vertical arrows of different thickness
for different intensities. Volume scattering is represented as horizontal dashed arrows and
the more arrows, the more scattering is present. Figure 2.8a illustrates how shallow snow
depths not only cause an increase in emission due to less volume scattering, but also due
to possible effects from the ground underneath as snow has only little absorption due to
small ε′′r . Depending on the soil’s properties, such as comparatively high temperature
and wetness, the observed emission and hence the measured brightness temperature may
be increased significantly. In addition, though independent on snow depth, overlying
vegetation and trees reflect and emit upwelling microwave radiation [25], causing snow
cover in forested areas to present higher emissivities and brightness temperatures than in
unforested regions [8].

dry snow

ground

wet snow

(a) (b) (c)

Figure 2.8. Schematic of the microwave emission from snow. The influence of different
environmental conditions includes (a) soil under a thin snow layer and vegetation, (b)
internal snow properties such as grain size and density, and (c) liquid water content of
snow. Microwave emission is represented by vertical arrows of varying thickness according
to its intensity; Volume scattering is represented as horizontal dashed arrows with more
arrows indicating more scattering.
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Further internal snow properties affect the emission, as shown in Fig. 2.8b for a deeper
snow layer and without ground effects. The above mentioned effects of varying wavelength
on scattering behaviour can be directly translated to snow grain size. The higher the
frequency and/or the larger the grain size, the more scattering is observed as the particle
size approaches the wavelength [2], [14]. The shape of the snow crystals on the other hand
has nearly no impact [26]. Besides the grain size, snow density has a similar effect, and
since both generally increase for aging snow, the emission is more attenuated for older
snowpacks [8].

In contrast to dry snow, wet snow has a high dielectric constant i.e. it is less transparent
to microwave radiation causing much less effects from the underlying soil on the emission,
see Fig. 2.8c. Despite its large dielectric constant, melting or wet snow has a much larger
emissivity than dry snow. There is essentially no attenuation through volume scattering
due to the much smaller size of liquid water droplets in comparison to ice particles [11].
Instead of volume emission, the absorption and emission effects on the surface dominate [1],
and the emissivity spectra of wet snow are therefore significantly different from the ones
of dry snow [9]. The arising challenges for snow PM remote sensing are discussed in the
following section.

2.3 GlobalScale Snow Cover Mapping
In this section, approaches and limitations for passive microwave remote sensing of snow
are discussed in more detail, followed by dry snow detection algorithms using exclusively
PM data. Finally, common global and hemispheric snow products using various data types
are introduced.

2.3.1 Passive Microwave Remote Sensing of Snow
Dry snow is often detected by the use of multi-spectral and/or multi-polarization methods.
The use of two or more PM bands enables the detection of attenuation effects as found for
snow-covered surfaces [2]. Essentially, the contribution in emissivity from the dry snow
layer itself is most of the times negligible, because of its low emissivity in comparison
to the soil underneath [2] (compare to Fig. 2.5). The emission of the soil, in turn, is
attenuated by the snow cover due to volume scattering. The magnitude of the attenuation
is dependent on microwave wavelengths, and lower brightness temperatures are measured
for higher frequencies in the presence of snow. This brightness temperature difference
between different frequency bands can be related not only to snow presence but also to
snow depth and SWE. A further benefit in using multiple bands over a single frequency is
that unwanted effects are reduced or possibly eliminated [7]. Those include, for instance,
variations in physical temperature of the instrument that affect the measured signal or
systematic errors, if a common calibration target is chosen for all channels [7].

The difference in brightness temperature, and equally in emissivity ϵ, between two different
frequencies is shown in Fig. 2.9. Modelled emissivities for snow depths of 0.1, 0.5 and 1.5 m
are given for 10 and 37 GHz, and the overall drop in emissivity from Fig. 2.9a to Fig. 2.9b
is apparent for both polarisations. The emissivity curves corresponding to 10 GHz barely
differ from each other. For 37 GHz, emissivities are overall lower and are clearly sensitive
to snow depth: the deeper the snow, the lower the emissivity due to increased volume
scattering. However, snow depths of more than about 1.25 m become problematic as the
maximum observable scattering is reached which results in signal saturation [14]. Since
no variations in scattering are present anymore for deep snow, snow depths cannot be
estimated correctly using the brightness temperature difference. Snow is now the primary
emitter [14], and its emissivity starts to increase for increasing snow depth [9].
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ϵH

ϵV

(a) 10 GHz (b) 37 GHz

Figure 2.9. Modelled snowpack emissivity at 10 and 37 GHz versus observation angle,
adapted from [2]. Emissivities are given for different snow depths of 0.1, 0.5 and 1.5 m, for
vertical and horizontal polarisation. The emissivity ϵV of vertical polarisation is generally
larger than ϵH of horizontal polarisation, as indicated for exemplary ϵV and ϵH of the
same observation angle in (a); the same behaviour is transferable to the emissivity curves
shown in (b). The used model is based on the dense medium radiative transfer theory and
accounts for multiple volumetric scattering, with snow and ground temperatures of 271 K,
snow particle radius of 0.5 mm, snow density of 0.3 Mg m−3 and relative permittivity of
frozen soil of 4 + 0.1i. The 50° observation angles are marked by a vertical line.

Figure 2.9 also highlights the view dependency of the emissivity ϵ(θ, ϕ), see (2.6). For
an observation angle of 50° which is about the incidence angle of SMMR, SSM/I and
SSMIS and of the radiometer measurements by Mätzler [9], the emissivities of different
polarisations can be clearly distinguished. The emissivity is generally higher for vertical
than for horizontal polarisation, though this difference gets smaller and essentially vanishes
for small angles i.e. for a viewing direction approaching nadir. An increase in observation
angle above around 60° on the other hand leads to a rapid decrease in emissivity, less
ability to discriminate between snow depths and as a result to a loss in information.

For a fixed observation angle of 50°, Mätzler measured the emissivities of different media
as shown in Fig. 2.10. A significant reduction in emissivity is observed for dry snow
with frequencies above 10 GHz due to volume scattering, often referred to as scattering
signature. The scattering signature is more prevalent for medium than for shallow snow,
indicating its sensitivity to snow depth. Even though not all object classes of [9] are
given, this negative spectral gradient is present for all snow types with a dry surface.
Nevertheless, for fresh powder snow with a depth of 37 cm and SWE of approximately
4 cm, the scattering effect appears only at higher frequencies above 35 GHz because of
generally very small grain sizes. Consistently wet or melting snow, in contrast, has a high
emissivity and can thus be hardly discriminated from bare (wet) or frozen soil, regardless
of polarisation.

The polarization difference at and below 10 GHz shows a (small) monotonous increase with
increasing SWE [9]. This can be seen in Fig. 2.10 for 5 and 10 GHz, since ϵV is roughly
the same for medium and shallow snow, whereas ϵH is clearly lower for medium than for
shallow snow. Though in comparison to higher frequencies, emissivities and equivalently
brightness temperatures measured at or below 10 GHz are barely responsive to snow depth.
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Figure 2.10. Measured emissivity spectra of snow and other object classes at 50° off nadir,
after [9]. Mean emissivity values of vertical and horizontal polarisation, ϵV and ϵH , are
plotted for 4.9, 10.4, 21.0, 35.0 and 94.0 GHz as solid and dashed lines, respectively. The
object classes include different types of soil and snow: ‘Bare soil’ represents nine snow-
free observations in wet and dry, warm and cold conditions (unfrozen only); ‘Frozen soil’
represents two situations of frozen bare soil of mostly frozen soil moisture of about 40%
by volume and with surface temperatures of −6 °C and −1 °C, respectively; ‘Wet snow’
represents 53 situations of wet snow having at least a wet surface layer; ‘Shallow snow’
represents 11 situations of dry snow with SWE between 4 and 10 cm; ‘Medium snow’
represents 12 situations of dry snow with SWE between 10 and 25 cm.
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Those lower frequencies serve as ‘scatter-free’ references to reduce the effects of ground
temperature and atmospheric quantities on changes in brightness temperature [13], [27].
In order to detect the scattering signature of snow, TB differences of different channels
can be applied, using a channel that is not sensitive to scattering and a channel that is
sensitive to scattering. Available bands of SMMR, SSM/I and SSMIS may differ from
the exact frequencies shown in Fig. 2.10, nonetheless, the overall scattering behaviour
remains. A 10-GHz channel as scatter-free reference is only available for SMMR and
therefore 18/19 GHz are used instead. Using 19 GHz (SSM/I and SSMIS) over 18 GHz
(SMMR) has only a very small effect on TB-difference algorithms because the penetration
characteristics are nearly identical for both frequencies at an incidence angle of 50° [28].

In addition to the scatter-free reference, 37-GHz data is generally best suited for snowpack
studies [13], [27]. Between 18/19 and 37 GHz, the emissivity of frozen soil is estimated
to stay on similar levels [7]; Fig. 2.10 confirms this when comparing 20 and 35 GHz not
only for frozen soil but also bare soil and wet snow. For dry snow on the other hand,
volume scattering leads to the already mentioned drop in emissivity. By subtracting T 37

B

measured at 37 GHz from T
18/19
B measured at 18/19 GHz, the attenuation in TB caused by

snow cover can be identified. This applies to both polarisations and either can be chosen
for dry snow detection.

Limitations of this approach arise due other anomalous scattering signals, caused for in-
stance by precipitation or cold deserts (e.g. Central Iran, the Gobi Desert or the Tibetan
Plateau) [1], [25], or due to internal variations in snow properties, amongst other [2]. This
includes for instance variations in grain size such as those resulting from depth hoar, large-
grained crystals of up to 10 mm in diameter [29]. Within the snowpack, distinctive layers
of snow are encountered which differ from each other in terms of e.g. density and grain
size, and which as a whole are described as the so-called snowpack stratigraphy [30]. The
horizontal polarisation of the 18/19 and 37-GHz channels is slightly more sensitive to the
vertical variations caused by the snow’s stratigraphy than the vertical polarisation [31].
Based on this, it could be derived that the vertical polarisation channels are more appro-
priate for snow depth estimations since they are less affected by the internal properties,
whereas the horizontal polarisation channels are more responsive to those same properties
and therefore more suitable for dry snow detection in first place [31].

Because the scattering effect is only marginal for thin snow packs, snow depths of less
than about 3 cm are seldom detected [1], [13], [15]. To improve the sensitivity to thin
snowpacks, brightness temperatures from high frequencies of 85 GHz and above can be
included as those are subject to increased volume scattering [1]. According to Mätzler [9],
those brightness temperatures should only be complementary due to the following: First,
only a thin surface layer of the snow cover determines the actual emissivity given the small
wavelength which complicates the detection of fresh powder snow due to higher emissivities
than other dry snow types, as mentioned above; Second, the atmospheric transparency is
variable and precipitating clouds can additionally show low emissivities that comparable to
dry snow. The latter argument similarly speaks against the use of 21/22 GHz, which also
suffers from effects of atmospheric water vapour and precipitation [8], [27]. Nevertheless,
those channels may as well be used for complementary information [25].

A more general problem of snow remote sensing is that most of the Earth’s seasonal snow
cover occurs in complex landscapes which hinders the identification of snow cover using PM
observations [1]. Mountainous terrain is challenging for several reasons. Generally, large
spatial differences in snow depth are expected and whilst deep snow eventually reaches the
saturation depth, the signal of shallow snow prevails due to higher emissivity. Moreover,
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complex topography with significant changes in slope gradient causes variations in (local)
observation angle within the sensor footprint and thus variations in emissivity [2], since
the latter is view-dependent as seen in Fig. 2.9. Apart from mountains, liquid water poses
a key challenge both within the snow itself and in form of water bodies. Large waters such
as oceans and large lakes are therefore commonly masked out, as well as pixels that cover
a large percentage of water e.g. in coastal areas or lakeland. The internal wetness of snow
on the other hand not only affects PM seasonal snow detection, but also the capability
for PM snow accumulation monitoring. Even though PM remote sensing can be used to
retrieve accumulation rates in the dry-snow zone of ice sheets, it is greatly limited by
spatial and temporal variability in liquid water and refrozen subsurface ice structures [2],
and relies highly on in situ measurements [1]. An additional classification for glacial ice
might need to be introduced since common scattering signatures for snow detection can
result in a lack of scattering for large regions of Greenland and Antarctica [25].

