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Despite the advancements in video streaming, we still find limitations when there
is the necessity to stream real-time video in a higher resolution (e.g., in super-
resolution) through mobile devices with limited resources. This thesis work aims
to give an option to address this challenge through a cloud service.

There were two main code components to create this service. The first component
was aiortc (e.g., the WebRTC python version), the streaming protocol. The
second component was the Efficient Sub-Pixel Convolutional Neural Network
(ESPCN)-model, one of the outstanding methods to upscale video at the present
time. These two code components were implemented in a virtual machine in the
Microsoft Azure cloud environment with a customized configuration.

Qualitative as well as quantitative results of this work were obtained and analysed.
To obtain the qualitative results two versions of the ESPCN-model were devel-
oped and for the quantitative outcomes three different configurations of HW /SW
codecs and CPU/GPU utilisation were produced and analysed.

Besides finding and defining the code components mentioned before as optimal to
create an efficient real-time video super-resolution service based on the cloud, an-
other conclusion of this project is that sending or receiving information (frames)
from the CPU to the GPU and vice-versa has a very big negative impact in the
efficiency of the whole service. Hence, to limit this CPU-GPU interaction or to
only use GPU (e.g., with the NVIDIA Virtual Processing Framework [VPF]) is
critical for an efficient service. This issue can be avoided, as the quantitative re-
sults show, if a codec that only makes use of the GPU (e.g., a NVIDIA HW codec)
is employed. Furthermore, the Azure cloud environment component, enables an
efficient execution of the service in diverse mobile devices.

In future, the quality measure of the video super-resolution done by the ESPCN-
model is suggested as a next step to do.

Keywords: super-resolution, video, streaming, ESPCN, aiortc, WebRTC,
NVIDIA, Video Processing Framework
Language: English
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Chapter 1

Introduction

The FIFA World Cup is one of the most popular sporting events in the world,
and spectators were given the opportunity to watch games in 3D for the first
time in summer 2010. But, more crucially, the games were viewed by many
more people than they had ever been before. Fans were able to watch games
in high-definition or near-HD quality on their laptops, cellphones, and other
connected devices, including their televisions, thanks to advancements in
video streaming technology and increased broadband Internet access usage.

However, sporting events are not the only sort of entertainment that
attracts internet viewers. Many providers have been making their regular and
premium content, such as news, programmes, shows, and movies, available
on their websites for some time now. Despite the fact that many of these
Web sites had regional limits, customers perceived an increase in the amount
of material available to them. Some content providers and TV channels don’t
place limits on viewer geography, and as a result, they’'ve gone from being a
regional T'V source to a worldwide one, resulting in an unexpected increase
in ad income.

Against the assault of the Internet, the appeal of watching traditional
broadcast TV content is dwindling by the day. Consumers may access Web
content from a number of devices (e.g., mobile devices with limited resources)
in a variety of locations connected through various sorts of access networks,
not simply from a TV in the living room. Adaptive streaming systems that
can handle the problems of this diversity as well as the scalability of con-
tent delivery to big audiences have sped-up this trend change, which has
disrupted established business models and provided new income prospects
[6]. If we add to this reality, the additional necessity that sometimes exists
to stream video in a higher resolution in real-time, a new disruptor requires
our attention.
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1.1 Problem statement

This thesis work presents an option to attend the disruption that has just
been mentioned through a real-time service that receives an input video
stream at a certain resolution and streams out the same video in higher
resolution. The super-resolution (SR) is done by a neural network.

A real-time service is a software program that must respond to external
sources in a specific time interval. This kind of services must be highly avail-
able, otherwise it is unable to satisfy the required deadline. It is also critical
that the response is reliable; under other conditions, it might produce the
wrong action to be taken, producing also the lost of the deadline [12]. In
order to meet these real-time requirements, a cloud virtual machine (VM)
was utilised and the code that does the super-resolution was carefully cus-
tomised to make the best use of the available VM hardware (e.g., an NVIDIA
GPU). Moreover, a robust communication protocol was also chosen (e.g.,
Real-Time Transport Protocol [RTP]) to connect the VM, the server-side,
with the client-side. A real-time service is actually one in which performance
criteria are a crucial element of its specification, to the point that the service
is judged to have failed if certain performance criteria are not satisfied. Each
memory allocation and deallocation request takes a certain time to be com-
pleted, which can be harmful to performance if not properly handled. While
inefficient memory management can degrade the performance of the service,
smart memory management during run-time can result in considerable per-
formance gains [14]. This memory management was carefully managed in
the CPU to GPU and vice-versa information interchange for the service im-
plementation.