Major discrepancies also arise for the presence of vegetation and especially of forest
cover [12], as described in Section 2.2.2. Typically, horizontal polarisation channels are
more sensitive to vegetation [14], however, the underestimation of snow due to forests
masking out snow cover affects both polarisations [3]. The interpretation of PM signals
for snow mapping on hemispheric or global scale is hence hindered by significant regional
variations, for instance in terrain elevation and land cover. Overall, PM approaches tend
to underestimate snow extent [1], [32].

In order to achieve consistent accuracy in SCE and SWE estimates across all of the North-
ern Hemisphere, either physical approaches, including robust snow pack parameterisation,
or regional approaches are required [2]. The latter may involve algorithms for particular
regions, e.g. for the Himalayas [33] or Western Canada [34], or hemispheric but regionally-
tuned algorithms, e.g. by Foster et al. [14]. Armstrong and Brodzik [35] state that, in
general, horizontal polarization-based algorithms achieve the best SCE estimates on hemi-
spheric to global-scale throughout the snow season. Algorithms of vertical polarization
obtain similar results but have the tendency to overestimate snow cover particularly if
desert soils and/or frozen ground are present.

2.3.2 Dry Snow Detection Algorithms using Passive Microwave Data
The algorithms applied in this thesis are presented according to the year of their publica-
tion, and are referred to by their first authors’ name(s) since they have usually no specific
names given. All methods apply to dry snow conditions only and are static, disregarding
temporal variations for instance in snow grain size or snow density. PM algorithms for
dry snow detection are generally based on the spectral gradient between a ‘non-scattering’
and a ‘scattering’ channel, typically 18/19 GHz and 37 GHz respectively, so that a pos-
itive difference in brightness temperature indicates the presence of a scattering medium
like snow [13], [36].

Chang et al. (1987)
Based on SMMR data, Chang et al. [13] first introduced the relationship between snow
depth and brightness temperature for a uniform snow field as:

SD = Rc ·
(
T 18H
B − T 37H

B

)
(2.10)

with constant (linear) regression coefficient Rc = 15.9 mm K−1 and brightness tempera-
tures at 18 and 37 GHz for horizontal polarisation H, as indicated by the corresponding
superscripts. A snow density of 0.3 Mg m−3 is assumed, and the authors furthermore
note that the application of (2.10) should be limited to snow depths of less than 1 m. If
SD ≥ 25 mm, the observation is marked as snow.
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Grody and Basist (1996)
Grody and Basist [25] introduce additional frequencies for snow detection, namely the 22
and 85-GHz channels of SSM/I. The presence of scattering is determined based on the
scattering signature relationships:

T 22V
A − T 85V

A > T (2.11a)

or

T 19V
A − T 37V

A > T (2.11b)

which may also be referred to as SCAT for the varying temperature threshold T . In
contrast to (2.10), (2.11b) utilizes the vertical polarisation V .

Equation (2.11a) is generally sufficient to detect snow, though the additional test in (2.11b)
is beneficial in case of significant cloud liquid water. The decision tree as shown in Fig. 2.11
is developed to identify and discriminate between further scattering materials. Once a
scattering medium is detected in (2.12a), precipitation, cold deserts and frozen ground are
filtered out by the conditions given in (2.12b) to (2.12d).

Scattering Materials (2.12a)

SCAT > 0

Precipitation (2.12b)

T 22V
A ≥ 258

or
T 22V
A ≥ 165 + 0.49 · T 85V

A

or(
258 ≥ T 22V

A ≥ 254 and SCAT ≤ 2
)

Cold Desert (2.12c)

T 19V
A − T 19H

A ≥ 18 and T 19V
A − T 37V

A ≤ 10

and T 37V
A − T 85V

A ≤ 10

Frozen Ground (2.12d)

T 19V
A − T 19H

A ≥ 8 and T 19V
A − T 37V

A ≤ 2

and T 22V
A − T 85V

A ≤ 6

Snow Cover

yes

no

no

no

Figure 2.11. Decision tree used to differentiate between scattering sources, based on [25].
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Note that the authors use antenna temperatures TA instead of TB [25]. To account for
this, corrections have to be applied to brightness temperature data for the 19, 22, 37, and
85-GHz channels by subtracting 7, 6, 4, and 3 K, respectively.

Foster et al. (1997)
Foster et al. [14] propose for SMMR data the GSFC 1996 algorithm, named after the God-
dard Space Flight Center of the National Aeronautics and Space Administration (NASA).
Here, the effects due to vegetation cover are accounted for by including a forest cover
parameter:

SD =
Rc

1− p

(
T 18H
B − T 37H

B

)
, (2.13)

with forest cover fraction p. The authors expect grain sizes to be slightly larger on average
for interior areas of Eurasia in comparison to interior areas of North America. Therefore,
Rc is set as 7.8 mm K−1 for interior areas of Eurasia and remains 15.9 mm K−1 elsewhere,
assuming grain sizes of 0.4 mm and 0.3 mm, respectively. The interior regions of Europe
are defined as boreal and transitional forest. The latter is understood to be forest as
transition between boreal and deciduous forest.

Armstrong and Brodzik (2001)
Armstrong and Brodzik [37] introduced an adjustment of −5 K to (2.10) in order to com-
pensate for the central frequency difference between the channels of SMMR and SSM/I.
For SSM/I data, snow is now detected if:

SD = Rc ·
((
T 19H
B − 6

)
−
(
T 37H
B − 1

))
≥ 25 mm2. (2.14)

Hall et al. (2002)
A further modified version of (2.10) for SSM/I data was suggested by Hall et al. [15], with
the purpose of creating a snow-mapping instead of a snow-depth algorithm:

SD = Rc ·
(
T 19H
B − T 37H

B

)
> 80 mm

T 37V
B < 250 K

T 37H
B < 240 K.

(2.15)

Hall et al. found to this approach to be more reliable than (2.14) [15].

Modifications and Other Approaches
The GlobSnow SWE product (see Section 3.6) incorporates dry snow detection where the
approach of Hall et al. [15] as given in (2.15) is applied to SMMR in addition to SSM/I
and SSMIS data. The H11 product (see Section 2.3.3) of the Satellite Application Facility
on Support to Operational Hydrology and Water Management (H SAF), as part of the
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT),
provides snow status information (dry or wet) and also uses the relation in (2.15) for dry
snow detection, but with the following empirically-derived criteria:

SD > 30 mm
T 37V
B < 255 K

T 37H
B < 250 K.

(2.16)

2The threshold of 25 mm is not specifically stated in [37]. Since the authors modified the approach of
Chang et al. [13], it is assumed that the original SD threshold is kept.
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Exemplary regional approaches, based on PM data, are developed for the Himalayas by
Saraf [33], or for Western Canada by Derksen et al. [34] and (for airborne data) by Good-
ison [38]. A comparison of the approaches of Goodison [38], Chang et al. [13] and Grody
and Basist [25] for the Northern Hemisphere is conducted by Armstrong and Brodzik [32]
for the years from 1978 to 1999 for SMMR and SSM/I data. Che et al. [39] use the ap-
proach of Grody and Basist [25], amongst other, for regional dry snow detection in China3.
Tait [40], on the other hand, derives a global approach for SWE estimation that is based
on individual relationships between SWE and observed brightness temperatures for 16 dif-
ferent land-cover categories. Moreover, neural networks have been applied for snow cover
mapping. Tedesco and Jeyaratnam [41], for instance, utilise climatological data, electro-
magnetic modelling together with artificial neural networks in order to estimate SD and a
dynamic snow density scheme to convert SD to SWE. Tedesco et al. [42] use a technique
based on artificial neural networks for the inversion of SSM/I brightness temperatures.

Note that not all existing dry snow detection methods based on passive microwave data
are mentioned. The presented selection is considered to represent the most influential
approaches, which may be developed for dry snow detection itself or as part of estimations
in SD and/or SWE.

2.3.3 Global Snow Products
Besides the GlobSnow SWE product [7] (described in more detail in Section 3.6) which is
based on SMMR, SSM/I and SSMIS data, other global SD/SWE products are the Global
SWE product [36] using Advanced Microwave Scanning Radiometer - Earth Observing
System (AMSR-E) data, or the Standard SD and SWE product [43] using AMSR-E and
Advanced Microwave Scanning Radiometer 2 (AMSR2) data. However, the temporal
coverage of the latter two is limited to the period from 2002 to 2011 [12]. AMSR-E has
channels of horizontal and vertical polarisation at 6.9, 10.7, 18.7, 23.8, 36.5 and 89.0 GHz.
The instrument, onboard NASA’s Aqua satellite, was developed by the Japan Aerospace
Exploration Agency (JAXA), as was its successor AMSR2 which is carried by JAXA’s
Global Change Observation Mission – Water (GCOM-W) satellite. Those three products
keep auxiliary data sources to a minimum in order to limit error propagation [12]. In
general, global SD and SWE estimates have snow detection and SD/SWE retrieval in
common as one of the main processing steps [12].

In addition to PM data, optical data has been successfully used for snow mapping, for
instance from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and
(a nearly identical version of MODIS) on Aqua, both satellites of NASA. Since early 2000,
snow cover has been estimated daily using MODIS with automated algorithms developed
and updated at GSFC [44]. A further example for the use of optical data is JAXA’s
Northern Hemisphere daily SCE product [45] (described in more detail in Section 3.3).

The synergistic use of data or snow products, offers the benefit of incorporating the most
reliable aspects of each [46]. Blended products may involve PM data together with visible,
near-infrared data and/or active remote sensing methods [2], [12]. The Air Force Weather
Agency (AFWA)/NASA Snow Algorithm (ANSA) [47], for example, is a blended global
snow product derived from visible, passive microwave and active scatterometer satellite
data. ANSA blends existing snow products derived from MODIS, AMSR-E and NASA’s
Quick Scatterometer into a single, daily product that provides SCE, fractional snow cover,
SWE, the onset of snowmelt and the identification of actively melting snow cover. As the
confidence for mapping SCE is greater for the MODIS product, it is used as default for

3It was noticed that the authors apparently apply the original TA decision tree directly to TB data
without temperature corrections to account for the conversion between TA and TB .
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snow detection. The PM product is used if MODIS data are affected by the presence of
clouds or darkness. Fig. 2.12 gives an example of the ANSA product and highlights the
susceptibility of optical data to environmental factors, given the large amount of bright-
blue, dark-grey and green pixels.

A further blended approach, this time to map the snow state (wet or dry), is implemented
by the EUMETSAT H SAF H11 product [48]. Binary snow maps of the EUMETSAT
H SAF H10 product [49], derived from visible and infrared radiometry, are set to show
wet snow. Dry snow is then detected as part of H11 by means of PM radiometry, using
primarily data of AMSR-E onboard NASA’s Aqua satellite or, if missing, of SSM/I and
SSMIS.

A comprehensible review of global satellite-derived snow products is conducted by Frei et
al. [46].

Snow by both sensors

Snow by AMSR-E,
MODIS cloud or no data

Snow by MODIS,
AMSR-E no snow or data gap

Snow-free by AMSR-E,
MODIS uncertain

Snow-free by MODIS in clear view,
snow by AMSR-E 

MODIS cloud, AMSR-E data gap

Snow-free by both sensors

Permanent snow/ice by AMSR-E

Figure 2.12. ANSA blended-snow product for 26 January 2007 in the Lambert Azimuthal
polar projection [47], adapted from [2].

23



24



3 Data Records
This chapter lists the used data and introduces the applied data format. PM satellite
data is described in Section 3.2 as well as reference data in form of optical satellite data
in Section 3.3, a blended snow product in Section 3.4, and in situ SD measurements from
weather stations in Section 3.5. Even though the GlobSnow SWE dataset as such is not
used, it is described in Section 3.6 to provide context regarding its implementation of PM
dry snow detection which is of interest for this project.

3.1 Data Format
All data are processed in the form of North azimuthal maps of the Equal-Area Scalable
Earth-Grid (EASE-Grid) [50]. The format is adopted from the GlobSnow SWE product
which uses the 25-km resolution of Northern Hemisphere EASE-Grid maps of (721× 721)
pixels, with the North Pole in the centre (the corners of the map fall outside of the
Earth’s projection). EASE-Grid is a versatile format for global-scale gridded data such as
remote sensing data and as the name suggests, it provides equal-area maps without areal
distortion. This means that by placing a small circle anywhere on the map, the same area
on the globe is covered. Shape distortion may still be present, though the used equal-area
projection minimizes it over the poles. A newer version of EASE-Grid is available but not
used in this project, namely EASE-Grid 2.0 [51]. In the following, the 25-km Northern
Hemisphere EASE-Grid map format may simply be referred to as ‘EASE-Grid’.

3.2 Passive Microwave Satellite Data
The used PM satellite data are from the SMMR, SSM/I and SSMIS instruments, all coni-
cal scanners in near-polar orbits with incidence angles of approximately 50°. An overview
of the PM sensors’ relevant bands for dry snow detection is given in Table 3.1. The SMMR
sensor was on board NIMBUS-7 satellite operated by NASA, with data available every
other day from 1978 to 1987. It was succeeded by the SSM/I and later the SSMIS in-
struments with daily acquisitions as part of the Defense Meteorological Satellite Program
(DMSP) aboard F-series satellites. SSM/I data applied in this thesis are from the space-
crafts F8 (1987 − 1991), F11 (1992 − 1995) and F13 (1996 − 2008), whilst SSMIS data
from F17 has been in use since 2009.

The radiometer observations, resampled to the Northern Hemisphere EASE-Grid projec-
tion, are acquired from the National Snow and Ice Data Center (NSIDC) [52], [53]. Both
spatial and temporal data gaps may occur throughout the time series, though the coverage
becomes generally more consistent for SSM/I and SSMIS data records and is usually on
the scale of a few days only1. In addition, differences in local acquisition times between
the different radiometers have to be considered. For SMMR, the equatorial crossing times
are at midnight for descending, and at noon for ascending passes. For SSM/I and SSMIS
on the other hand, the crossing times are approximately at 6:00 for descending and at
around 18:00 for ascending passes. Since the focus is on dry snow detection, night-time
and early-morning data from descending passes are prioritised if available, in order to keep
the effect of liquid water in the snowpack on the brightness temperature to a minimum.

1The approach of Grody and Basist is the only algorithm that is affected by major data constraints.
Due to compromised data integrity of the vertical 37-GHz channel, it is recommended to use data from
the F18 instead of F17 satellite starting from 1 April 2016. However, F18 TB data are not provided on the
NSIDC portal and thus F17 data are used. Note that furthermore 85/91-GHz data are not available from
1 February 1989 to 31 December 1991 due to degradation of this channel.
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Table 3.1. Sensor characteristics of SMMR [54], SSM/I [55] and SSMIS [56] channels
relevant for dry snow detection.

SMMR Centre Frequency (GHz) 10.7 18.0 21.0 37.0
Polarisation V,H V,H V,H V,H
Bandwidth (MHz) 250 250 250 250
FOV (km × km) 97× 98 60× 60 60× 60 30× 30

SSM/I Centre Frequency (GHz) 19.35 22.235 37.0 85.5
Polarisation V,H V V,H V,H
Bandwidth (MHz) 400 400 1 500 3 000
FOV (km × km) 69× 43 60× 40 37× 29 15× 13

SSMIS Centre Frequency (GHz) 19.35 22.235 37.0 91.655
Polarisation V,H V V,H V,H
Bandwidth (MHz) 350 400 1 500 1 400
FOV (km × km) 72× 44 72× 44 44× 26 15× 9

Examples of brightness temperature data are given in Fig. 3.1 for 19 and 37-GHz channels
of horizontal polarisation of SSMIS. Note the overall lower brightness temperature for
37 GHz, especially over the north of Siberia and Canada, due to snow cover. Note that
the spatial integrity may vary between different days, channels and instruments. Besides
SMMR data being generally available only every other day, as mentioned earlier, the swath
width of SMMR is with 780 km [54] considerably lower than SSM/I with 1 400 km [55] and
SSMIS with 1 700 km [56], and results in less spatial coverage.
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Figure 3.1. Exemplary brightness temperature data of horizontal polarisation over land
above 40° North on 15 January 2010.

3.3 Optical Satellite Data
For additional reference, the Northern Hemisphere daily snow cover extent product [45]
is used, as provided by Satellite Monitoring for Environmental Studies (JASMES) of
JAXA. The snow extent maps are derived from optical data by the Advanced Very-High-
Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administra-
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tion (NOAA) for the years from 1978 to 2005, and by MODIS onboard NASA’s Terra
and Aqua satellites for the years from 2000 onwards. The JASMES snow extent product
with 5-km resolution is converted to daily snow masks with Northern Hemisphere 25 km
EASE-Grid projection. For this, a 25% snow cover fraction threshold is used and the latest
cloud-free observation per cell is retained in a cumulative manner.

3.4 Interactive Multisensor Snow and Ice Mapping System
The Interactive Multisensor Snow and Ice Mapping System (IMS) [17] of the United
States National Ice Center (USNIC) provides a daily, analysis of snow and ice for the
Northern Hemisphere and is one of the most widely used products for large-scale climate
research [46]. The generation of IMS maps through the snow/ice cover algorithm involves
preprocessing where all products and imagery in their original formats are collected. This
includes AVHRR and MODIS Aqua/Terra imagery, SSM/I products, statistically modelled
snow depth and global daily surface data readings, amongst other. Processed data are then
displayed on IMS projection to analysts to tag snow and ice-covered locations to define the
final snow line delineation. The human involvement is a key feature that distinguishes IMS
from the other algorithm-based products [46]. The 24-km resolution IMS product for the
Northern Hemisphere in American Standard Code for Information Interchange (ASCII) is
chosen as reference, using data from 2007 until 2017 converted to EASE-Grid.

3.5 Synoptic Weather Station Observations
The same weather station data from various sources are used as for the GlobSnow product
(see Section 3.6). Those are generally available for the years from 1979 to 2018, unless
stated otherwise. Data of the European Centre for Medium-Range Weather Forecasts
(ECMWF) are separated into Eurasia and North America components, and the former is
complemented by data of the World Data Center of the All-Russia Research Institute of
Hydrometeorological Information (RIHMI-WDC) covering the region of the former Soviet
Union [57]. Daily Global Historical Climatology Network (GHCN) SD data [58] is the
main dataset for North America in addition to ECMWF data. Further observations from
the Meteorological Service of Canada (1979−2018) and from across the continental United
States (1979− 2009) [59] are applied.

Preprocessing involves filtering the individual datasets for duplicate observations. If the
difference between latitude and longitude of the stations is less than 0.001°, the mean/
median of two/multiple observations is used. Data are then combined into the synoptic
Eurasia and North America datasets and again mean/median filtered. Duplicate observa-
tions are now detected if they fall within the same (25 km × 25 km) EASE-Grid pixel. In
addition, negative as well as extremely high (> 500 cm) individual SD values are removed.
Only SD values from long-term stations are kept that present at least 20 measurements
for at least 5 separate years. Further median filtering is then once more applied to replace
values that differ more than 20 cm from the median value over a 9-day window. For Glob-
Snow, stations where the measured SD is zero for more than 95% of the measurements
are also filtered out. However, this step is not applied here in order to keep a reason-
able amount of bare-ground, snow-free observations for reference. Neither are stations
with unusually deep snow conditions typically in mountainous regions filtered out, nor for
extreme slope conditions (mountain masking).

Due to the large number of observations of the North American dataset, further filtering
is applied to only this dataset to allow more feasible computations. This data reduction
step particularly addresses stations at lower latitudes. For latitudes between 30° and 45°,
a 2° by 2° grid is created and the mean of all (filtered) SD observations for an individual
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cell is used. Analogously, the mean is computed for latitudes from 45° to 50°, though
here using a 1° by 1° grid. Data above 50° latitude are not reduced since observations
are already sparse. After the filtering process, remaining weather station information is
converted to EASE-Grid maps with available SD information in the corresponding pixels.
To binarise SD information, pixels with SD = 0 cm are set to 0 (= snow-free) and with
SD > 0 cm are set to 1 (= snow).

An example of the spatial distribution of weather stations across both North America and
Eurasia is shown in Fig. 3.2, with a total of 2520 stations available on 15 January 2010.
Note that the availability of weather station data varies on a daily basis, especially for
Western Europe, and can be significantly less than in Fig. 3.2.

Figure 3.2. Exemplary weather station distribution in EASE-Grid. Stations are shown in
white above 40° North (highlighted in grey) on 15 January 2010.

3.6 GlobSnow v3.0 Northern Hemisphere Snow Water
Equivalent Dataset

The GlobSnow retrieval methodology combines spaceborne PM data with ground-based
synoptic weather station observations through Bayesian non-linear iterative assimilation,
and is primarily based on Pulliainen et al. [60] and Takala et al. [61]. The GlobSnow
v3.0 SWE dataset and its methods are described in detail by Luojus et al. [7]. Using
hemispheric snow course in situ reference data, the dataset is bias-corrected and used
for the long-time analysis of patterns and trends of Northern Hemisphere snow mass by
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Pulliainen et al. [4]. The trend determination is possible because GlobSnow v3.0 does not
show a significant trend in systematic error, i.e. mean differences between SWE estimates
and snow course measurements are statistically consistent over the full time series.

SWE is estimated on a daily basis, where SWE retrieval from satellite PM data is per-
formed only for dry snow pixels. Vertical polarisations at 19 and 37 GHz are used over
horizontal ones, due to better correlation with observed SWE in the boreal forest zone and
due to decreased sensitivity to snow layering [7]. For wet snow pixels, SWE is estimated
using the SD field derived from weather station observations. Prior to the SWE retrieval,
PM dry snow detection determines snow pixels. During snow accumulation season in
autumn (until December), a cumulative snow mask is computed (see Section 4.2). This
allows for better tracking of the advancing snow cover extent. During snow melt season in
spring, the cumulative snow mask is still used though the extent is reduced according to
estimates for the end of snow melt season which are derived from PM data for each grid
cell according to a time-series based snowmelt detection algorithm [62].

The simplified processing chain of GlobSnow v3.0 in Fig. 3.3 includes the following steps:

 

  

 

   

 

Figure 3.3. Processing chain for the GlobSnow v3.0 SWE product, simplified from [7].

Step 1: Both synoptic SD observations and satellite brightness temperature data
are preprocessed. Synoptic SD observations are filtered and masked as described in
Section 3.5, and mountain and water masking is applied to satellite data.

Step 2: The effective snow grain size d0 is retrieved for grid cells with known synoptic
SD through the numerical inversion of the multi-layer HUT snow emission model [60].
At the locations of weather stations, the HUT model is fitted to spaceborne TB

values, more precisely to T
18/19V
B − T 37V

B , by optimising d0. After the retrieval, a
spatially continuous field of d0 is computed through kriging interpolation.
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Step 3: Dry snow detection is performed according to Hall et al. using T
18/19H
B and

T 37V,H
B , see (2.15). If no dry snow is detected, wet snow (or bare ground) is present.

The computed dry snow mask is applied to SWE retrieval (Step 4), and wet snow
pixels get assigned a SWE value based on the spatially continuous SD field derived
through kriging interpolation in order to create a wet snow mask.

Step 4: The retrieval of bulk SWE follows an assimilation approach similar to the
d0 retrieval (Step 2), again using numerical inversion of the HUT model. SWE are
computed daily for dry snow pixels only, and fields of d0 and SD (and their respective
variance) serve as constraints. In addition, the weights of TB data and of the SD
field on the final SWE are adjusted (temporally and spatially) in order to obtain a
maximum likelihood estimate of SWE.

Step 5: Ultimately, snow-free areas are detected and SWE values of affected (dry
and wet) snow pixels are set to zero. The end of the snow-melt season is estimated
through a time-series detection approach [62]. Moreover, snow masks from optical
satellite data, namely JASMES [45] as described in Section 3.3, are used to detect
snow-free conditions. Any affected grid cells are cleared.

3.7 Test Site and Auxiliary Datasets
The test site is equivalent to the Northern Hemisphere above 40° North, similar to [4].
Mountainous regions are included, but large water bodies are masked out. The focus is
on the accumulation of snow as GlobSnow accounts for snow melt by detecting snow-free
areas separately (see Step 5 in Section 3.6). Since an overall increase in SCE is observed
for the months from September to about February inclusive, compare to Fig. 2.6, those
six months are investigated and referred to hereinafter as ‘snow accumulation season’ or
simply ‘snow season’.

To ensure consistency within the different datasets, a mask is used to define land and water
pixels. For this, the water fraction given by the ESA CCI Land Cover from 2000 [63] is
aggregated from 300-m spatial resolution to 25-km EASE-Grid cells. Pixels with a water
fraction > 50% are masked as water, since the proximity to water can lead to unreliable
snow detection within heterogeneous cells covering both land and significant amounts of
water. Using the water mask weather stations are filtered out that are on small islands
or too close to water bodies. In addition, Greenland and Iceland are disregarded since
the focus is on terrestrial seasonal snow and not on snow accumulation and glaciers as is
mainly the case for Greenland and Iceland.

Additional forest cover information is required for the snow detection approach by Foster
et al. given in (2.13). Both forest cover fractions and forest type classifications are derived
from ESA GlobCover 2009 300 m data [64] and converted to EASE-Grid. The former
was derived as part of the GlobSnow project and is shown in Fig. 3.4a. For the latter,
boreal forest is defined if the fraction per pixel of Value 90 > 0.2, where Value 90 describes
open (15−40%) needleleaved deciduous or evergreen forest (> 5 m). Transitional forest is
present if Value 90 > 0.15 in addition to Value 50 > 0.1, where Value 50 describes closed
(> 40%) broadleaved deciduous forest (> 5 m). For both forest types, water (Value 210)
has to be below a threshold of 0.25. Boreal forest is shown for both North America and
Eurasia whereas transitional forest is derived for interior regions of Eurasia only, falling
within longitudes between 5° East and 170° West. The resulting forest type map is shown
in Fig. 3.4b.
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Figure 3.4. Forest maps in EASE-Grid. Maps above 40° North are derived from ESA
GlobCover 2009 data [64].
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4 Implementation and Evaluation
This chapter first introduces some general considerations and assumptions, and then elab-
orates on the computation of daily and cumulative snow masks, the evaluation of either
with respect to reference data, and the meaning and computation of difference maps.

4.1 Considerations
In this project, a snow season covers the months September until February. For the
analysis of the different PM methods, snow seasons will be split into the two time spans of
SMMR, and of both SSM/I and SSMIS. This division is applied to avoid error propagation
since methods usually perform worse for SMMR data, and to account for the different
instrument properties causing not all approaches to be applicable to SMMR data. Grody
and Basist [25] require channels only available for SSM/I and SSMIS, and Armstrong and
Brodzik [37] specifically account for the difference in channel central frequency between
SMMR and SSM/I (or SSMIS) to make use of data of the latter. Neither of the two
approaches is thus evaluated for the SMMR period.

Even though PM methods are generally not accurate for extreme terrain and urban ar-
eas [12], both regions are kept. To ensure conformity of snow masks derived from different
datasets, masks are applied to define the same land and water pixels for all. In addition,
only latitudes including and above 40° North are considered analogous to [4]. Pixels are
masked out if the geographical location of their centre falls below this latitude threshold.
The resulting region of interest is highlighted in grey in Fig. 3.2.

The detected dry snow is validated against the weather station observations on a pixelwise
basis. It is assumed that each PM estimate per grid cell was equivalent in scale to the
point SD measurement on ground, i.e. the point measurement is compared against the
whole cell. Although EASE-Grid has a nominal cell size of 25 km × 25 km, the actual
cell size is slightly larger with 25.067 525 km× 25.067 525 km (corrected for in EASE-Grid
2.0) [50], [51]. When computing the daily snow extent, the nominal size of 25 km × 25 km
is used for simplicity. The absolute SCE is not directly of interest here, but rather the
relative SCE when compared to reference data.

4.2 Snow Masks
All snow masks are computed as binary EASE-Grid matrices of (721 × 721) pixels with
0 as snow-free ground (or for pixels with missing data) and 1 as snow. For each PM
method, the masks are computed for every day that radiometer data are available. Daily
snow masks are computed by following Algorithm 1. In the ‘compute’ step the selected
specific PM dry snow detection approach is implemented as described in Section 2.3.2, see
equations (2.10) to (2.16).

Even though the performances of the algorithms presented in Section 2.3.2 have been
compared against each other to some extent, see for instance [32], this typically involves
daily snow masks. In the case of GlobSnow, however, cumulative snow masks are used
to track the advance of snow extent [7]. This follows the assumption that no snow melt
occurs during snow accumulation season and is additionally more robust to missing data,
e.g. due to incomplete coverage of the Northern Hemisphere. Therefore, cumulative snow
masks are computed for all PM dry snow detection approaches selected in this project
according to Algorithm 2.
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Algorithm 1. Computation of daily snow masks.
Require: radiometer data

select dry snow detection algorithm
for year = 1979 : 2017 ▷ year at beginning of winter season

find serial date numbers:
start date = 1 September of year
end date = 28/29 February of (year + 1)

for day = start date : end date ▷ days of winter season
if year < 1987

SMMR
else if year == 1987

if Julian date of day < 190: SMMR else SSM/I end
else (year > 1987)

SSM/I or SSMIS ▷ SSM/I and SSMIS are stored together
end

load required channel and polarisation data of respective instrument
compute daily snow mask by applying specific method (0: snow-free, 1: snow)
save daily snow mask

end
end

Algorithm 2. Computation of cumulative snow masks.
Require: daily snow masks of selected dry snow detection algorithm

cumulative snow mask = [ ]
for year = 1979 : 2017 ▷ year at beginning of winter season

find serial date numbers:
start date = 1 September of year
end date = 28/29 February of (year + 1)

for day = start date : end date ▷ days of winter season
load daily snow mask
cumulative snow mask = (daily snow mask) or (cumulative snow mask)
save cumulative snow mask

end
end

4.3 Evaluation Measures
PM snow masks are compared to reference data, including weather station, JASMES and
IMS data. Anything outside of the area of interest is masked out for this. For pointwise
SD measurements, this means in addition that only pixels are considered that correspond
to the weather stations.

The pixelwise comparison of two binary SCE masks, where 0 equals snow-free and 1 equals
snow, follows the confusion matrix given in Fig. 4.1. Pixels are divided into true positive
(TP), false positive (FP), true negative (TN) and false negative (FN) observations.
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Figure 4.1. Confusion matrix for the comparison of binary SCE information.

The observation classes are used to calculate the classification accuracy, sensitivity or TP
rate, and specificity or TN rate of the evaluated method as

accuracy =
TP + TN

TP + FP + TN + FN (4.1)

TP rate =
TP

TP + FN (4.2)

TN rate =
TN

TN + FP . (4.3)

The three measures are computed on a daily basis, i.e. for each day of the investigated
snow seasons. Those daily values in turn are used to derive daily means for each day, as
well as additional monthly and total means of the accuracy.

TP and TN values are furthermore used to derive histograms showing the share of correctly
identified pixels with respect to synoptic snow depth. The first and largest bin collects
pixels that correspond to synoptic SD = 0 cm, and its share of correct snow-free PM
observations (TN). Other bins collect pixels with synoptic SD > 0 cm, each with a width
of 1 cm, and again the shares of correct snow PM observations (TP). Each snow bins covers
its respective interval (SD,SD + 1 cm]. Pixels of synoptic SD > 50 cm are set as 50 cm
since the affected observations are quite sparse. Binned pixels, both total number and
correct share, are summed up for each day of the snow seasons of all investigated years.

To assess estimated SCE, the area of SCE is computed as the sum of all snow pixels
per day times the area of a pixel as (25 × 25) km2. Afterwards, the daily mean SCE
area is calculated for every day of the snow season for the winters from 2007/2008 until
2016/2017 and for all approaches. SCE estimations by the PM methods are then evaluated
with respect to IMS data using mean absolute error (MAE) and root-mean-square error
(RMSE):

MAE =

∑n
j=1 |ŷj − yj |

n
(4.4)

RMSE =

√∑n
j=1 (ŷj − yj)

2

n
(4.5)

for predicted value ŷ (PM daily SCE mean) and reference value y (IMS daily SCE mean)
of sample j (day of a snow season) with maximum number of predictions n (equal to the
number of days j per snow season).
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MAE characterises the average magnitude of errors between ŷ and y, i.e. the accuracy of
SCE estimated by the PM algorithms. It is a linear score where all individual differences
are weighted equally. RMSE on the other hand is a quadratic score which gives more
weight to large errors whilst also estimating the average magnitude of errors. For both
measures it applies that the smaller its value the better. Since RMSE is always larger or
equal to MAE, the greater the difference between them both, the greater the variance of
the individual errors.

It has to be stressed that the evaluation using MAE and RMSE is not straightforward since
the area is considered as a whole without discriminating between correctly and incorrectly
detected snow pixels. This means that even a wrong SCE would lead to low values in
MAE and RMSE. MAE and RMSE on their own thus not necessarily indicate how well
the algorithm performs, though become meaningful together with the computed accuracy
in (4.1) and difference maps (see Section 4.4). One could argue that comparing the area
as a whole is misleading in this context; It is included in this comparison since MAE and
RMSE are more intuitive and better known measures than absolute difference as discussed
in Section 4.4. The latter directly indicates how well the PM algorithms resemble IMS
data in terms of SCE.

4.4 Difference Maps
The purpose of difference maps is to highlight regional, pixelwise differences regarding
the estimated SCE of the individual PM dry snow detection algorithms, since over- and
underestimation may be characteristic for certain types of landscapes. IMS data of 10
snow seasons is chosen as reference because it is spatially complete i.e. snow presence is
determined for every pixel on every day. It is thus considered to be more accurate than
JASMES which in contrast suffers from missing data and has spatial data gaps filled with
snow presence information from the previous day (or the last day when satellite data was
available and snow presence was estimated).

The difference is expressed as the number of days per pixel where the algorithm deviates
from the IMS estimate. This can be either in form of overestimating (positive value)
or underestimating (negative value) snow presence with respect to IMS data. Difference
maps for the whole snow season are computed according to Algorithm 3 through pixelwise
subtraction of daily IMS maps from the algorithm’s snow mask. The latter can be either
daily or cumulative. To obtain monthly difference maps, the start and end dates as shown
in Algorithm 3 are simply set as first and last day, respectively, of the month under
consideration. When calculating the final difference of a pixel (at the end of a month or
at the end of the snow season) which is then displayed in the difference map, both over-
and underestimation are considered. This means that the same amount of overestimation
cancels out underestimation, and difference maps hence present the overall tendency of a
pixel per month or per snow season over 10 winters.

The total absolute difference, on the other hand, presents the actual difference (and not
the tendency) by calculating how many pixels are different to the IMS map without differ-
entiating between over- and underestimation. It is expressed in pixels, which are the ones
that differ between the investigated PM algorithm and IMS data per month or per snow
season over the course of 10 winters. For this, the absolute value of the daily difference
is summed over all days and in the end over all pixels to get a single value. Naturally
it is not discriminated between over- and underestimation. Note that pixel values that
are ‘Not a Number’ (NaN) have to be omitted when computing the daily difference so
that the total absolute difference of the whole time series equals the sum of the monthly
absolute differences.
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Algorithm 3. Computation of difference maps and total absolute difference.
Require: daily or cumulative snow masks of selected dry snow detection algorithm and

IMS EASE-Grid maps
difference map = [ ]
absolute difference map = [ ]
for year = 2007 : 2016 ▷ year at beginning of winter season

find serial date numbers:
start date = 1 September of year
end date = 28/29 February of (year + 1)

for day = start date : end date ▷ days of winter season
load daily or cumulative snow mask and IMS map
daily difference = snow mask - IMS map
▷ omit NaNs when daily difference is used for calculating absolute difference

difference map = difference map + daily difference
absolute difference map = absolute difference map + |daily difference|

end
end
save difference map
total absolute difference =

∑
absolute difference map
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5 Analysis of Dry Snow Detection
Methods

The following analysis is the first extensive assessment of dry snow detection approaches for
the Northern Hemisphere using spaceborne passive microwave data. Exhaustive synoptic
snow depth measurements across Eurasia and North America serve as reference, together
with optical satellite data and detailed blended snow information. The time series of
SD reference and satellite data span 40 years, from 1979 to 2018. The motivation is to
enhance dry snow detection as part of the GlobSnow SWE retrieval methodology [7] by
selecting the best-performing algorithm. Six PM algorithms for dry snow detection are
investigated, namely the approaches of Chang et al. [13], Grody and Basist [25], Foster
et al. [14], Armstrong and Brodzik [37], Hall et al. [15] which is referred to hereinafter as
‘GlobSnow’ since it is part of the current version [7], and of the H SAF (H11) product [48].

Algorithm performances are evaluated using the measures presented in Chapter 4, and
the best results are highlighted in tables in bold. If applicable, analysis is split between
the period of SMMR (winters from 1979/1980 until 1986/1987), and the period of SSM/I
and SSMIS (winters 1987/1988 until 2017/2018). The emphasis is on the SSM/I and
SSMIS instruments since channel data is still available to date and covers a longer time
span overall. First, the algorithms’ performances are evaluated with respect to synoptic
weather station data, followed by a comparison of the resulting snow cover extent.

5.1 Accuracy of Algorithms using Synoptic Observations
Snow masks are first compared to pointwise synoptic snow depth measurements from
weather stations. For SSM/I and SSMIS, Figs. 5.1 and 5.2 show the changes in mean
daily accuracy over the course of a snow season for the individual algorithms using daily
and cumulative snow masks, respectively. The equivalent figures for SMMR are given in
Appendix A.1. Those figures present significant jumps in accuracy due to data availability
every other day. This causes poor averaging especially since SMMR only covers eight
winters and thus, for some days, data are available only for three or four years. Monthly
and total means are presented for all instruments in Tables 5.1 and 5.2.

JASMES is chosen for additional reference and performs overall best with a total accuracy
of 0.8289 for AVHRR and 0.8460 for MODIS data. MODIS outperforms AVHRR slightly
which can be traced to radiometric and geometric correction issues of the latter as well as
data gaps, amongst other [45]. Overall, JASMES daily means show the least fluctuation
over the course of a snow season, as can be seen in Figs. 5.1 and 5.2. Of the PM algorithms,
Grody and Basist comes closest to this with a total accuracy over 0.8 for both daily and
cumulative masks for SSM/I and SSMIS. Of the algorithms that are applicable to all
satellite data, H SAF performs best for both instruments when using cumulative snow
masks, achieving an accuracy of around 0.8.

For the vast majority of algorithms, cumulative snow masks overall outperform daily
ones with respect to total accuracy. On a monthly basis, higher accuracies are achieved
for November to February. The only exceptions of these observations are Chang et al.
and Foster et al. for SSM/I and SSMIS. At the beginning of the snow season during
September and October, on the other hand, all algorithms perform better for daily masks.
This supports the intention of using cumulative masks to track advancing snow extent
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for a progressing snow season. The better handling of data gaps is also apparent from
the smoother appearance of the curve of the daily mean accuracy. This indicates that
cumulative masks are less influenced by daily data availability.
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Figure 5.1. Daily mean accuracy over the course of a snow season for PM daily snow
masks of SSM/I and SSMIS data and for optical JASMES masks of AVHRR and MODIS
data with respect to synoptic weather station data.

Sep Oct Nov Dec Jan Feb

SSM/I and SSMIS

       0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Mea
n ac

cura
cy

Chang et al.Grody and BasistFoster et al.Armstrong and BrodzikGlobSnowH SAF (H11)JASMES (AVHRR)JASMES (MODIS)

Figure 5.2. Daily mean accuracy over the course of a snow season for PM cumulative
snow masks of SSM/I and SSMIS data and for optical JASMES masks of AVHRR and
MODIS data with respect to synoptic weather station data.
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Table 5.1. Mean accuracy of individual months and the complete snow season (total)
derived from pixelwise comparison of PM daily snow masks with synoptic weather station
data, and computed separately for the periods of SMMR and of SSM/I and SSMIS.

SMMR Sep Oct Nov Dec Jan Feb TotalSSM/I, SSMIS

Chang et al. 0.9524 0.8358 0.6269 0.5749 0.5536 0.5925 0.6948
0.6683 0.7056 0.7084 0.7202 0.7671 0.7736 0.7236

Grody - - - - - - -
and Basist 0.9742 0.8691 0.7524 0.7407 0.7702 0.7667 0.8124

Foster et al. 0.9372 0.8339 0.6414 0.5918 0.5693 0.6035 0.7012
0.6052 0.6526 0.6994 0.7294 0.7765 0.7799 0.7066

Armstrong - - - - - - -
and Brodzik 0.9727 0.8340 0.6253 0.5815 0.6434 0.6779 0.7228

GlobSnow 0.9691 0.8270 0.5516 0.4801 0.4645 0.5264 0.6435
0.9765 0.8321 0.6135 0.5561 0.6257 0.6582 0.7107

H SAF (H11) 0.9653 0.8401 0.6164 0.5623 0.5425 0.5846 0.6910
0.9727 0.8516 0.7000 0.6778 0.7326 0.7439 0.7800

Table 5.2. Mean accuracy of individual months and the complete snow season (total)
derived from pixelwise comparison of PM cumulative snow masks with synoptic weather
station data, and computed separately for the periods of SMMR and of SSM/I and SSMIS.

SMMR Sep Oct Nov Dec Jan Feb TotalSSM/I, SSMIS

Chang et al. 0.8569 0.7030 0.6702 0.7375 0.8045 0.8112 0.7644
0.4212 0.3894 0.5699 0.7163 0.7751 0.7739 0.6058

Grody - - - - - - -
and Basist 0.9534 0.8241 0.7631 0.7998 0.8200 0.8056 0.8275

Foster et al. 0.7852 0.6373 0.6660 0.7474 0.8162 0.8143 0.7435
0.3853 0.3701 0.5711 0.7221 0.7780 0.7744 0.5983

Armstrong - - - - - - -
and Brodzik 0.9145 0.7477 0.6272 0.6734 0.7496 0.7766 0.7476

GlobSnow 0.9527 0.8093 0.6140 0.6400 0.6993 0.7717 0.7519
0.9660 0.8187 0.6566 0.6764 0.7611 0.7940 0.7785

H SAF (H11) 0.9341 0.8020 0.6971 0.7408 0.7914 0.8113 0.7983
0.9384 0.7982 0.7214 0.7654 0.8044 0.8019 0.8047
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For September, GlobSnow is the most accurate for both daily and cumulative masks.
However the difference to Grody and Basist and H SAF, and for daily masks also Arm-
strong and Brodzik, is only minor. For October, Grody and Basist is found to perform
best though the margin to H SAF for daily masks, and to GlobSnow for cumulative masks
is again insignificant. A noticeable feature during September and October is the drop in
accuracy for Chang et al. and Foster et al. when comparing daily and cumulative masks,
each for SSM/I and SSMIS. This drop is not as significant for SMMR. Apart from those
two, all algorithms have their maximum accuracy in September for both mask types.

With advancing snow season, the algorithms reach their minimum accuracy in November
for cumulative masks. For daily masks, the minimum is shifted to December (SSM/I and
SSMIS) or January (SMMR). Again, this is not necessarily true for Chang et al. and
Foster et al. From November until February, Grody and Basist and Foster et al. are the
overall best-performing algorithms, followed closely by H SAF using cumulative masks.
As mentioned earlier, the time between October and November marks a changing point
when the benefit of cumulative masks becomes evident. For increasing snow cover extent,
cumulative masks counteract the general tendency of PM algorithms to underestimate
snow presence.

5.1.1 Robustness of Snow and SnowFree Classifications
Snow masks are again compared to pointwise synoptic snow depth measurements from
weather stations. This time the algorithms’ ability to depict snow and snow-free observa-
tions is assessed using TP and TN rate, respectively. The discrimination between snow and
snow-free labels allows for the evaluation of their respective robustness and trends during
a winter season, and highlights possibly biased sensitivities for an individual algorithm.

Figures 5.3 and 5.4 show the TP and TN rates over the course of a snow season for a
selection of algorithms using daily or cumulative masks for SSM/I and SSMIS data. The
behaviour of TP and TN rates for Chang et al. versus Foster et al., and for Armstrong
and Brodzik versus Grody and Basist are very similar. Thus only the better-performing
algorithm is given for each pair, namely Foster et al. and Grody and Basist. Complemen-
tary figures are given in Appendix A.2, including equivalent figures for SMMR data. For
SMMR, very similar behaviour of TP and TN rates is observed.
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Figure 5.3. Daily mean TP (blue) and TN (black) rate with error bars corresponding
to one standard deviation over the course of a snow season for PM daily snow masks of
SSM/I and SSMIS data with respect to synoptic weather station data.
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(c) GlobSnow
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Figure 5.4. Daily mean TP (blue) and TN (black) rate with error bars corresponding to
one standard deviation over the course of a snow season for PM cumulative snow masks
of SSM/I and SSMIS data with respect to synoptic weather station data.

As observed previously, cumulative snow masks generally outperform daily ones with re-
spect to accuracy. Apart from Chang et al. and Foster et al., the algorithms present
a similar behaviour, see for instance Figs. 5.3b and 5.4b. For daily masks, the TN rate
stays high throughout the season with only a minor decline whereas the TP rate increases
significantly albeit not reaching the same level as the TN rate. For cumulative masks, the
decline in TN rate is steeper and the TP rate eventually surpasses the TN rate between
November and January. This explains why cumulative masks dominate especially from
November onwards: a high TP rate becomes more important with increasing snow extent.

The TP and TN rates furthermore clarify why Chang et al. and Foster et al. behave
slightly different to the others in terms of accuracy. For daily masks, both the TP and
TN rate grow over the course of a season and reach similar levels in January and Febru-
ary. For cumulative masks, higher TP rates are achieved, however, TN rates are reduced
substantially. This behaviour is shown by Figs. 5.3a and 5.4a, and explains the low accu-
racy in September and October when applied to cumulative masks. It particularly affects
SSM/I and SSMIS data which those algorithms were not originally designed for. Bare-
ground synoptic observations dominate at the beginning of the season though those are
often misclassified due to a low TN rate.
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A high TN rate at the beginning of the snow season, in turn, leads inherently to an overall
high accuracy. This explains why all other algorithms perform best for September and
October as they present very high TP rates together with comparatively low standard
deviations. Especially GlobSnow stands out with a TN rate close to 1 with very low
standard deviations in September, see Fig. 5.4c, leading to the best accuracy for this
month. But it is also the most conservative algorithm regarding the labelling of snow
pixels, because its mean TN rate remains above 0.6 throughout the whole season and its
mean TP rate does not surpass 0.9. This causes the sharp decrease in accuracy due to
missing to detect the onset of snow, primarily for regions with higher density of synoptic
measurements.

The benefit of the cumulative approaches of Grody and Basist and H SAF, which have
been found to provide the best overall accuracy, lies in their high TN rate at the beginning
of the season together with a steep increase in TP rate. The latter reaches around 0.7
and 0.6, respectively, by the end of October versus around 0.3 for GlobSnow, as shown
in Figs. 5.4b to 5.4d. It continues to increase steadily until the end of the season, up to
around 0.95 for both.

5.1.2 Sensitivity to Synoptic Snow Depth
To investigate the algorithms’ sensitivity to true SD, the snow/snow-free classifications
for all winters from 1979 to 2018 are binned depending on synoptic SD, as described in
Section 4.3. Resulting histograms using cumulative masks of GlobSnow and H SAF are
shown in Fig. 5.5 as example, all further histograms are given in Appendix A.3.

GlobSnow and H SAF share the same PM dry snow detection approach but use differ-
ent thresholds of TB and effective SD. The effect of those thresholds is well visible when
comparing Figs. 5.5a and 5.5b: GlobSnow presents a very high confidence for bare-ground
pixels with 91%, whereas H SAF reaches 78%. For snow pixels in contrast, H SAF iden-
tifies > 50% correctly for any SD whilst GlobSnow achieves this only for SD > 8 cm—in
conformity with the SD threshold of its algorithm. A confidence > 80% is reached for
SD > 29 cm for GlobSnow, and already for SD > 11 cm for H SAF. For comparison,
Grody and Basist has an even higher sensitivity for snow pixels with > 60% for any SD
and > 80% for SD > 5 cm. Bare-ground confidence is only slightly less than H SAF with
76%.
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Figure 5.5. Histograms of synoptic SD observations, and the share of correct snow/snow-
free classifications for PM cumulative snow masks of SMMR, SSM/I and SSMIS data.
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In general, the confidence to detect bare-ground pixels is worse for cumulative than for
daily masks, but the confidence to detect snow pixels improves from daily to cumulative
masks. This provides a further explanation for the overall increase in accuracy from
November onwards, because deeper snow is better detected for all algorithms. The derived
values are obviously only indicative due to pointwise nature of synoptic measurements,
given that only a very limited number of pixels can be compared to in situ SD observations.

In addition to histograms of synoptic SD, histograms of effective SD with respect to
weather station SD data are computed for GlobSnow and H SAF, see Appendix A.3.
Any effective SD > 50 cm is again set as 50 cm. The distribution of effective SD differs
considerably from the distribution of synoptic SD, not so much in terms of shape but
absolute numbers (note the different scaling of the y-axis). If the algorithms were used to
estimate SD and not simply snow presence, noticeable deviation from ground truth has to
be expected. Besides, the initial purpose is to evaluate the current threshold of effective
SD, see (2.15) and (2.16). However, no clear statement can be derived from the histograms
and they are hence not further discussed. More investigation is required, also with respect
to TB thresholds since they are directly linked to effective SD.

5.2 Comparison of Snow Cover Extent
Snow masks from SSMIS data are compared to spatially-complete SCE maps from blended
IMS data for 10 winters from 2007/2008 until 2016/2017. The daily mean area of SCE is
shown in Figs. 5.6 and 5.7 over the course of a snow season for the individual algorithms
using daily and cumulative snow masks, respectively. MAE and RMSE are computed for
the daily mean SCE of PM approaches of both daily and cumulative masks with respect
to IMS data, see Table 5.3.

JASMES data is also included and again performs best, with MAE of 3.7569 × 106 km2

and RMSE of 3.8065×106 km2. The curve progression of IMS is followed well as indicated
by the small variance i.e. small difference between MAE and RMSE, whilst continuously
estimating a higher SCE. This stands in contrast to PM daily masks, which resemble
the IMS curve shape, too, but mostly predict (much) lower SCE—supporting the under-
standing that PM methods generally underestimate snow extent. As already noticed for
total accuracies, the use of cumulative masks counteracts this behaviour and yields overall
higher SCE and thus lower MAE and RMSE values.

Grody and Basist performs best for both daily and cumulative masks with MAE of about
4.0 and 2.5×106 km2, respectively, closely followed by Foster et al. for daily and H SAF for
cumulative masks. Moreover, their variance is the lowest of all approaches. Particularly
Grody and Basist match the IMS curve considerably well until December using cumulative
masks. The cumulative effect results in a continuously increasing SCE, which eventually
leads most algorithms to overestimate snow presence towards the end of the snow season,
including Grody and Basist. Armstrong and Brodzik and GlobSnow, however, remain
significantly below the IMS predictions throughout the whole season. It is only at the end
of February that both reach similar levels in SCE, which is reflected by their poor MAE
and RMSE.

When comparing the accuracy with SCE results, Chang et al. and Foster et al. once
more deviate during September from the typical behaviour of IMS data as well as PM
approaches. Both start off with a comparatively high initial SCE. For daily masks, their
SCE prediction remains roughly constant, whilst for cumulative ones, a sharp increase is
observed. Their monthly accuracy dropped noticeably between daily and cumulative snow
masks, indicating that the cumulative effect is non-realistic.
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Figure 5.6. Daily mean SCE over the course of a snow season (winters from 2007/2008
to 2016/2017) for PM daily snow masks, optical JASMES masks and IMS data.
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Figure 5.7. Daily mean SCE over the course of a snow season (winters from 2007/2008
to 2016/2017) for PM cumulative snow masks, optical JASMES masks and IMS data.
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Table 5.3. MAE and RMSE of daily mean SCE from PM daily and cumulative snow
masks with respect to IMS data.

daily cumulative
MAE RMSE MAE RMSE

(106 km2) (106 km2) (106 km2) (106 km2)
Chang et al. 5.7831 6.2456 3.6574 4.6670
Grody and Basist 4.0486 4.3521 2.5082 3.3546
Foster et al. 4.9929 5.3245 4.9990 5.8931
Armstrong and Brodzik 12.0829 13.3738 6.9935 8.5235
GlobSnow 11.4882 12.6641 7.1430 8.5926
H SAF (H11) 7.2567 7.9880 2.8742 3.5121

For all other PM algorithms, the SCE grows increasingly over time. This is true until the
peak in SCE is reached approximately at the end of January or beginning of February. SCE
for daily masks then begins to decrease, resembling natural changes, whereas cumulative
SCE continues to grow but at lower rate. Just as for total accuracies, MAE and RMSE are
better for cumulative than for daily masks of the majority of PM algorithms. The argument
for cumulative masks seems obvious: PM estimates are much closer to reference IMS SCE.
Even though this argument also applies to September and October, it was found that for
these months daily outperform cumulative ones regarding accuracy. In fact, GlobSnow
offers the best monthly accuracy for September using daily masks, but has the visibly
lowest SCE. The derived area of SCE might present realistic values, however, the actual
spatial location of the extent itself is not necessarily correct as explained in Section 4.3.
The following subsection explores how accurate the location of the estimated SCE is.

5.2.1 Spatial and Temporal Difference
In order to investigate the estimated spatial extent of snow, difference maps are com-
puted with respect to IMS data for all algorithms and considering the time span from
2007/2008 to 2016/2017. The resulting difference maps at the end of all seasons are
shown in Figs. 5.8 and 5.9. For better clarity, all difference maps for individual months
are given in Appendix A.4. Those maps show the general trend of each pixel, since one
pixel might have experienced both positive and negative values that would cancel each
other out. Absolute difference values are presented in Tables 5.4 and 5.5, which in turn
take both over- and underestimation into account.

As already for SCE, Grody and Basist again shows the best performance in terms of total
absolute difference, this time followed by H SAF for both snow mask types. The smaller
the absolute difference the better, indicating less differences to IMS maps. Based on a
visible comparison of Figs. 5.8b and 5.8f with Figs. 5.9b and 5.9f, both approaches tend
to underestimate SCE for daily masks, whereas for cumulative masks, Grody and Basist
generally appears to overestimate and H SAF both over- and underestimates to similar
degree.

Difference maps of daily masks show a clear tendency to underestimate snow presence, as
already observed for SCE, and not just for certain regions but rather on a broad scale.
Underestimation is particularly dominant for GlobSnow and Armstrong and Brodzik. All
other algorithms have at least a few regions that are characterised by overestimation, such
as the Iberian Peninsula for Chang et al. and Foster et al., or the Taklamakan Desert in
Northwest China again for Chang et al. and Foster et al. and less pronounced for H SAF.
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Figure 5.8. Difference maps for PM daily snow masks covering the winters from 2007/2008
to 2016/2017. The difference is expressed as the number of days that the PM algo-
rithms underestimate (blue) or overestimate (red) snow presence with respect to IMS
data. Within a single pixel, equal quantities of over- and underestimation annihilate each
other.
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Figure 5.9. Difference maps for PM cumulative snow masks covering the winters from
2007/2008 to 2016/2017. The difference is expressed as the number of days that the PM
algorithms underestimate (blue) or overestimate (red) snow presence with respect to IMS
data. Within a single pixel, equal quantities of over- and underestimation annihilate each
other.

49



Ta
bl
e
5.
4.

A
bs

ol
ut

ed
iff

er
en

ce
so

fi
nd

iv
id

ua
lm

on
th

sa
nd

th
ec

om
pl

et
es

no
w

se
as

on
(t

ot
al

)d
er

iv
ed

fro
m

th
ea

bs
ol

ut
ep

ix
el

w
ise

di
ffe

re
nc

es
be

tw
ee

n
PM

da
ily

sn
ow

m
as

ks
an

d
IM

S
da

ta
.

A
bs

ol
ut

e
di

ffe
re

nc
e

(p
ix

el
s)

Se
p

O
ct

N
ov

D
ec

Ja
n

Fe
b

To
ta

l
C

ha
ng

et
al

.
29

05
66

7
51

80
22

6
60

14
31

9
49

98
04

9
34

46
45

5
27

12
02

7
25

25
67

43
G

ro
dy

an
d

Ba
sis

t
80

78
15

31
35

06
1

40
83

52
3

36
48

83
0

27
05

09
9

23
84

64
0

16
76

49
68

Fo
st

er
et

al
.

32
64

81
8

53
33

30
3

56
54

03
7

45
26

54
0

31
25

59
5

25
01

94
9

24
40

62
42

A
rm

st
ro

ng
an

d
Br

od
zi

k
10

32
51

4
56

31
68

0
89

88
85

9
88

17
46

3
61

40
35

3
44

51
80

7
35

06
26

76
G

lo
bS

no
w

98
78

73
55

57
76

1
85

58
35

6
83

49
88

2
57

03
53

8
42

92
03

2
33

44
94

42
H

SA
F

(H
11

)
93

41
25

44
33

57
7

62
56

97
0

55
87

28
5

37
97

35
5

29
74

54
9

23
98

38
61

Ta
bl
e
5.
5.

A
bs

ol
ut

ed
iff

er
en

ce
so

fi
nd

iv
id

ua
lm

on
th

sa
nd

th
ec

om
pl

et
es

no
w

se
as

on
(t

ot
al

)d
er

iv
ed

fro
m

th
ea

bs
ol

ut
ep

ix
el

w
ise

di
ffe

re
nc

es
be

tw
ee

n
PM

cu
m

ul
at

iv
e

sn
ow

m
as

ks
an

d
IM

S
da

ta
.

A
bs

ol
ut

e
di

ffe
re

nc
e

(p
ix

el
s)

Se
p

O
ct

N
ov

D
ec

Ja
n

Fe
b

To
ta

l
C

ha
ng

et
al

.
51

95
61

1
78

42
19

4
63

65
29

4
40

18
80

4
23

96
05

7
22

56
02

7
28

07
39

87
G

ro
dy

an
d

Ba
sis

t
84

37
31

30
02

08
2

33
66

56
9

25
30

81
2

18
70

88
0

21
30

58
5

13
74

46
59

Fo
st

er
et

al
.

58
75

48
8

83
19

05
8

61
77

59
7

37
57

04
6

22
89

27
7

22
33

90
9

28
65

23
75

A
rm

st
ro

ng
an

d
Br

od
zi

k
15

55
16

2
60

79
87

7
83

64
29

0
70

56
46

2
40

87
09

6
27

68
36

4
29

91
12

51
G

lo
bS

no
w

10
05

10
4

51
69

04
1

73
40

35
5

63
05

90
5

35
86

81
9

24
26

13
5

25
83

33
59

H
SA

F
(H

11
)

10
43

44
0

41
89

17
8

51
35

54
0

38
66

46
1

23
31

89
0

20
54

14
1

18
62

06
50

50



The use of cumulative masks for difference maps results not only in the intended decrease
of underestimation, but also in an increase of overestimation. The latter noticeably affects
Chang et al. and Foster et al., which are the only ones whose total absolute difference
does not improve for cumulative masks. Grody and Basist and H SAF are affected by
overestimation as well though to a lesser extent and mainly for lower latitudes, see e.g.
Fig. 5.10b, whilst for GlobSnow and Armstrong and Brodzik the underestimation of snow
still dominates. Their total absolute difference improves for cumulative masks.

Furthermore, spatial variations are more noticeable (not necessarily larger) for cumulative
masks, such as the underestimation of snow in mountainous regions. This is particularly
visible for GlobSnow and H SAF in Europe as shown in Fig. 5.10a, where the Alps,
Pyrenees, and Carpathian Mountains can be identified, for instance. Coastlines on the
other hand experience a distinctive overestimation, again especially in Europe as (see
Fig. 5.10a) but also along the West Coast of the United States. Significant overestimation
is moreover observed for large lakes that are not masked out, including Vänern in southern
Sweden (see Fig. 5.10a), Lake Nipigon as part of the Great Lake drainage basin in Ontario,
Canada, or Sarygamysh Lake east of the Caspian Sea in Turkmenistan and Uzbekistan,
to name a few examples. Those spatial variations highlight the importance of regional dry
snow detection approaches, as suggested by Tedesco et al. [2].
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Figure 5.10. Difference maps for PM cumulative snow masks, showing (a) detail of Europe
for GlobSnow and (b) latitude of 45° North as black line for H SAF.

Similar trends are observed for monthly absolute differences as for monthly accuracies.
The best absolute difference is found for September, apart from Chang et al. and Foster
et al. who have their minimum in February. The absolute difference reaches its maximum
or worst point in November, or October for Chang et al. and Foster et al. using cumulative
snow masks. Again, October and November mark a changing point when the benefit of
cumulative over daily masks becomes apparent. For Chang et al. and Foster et al. this
point occurs later on in December, causing them to be overall better for daily snow masks.

It was pointed out in the previous SCE analysis that Chang et al. and Foster et al.
deviate in the beginning of the snow season from the typical behaviour of IMS data and
other PM approaches. The monthly difference maps demonstrate how both algorithms
heavily overestimate SCE for most of the Northern Hemisphere in September and October,
in particular for cumulative masks but also for daily ones. The overestimation reduces
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significantly from November onwards but remains strong in lower latitudes for cumulative
masks. Lower latitudes are prone to overestimation also for Grody and Basist and H SAF
with cumulative masks, mainly during January and February. This cumulative effect is
also visible in Fig. 5.7 as an overestimation in SCE towards the end of the snow season.
Both Figs. 5.6 and 5.7 in addition show how GlobSnow and Armstrong and Brodzik
continuously underestimate SCE. The monthly difference maps confirm this, showing that
the onset of snow is visibly missed, let it be because of the insensitivity to shallow snow [1]
or to fresh powder snow [9] or both. The regions for which they underestimate snow move
further south with advancing SCE over the course of the winter.

In general, the difference maps and absolute difference values show that cumulative masks
improve the performance of most PM approaches by enabling higher, more realistic SCE.
However, cumulative masks are not optimal for any PM approach or for the whole snow
season, since they may facilitate (significant) overestimation in snow presence.

5.3 Discussion
The preceding analysis of PM algorithms for dry snow detection addresses two major issues:
their accuracy with respect to weather station SD data and their ability to estimate SCE
in comparison to a blended product. Although the former provides a direct reference to
ground-truth data, neither measure is superior but rather complements the other.

Pointwise weather station data are distorted by assuming each represents a whole grid
cell. Since the microwave response of very thin snowpacks is negligible at 37 GHz, cells
of low SD are furthermore expected in first place to be falsely labelled as snow-free, at
least for all algorithms relying exclusively on the 18/19 and 37 GHz channels. The gain of
information of low SD measurements is thus questionable, knowing that PM approaches
tend to underestimate snow. Kelly et al. [31] therefore only take in situ measurements into
account with SD greater than 30 mm, for instance. As this project investigates cumulative
snow masks and implements additional frequencies, SD data are not filtered having already
a very limited amount of weather station data. To further expand this available amount, it
could be considered to create artificial ‘ground-truth pixels’ by setting cells as snow pixels
that not only correspond but are also adjacent to (large) SD measurements. Regardless,
this would not provide as extensive information as the blended SCE product. Despite not
being ground truth, this product is considered to be reliable and serves as reference.

According to the quantitative measures, no single algorithm performs best throughout the
whole time series or across the whole Northern Hemisphere. Table 5.6 aims to summarise
the performance of the algorithms in a qualitative manner. Because cumulative snow
masks are found to generally enhance PM dry snow detection, counteracting their tendency
to underestimate snow presence, and because SSM/I and SSMIS data cover a significant
longer time span, the categories ‘accuracy’ and ‘difference’ in Table 5.6 are presented under
the consideration of those two aspects.

All in all, the approach of Grody and Basist [25] outperforms the other algorithms in
terms of accuracy and SCE as shown in Table 5.6. It is the only approach considering and
eliminating scattering effects other than due to snow, namely precipitation, cold deserts
and frozen ground. This is highly advantageous when looking at the Northern Hemisphere
as a whole since great variations in land cover have to be considered. The benefit of using
multiple bands and refined criteria in order to discriminate between scattering mechanisms
is its biggest disadvantage at the same time—the approach of Grody and Basist is not
directly applicable to SMMR data. SMMR lacks centre frequencies of about 85/91 GHz,
which are available only for SSM/I and SSMIS, respectively.
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Table 5.6. Qualitative rating of PM dry snow detection approaches. Considered aspects
are applicable instruments with regard to available channels, as well as accuracy and
(absolute) differences for PM cumulative snow masks of SSM/I and SSMIS data. The
rating scale indicates very poor (no dots) up to very good (three dots) performance;
Difference type can be overestimation (+) and/or underestimation (−).

Instrument Accuracy Difference

SMMR SSM/I, total Sep - Oct Nov - Feb total absolute typeSSMIS

Chang et al. yes yes t +

Grody no yes t t t t t t t t t t t t +/−and Basist

Foster et al. yes yes t +

Armstrong (no) yes t t t −and Brodzik

GlobSnow yes yes t t t t t t −

H SAF (H11) yes yes t t t t t t t t +/−

The algorithms of Chang et al. [13], Foster et al. [14] and Armstrong and Brodzik [37] are
similar to the others in their performance for daily snow masks, but are not comparable
anymore when using cumulative masks. Even though Foster et al. and Armstrong and
Brodzik are both designed as improved versions of Chang et al., they present just minor
advantages over the latter. Foster et al. take into account forest cover fraction and spatial
variations of snow properties for Eurasia versus North America. Those changes seem to
only slightly improve snow detection later on during the snow season. Armstrong and
Brodzik on the other hand introduce a TB adjustment to take into consideration the dif-
ference in central frequency for SSM/I against SMMR. Snow detection is now significantly
improved at the beginning of the snow season, but remains of comparable levels otherwise.
The algorithm of Armstrong and Brodzik could in theory be applied to SMMR data as
is, but considering its purpose of customising Chang et al. for SSM/I data, this was not
investigated. Interestingly, Chang et al. and Foster et al. present very similar spatial
snow detection behaviour and have a strong tendency to overestimate SCE for cumulative
masks, whereas Armstrong and Brodzik is generally susceptible to underestimate SCE.

GlobSnow [7], using the algorithm of Hall et al. [15], and H SAF [48] follow the same algo-
rithm structure but with different thresholds for effective SD and brightness temperatures
T 37H
B and T 37V

B . GlobSnow is more conservative regarding the labelling of snow pixels as
pointed out by a comparatively low TP rate together with a relatively high TN rate. This
leads to its very high accuracy during September and October when bare ground pixels
overall dominate. Its difference pattern, predominantly underestimation, is spatially very
similar to Armstrong and Brodzik. The different thresholds of H SAF in turn maintain a
high confidence in detecting snow-free pixels at the beginning of the snow season, whilst
improving snow detection when snow cover extent grows. This causes less under- but more
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overestimation than for GlobSnow. H SAF presents similar overestimation characteristics
as Grody and Basist—particularly for lower latitudes and towards the end of the snow
season. After Grody and Basist, H SAF also performs overall well.

By including data of 85/91 GHz, it is shown that indeed the sensitivity to thin snow packs
can be improved [1], [9]. H SAF, as example for an algorithm using 18/19-GHz and 37-
GHz data only, identifies for cumulative masks more than 50% of all snow pixels correctly,
but more than 80% of pixels corresponding to snow depths larger than 11 cm. Grody and
Basist on the other hand include supplementary 85/91-GHz data. For cumulative masks,
this approach achieves to classify more than 60% of all snow pixels correctly, and more
than 80% for snow depths larger than only 5 cm. A tendency to overestimate the total
snow extent as indicated by Rees [1] and Armstrong and Brodzik [32] is not observed to
be more significant than for other algorithms that only implement 18/19 GHz and 37 GHz.
As mentioned earlier, H SAF presents similar overestimation characteristics as Grody and
Basist, and most often H SAF has higher values in absolute difference.

Common data processing steps for global snow estimations include masking of large water
bodies and complex terrain [12]. Considering the poor snow detection ability observed
for large lakes that have not been masked out, more thorough water masking could be
considered, yet the resulting improvements would be relatively small. The masking of
complex regions on the other hand would enhance especially the approaches of GlobSnow
and H SAF significantly, which severely underestimate snow for mountain ranges. In
fact, the GlobSnow SWE product masks out cells with large elevation changes [7], so a
better performance of all algorithms in this context would be expected regardless. A fur-
ther common procedure for snow detection involves the use of a snow climatology [12],
e.g. [65]. By providing likelihoods for snow within each cell, regional differences regarding
how sensitive an individual algorithm is to snow, would be directly addressed. This would
possibly reduce the need of masking (mountain) cells. GlobSnow SWE retrieval applies
JASMES [45] instead to detect the onset of snow melt, amongst others. Overall, JASMES
achieves noticeably better results in terms of accuracy than any PM approach, especially
during January and February, and can be considered a sensible choice. Especially the cu-
mulative approaches of H SAF and Grody and Basist would benefit of a separate detection
of snow melt, where affected pixels are set as ‘snow-free’. Their issue with overestimating
snow presence for lower latitudes in January and February could be expected to get re-
solved to most extent. In general, some form of snowmelt detection is required to apply
cumulative masks also to months that are dominated by melt later on in the snow season.

When applying dry snow detection over a long time span, as is the case for the GlobSnow
SWE product, one single algorithm should be preferably used. The use of different PM
approaches either for different instrument periods or for different parts of one snow season
would inevitably lead to discontinuous, non-realistic jumps in SCE—both on regional and
hemispheric scale. The practicality of splitting algorithm approaches or switching between
daily and cumulative masks within the time series is thus not desirable. The qualitative
overview in Table 5.6 highlights Grody and Basist as best-performing from all investigated
PM dry snow detection algorithms. Considering the 40-year time span that is investigated
in this thesis and in the GlobSnow SWE product, however, it is a major constraint that
it cannot be applied in its form to SMMR data. In this regard, the approach of H SAF
is favourable, at least as immediate improvement, as it could be applied to GlobSnow
SWE retrieval as is and would still be expected to improve SWE estimates. With further
research required, the optimal aim would be to develop a SMMR-friendly version of Grody
and Basist by omitting the 85/91-GHz channels (and possibly incorporating the 10-GHz
channel) whilst keeping the differentiation between different scattering media.
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6 Conclusion
In this thesis, algorithms using spaceborne passive microwave radiometer data for the
detection of dry snow on hemispheric scale are assessed. Relevant dry snow detection ap-
proaches are evaluated, namely the approaches of Chang et al. [13], Grody and Basist [25],
Foster et al. [14], Armstrong and Brodzik [37], Hall et al. [15] which is used in the Glob-
Snow v3.0 SWE product [7], and of the EUMETSAT H SAF (H11) product [48]. Those
six algorithms exploit the fact that microwave emission of snow is frequency-dependent
and are implemented using SMMR, SSM/I and SSMIS data in form of brightness temper-
atures. Their capabilities are subsequently compared over a time span of 40 years, from
1979 until 2018. The long-term comparison focuses on terrestrial seasonal snow cover in
the Northern Hemisphere for latitudes above 40° North, and the algorithms’ intraseasonal
performance is of particular interest for the snow accumulation period during September
to February. For the analysis, two types of binary (snow/snow-free) masks are computed:
daily and cumulative snow masks. The former gives the SCE in conventional form, on a
daily basis using the radiometer data that is available for a given day. The latter follows
the example of [7] and is based on daily snow masks, but each cell that is classified as
snow remains a snow pixel for the rest of the season disregarding possible snowmelt or
data gaps.

The evaluation for the snow seasons from 1979/1980 to 2017/2018 is carried out by means
of extensive pointwise snow depth observations from weather stations across the whole
Northern Hemisphere. Daily, monthly and total means of accuracy are computed, in-
dicating the agreement (fraction) of both snow and snow-free PM classifications of each
algorithm with synoptic ground-truth data. Additionally, true positive and true negative
rates, given as daily means over a snow season, present the shares of correct snow and
snow-free PM observations, respectively, and are used to investigate the algorithms’ sen-
sitivity to snow depth. Besides ground-truth data, spatially-complete snow cover extent
maps by the Interactive Multisensor Snow and Ice Mapping System [17] serve as reference
for 10 snow seasons, from 2007/2008 to 2016/2017. This allows for an assessment of the
snow-covered area detected by the PM algorithms relative to IMS estimates of SCE, using
daily means of SCE for PM and blended data, and their mean absolute errors and root-
mean-square errors with respect to each other. Moreover, the computation of difference
maps by subtracting PM snow masks from IMS maps enables the visualisation of spa-
tial and temporal differences in SCE. Although the computed accuracy is absolute with
respect to ground truth and the comparison in SCE is only relative, both are important
indicative measures that complement each other to convey a comprehensive picture of the
algorithms’ performance.

The investigated PM dry snow detection algorithms are primarily based on the brightness
temperature difference of the horizontal 18/19-GHz and 37-GHz channels. Even though
the algorithms of Foster et al. and Armstrong and Brodzik are both designed as enhanced
versions of Chang et al., they present merely minor improvements. The approach of Foster
et al. takes into account forest cover fraction and to some extent spatial variations of snow
properties for Eurasia against North America, slightly improving snow detection later on
during the snow season. Armstrong and Brodzik introduce an adjustment in brightness
temperature taking into consideration differences in central frequency between SSM/I and
SMMR, which improves snow detection more considerably but still limited to the begin-
ning of the snow season. The algorithm of H SAF in turn, an adaptation of GlobSnow’s
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dry snow detection, shows more noticeable improvements concerning the underestimation
of snow cover and performs overall well with a total accuracy of about 0.80 for cumula-
tive masks. Horizontal polarisation-based algorithms, as the ones just mentioned, have
previously been found to be particularly suitable for dry snow detection by yielding the
best overall hemispheric to global-scale estimates [31], [35]. Vertical polarisation channels
are commonly accepted to be more appropriate for snow depth estimations [31]. However,
in this comparison the algorithm of Grody and Basist stands out with a total accuracy
of 0.81 and 0.83 for daily and cumulative masks, respectively. This approach is based on
the vertical 18/19-GHz and 37-GHz channels, amongst other, and moreover specifically
considers and eliminates erroneous scattering effects caused by precipitation, cold deserts
and frozen ground. This appears to be highly advantageous when considering the whole
Northern Hemisphere with its great variety in land cover, and leads to the best snow
detection performance.

While it is confirmed that PM dry snow detection approaches tend to underestimate snow
extent [1], cumulative snow masks are found to be promising at counteracting this issue
and outperform daily ones for most algorithms. The reduction in underestimation due to
cumulative masks leads to smaller deviations from IMS maps, whose SCE progression is
best followed by the cumulative approach of Grody and Basist (applicable to SSM/I and
SSMIS), achieving a MAE in SCE as low as 2.5× 106 km2. H SAF (applicable to SMMR,
SSM/I and SSMIS), also for cumulative masks, follows closely with a MAE of 2.9 ×
106 km2. Both approaches, H SAF and Grody and Basist, present overall high accuracies
and comparatively low (absolute) differences. In comparison, the best results for daily
masks are 4.0× 106 km2 again for Grody and Basist. The strength of the two cumulative
methods lies in the steep increase in TP rate in comparison to other algorithms, i.e. their
capability to detect snow observations correctly improves significantly over time—and
this ability becomes increasingly important with advancing snow accumulation season.
An improvement in snow detection over the course of a season is generally observed for
all algorithms and both mask types, and is most likely a consequence of the PM methods’
sensitivity to snow depth: shallow snowpacks in autumn are less accurately detected than
deeper ones in mid-winter [13], [15].

Under the consideration of improving dry snow detection within the GlobSnow SWE
product, the analysis shows that both the approaches of H SAF and Grody and Basist
are strong candidates. Their cumulative versions tackle underestimation effectively, and
regional overestimation is limited mainly to lower latitudes towards the end of the season
in January and February. This can be explained by the fact that cumulative SCE continues
to grow and does not resemble the natural stagnation and decrease in SCE from January
onwards. In the case of GlobSnow, separate means are implemented to detect snow melt [7]
and overestimation is thus not seen to be a major issue. Even though Grody and Basist
convince with a higher performance due to their sophisticated discrimination between
scattering materials, this is at the same time the biggest disadvantage. As it uses additional
channels that are not available for SMMR, the algorithm cannot be applied directly to
SMMR data which essentially cuts off 10 years of the long term climate record. The
H SAF algorithm in its current form, on the other hand, can be simply implemented as
is, considering it has the same structure as GlobSnow but applies different thresholds. In
the short term, H SAF is a reasonable choice to be implemented in the GlobSnow SWE
product. However, future work involves the development of a version of Grody and Basist
that would be applicable to SMMR data as well, in order to ensure a long-term, accurate
dry snow detection approach.
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A Appendix
A.1 Daily Mean Accuracy
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Figure A.1. Daily mean accuracy over the course of a snow season for PM daily snow
masks of SMMR data and for optical JASMES masks of AVHRR and MODIS data with
respect to synoptic weather station data.
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Figure A.2. Daily mean accuracy over the course of a snow season for PM cumulative
snow masks of SMMR data and for optical JASMES masks of AVHRR and MODIS data
with respect to synoptic weather station data.
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A.2 TP and TN Rates
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Figure A.3. Daily mean TP (blue) and TN (black) rate with error bars corresponding
to one standard deviation over the course of a snow season for PM daily snow masks of
SMMR data with respect to synoptic weather station data.
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Figure A.4. Daily mean TP (blue) and TN (black) rate with error bars corresponding
to one standard deviation over the course of a snow season for PM daily snow masks of
SSM/I and SSMIS data with respect to synoptic weather station data (continued).
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Figure A.5. Daily mean TP (blue) and TN (black) rate with error bars corresponding to
one standard deviation over the course of a snow season for PM cumulative snow masks
of SMMR data with respect to synoptic weather station data.
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Figure A.6. Daily mean TP (blue) and TN (black) rate with error bars corresponding to
one standard deviation over the course of a snow season for PM cumulative snow masks
of SSM/I and SSMIS data with respect to synoptic weather station data (continued).
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Figure A.7. Daily mean TP (blue) and TN (black) rate with error bars corresponding to
one standard deviation over the course of a snow season for daily optical JASMES masks
of AVHRR and MODIS data with respect to synoptic weather station data.
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A.3 Snow Depth Histograms
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(b) Grody and Basist
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(c) Foster et al.
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(d) Armstrong and Brodzik
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Figure A.8. Histograms of synoptic SD observations, and the share of correct snow/snow-
free classifications for PM daily snow masks of SMMR, SSM/I and SSMIS data.
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(d) Armstrong and Brodzik

Figure A.9. Histograms of synoptic SD observations, and the share of correct snow/snow-
free classifications for PM cumulative snow masks of SMMR, SSM/I and SSMIS data
(continued).
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Figure A.10. Histograms of synoptic observations versus corresponding effective SD es-
timated by PM dry snow detection algorithms for daily snow masks, and the share of
correct snow/snow-free classifications for PM daily snow masks of SMMR, SSM/I and
SSMIS data.
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Figure A.11. Histograms of synoptic observations versus corresponding effective SD esti-
mated by PM dry snow detection algorithms for cumulative snow masks, and the share of
correct snow/snow-free classifications for PM cumulative snow masks of SMMR, SSM/I
and SSMIS data.
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A.4 Monthly Difference Maps
Chang et al.
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Figure A.12. Monthly difference maps for PM daily snow masks of Chang et al. covering
the winters from 2007/2008 to 2016/2017.
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Figure A.13. Monthly difference maps for PM cumulative snow masks of Chang et al.
covering the winters from 2007/2008 to 2016/2017.
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Grody and Basist
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Figure A.14. Monthly difference maps for PM daily snow masks of Grody and Basist
covering the winters from 2007/2008 to 2016/2017.

71



-250
-200
-150
-100
-50
0
50
100
150
200
250

Diff
ere

nce
 (da

ys)

(a) September

-250
-200
-150
-100
-50
0
50
100
150
200
250

Diff
ere

nce
 (da

ys)

(b) October

-250
-200
-150
-100
-50
0
50
100
150
200
250

Diff
ere

nce
 (da

ys)

(c) November

-250
-200
-150
-100
-50
0
50
100
150
200
250

Diff
ere

nce
 (da

ys)

(d) December

-250
-200
-150
-100
-50
0
50
100
150
200
250

Diff
ere

nce
 (da

ys)

(e) January

-250
-200
-150
-100
-50
0
50
100
150
200
250

Diff
ere

nce
 (da

ys)

(f) February

Figure A.15. Monthly difference maps for PM cumulative snow masks of Grody and Basist
covering the winters from 2007/2008 to 2016/2017.
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Foster et al.
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Figure A.16. Monthly difference maps for PM daily snow masks of Foster et al. covering
the winters from 2007/2008 to 2016/2017.
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Figure A.17. Monthly difference maps for PM cumulative snow masks of Foster et al.
covering the winters from 2007/2008 to 2016/2017.
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Armstrong and Brodzik
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Figure A.18. Monthly difference maps for PM daily snow masks of Armstrong and Brodzik
covering the winters from 2007/2008 to 2016/2017.
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Figure A.19. Monthly difference maps for PM cumulative snow masks of Armstrong and
Brodzik covering the winters from 2007/2008 to 2016/2017.

76



GlobSnow
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Figure A.20. Monthly difference maps for PM daily snow masks of GlobSnow covering
the winters from 2007/2008 to 2016/2017.
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Figure A.21. Monthly difference maps for PM cumulative snow masks of GlobSnow cov-
ering the winters from 2007/2008 to 2016/2017.
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H SAF (H11)
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Figure A.22. Monthly difference maps for PM daily snow masks of H SAF (H11) covering
the winters from 2007/2008 to 2016/2017.
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Figure A.23. Monthly difference maps for PM cumulative snow masks of H SAF (H11)
covering the winters from 2007/2008 to 2016/2017.
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