The approach described in the previous paragraph aims to be the basis
to answer three research questions in this work. First, what are the com-
ponents of an efficient real-time video super-resolution service based on the
cloud? Second, how can these components be combined to implement a ser-
vice with a good performance? And third, which are the characteristics of
these components?

1.2 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 begins with the
definition of super-resolution and the explanation of its most relevant compo-
nents such as frameworks, upsampling methods, network design and learning
strategies. Then, some of the most recent state-of-the-art techniques in super-
resolution research are discussed. Among the models that are presented, the
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one that was used in this work, the Efficient Sub-Pixel Convolutional Neural
Network (ESPCN)-model [19], is explained in detail. At the end of this chap-
ter, the other two important elements of the real-time video super-resolution
service are addressed, the cloud computing and the streaming protocol com-
ponents. The cloud computing element allows the use of a huge capacity
of processing resources by the service without global boundaries. Here the
virtualization subsection is of special interest due to the fact that a VM is
used in the implementation of the service. In the streaming protocols sec-
tion, a differentiation between real-time and on-demand streaming protocols
is made. Any of these two protocols could have been used for the real-time
video super-resolution service though the focus in this work is on real-time
protocol.

Chapter 3 in first place shows the architecture of the real-time video
super-resolution service and in second place describes this service. In the
description, the first code component aiortc which is an open-source Python
library that implements Web Real-Time Communication (WebRTC) and
ObjectReal-Time Communication (ORTC) is introduced [1] and the manner
that this component interacts with the ESPCN-model, the second code com-
ponent, is clarified. The tailored configuration of the Microsoft Azure cloud
environment together with some security and network set-up is mentioned
here too. At the end of this chapter the steps to execute the real-time video
super-resolution service are provided.

Chapters 4 and b5 disclose the qualitative and quantitative results and
analysis of this thesis work. To obtain the qualitative results two versions
of the ESPCN-model were developed and for the quantitative results and its
analysis three different configurations of SW/HW codecs and CPU/GPU util-
isation were tested. In a first modified ESPCN-model version, all the original
CPU-executable code functions that had a GPU (Tensor)-executable equiv-
alent were accordingly substituted. In a second modified ESPCN-model ver-
sion, an NVIDIA GPU-executable code framework, Video Processing Frame-
work (VPF), was employed. These two ESPCN-model versions were com-
bined with SW/HW codecs to create the three different configurations. Fi-
nally, in chapter 6 the conclusions of this project are summarized.



Chapter 2

Background

2.1 Super-resolution

This section discusses the work of [24]. In that paper, the authors begin
mentioning that the term image SR refers to the process of recovering high-
resolution (HR) images from low-resolution (LR) images. SR is a significant
class of image processing methods in computer vision and image processing.
While many of the practical uses of this technology are derived from the
actual world, a significant number of practical applications stem from medical
imaging, surveillance, and security, among other applications.

In recent times, deep learning models have been extensively investigated
and frequently attain state-of-the-art performance via the fast growth of deep
learning approaches. A range of deep learning techniques have been utilised
to solve SR challenges, ranging from early Convolutional Neural Networks
(CNN)-based techniques to more current potential SR techniques based on
Generative Adversarial Networks (GANs). Various forms of network archi-
tectures, various kinds of loss functions, and different types of learning prin-
ciples and tactics distinguish the family of SR algorithms employing deep
learning methods.

The goal of image super-resolution is to retrieve the associated HR im-
ages from the LR images. The LR images are modelled as the output of
a degradation, and most works directly model the degradation as a single
down-sampling operation. The most frequently employed down-sampling
technique is bi-cubic interpolation with anti-aliasing.

For image super-resolution, there are now a number of accessible datasets;
each with its own set of image quantities, quality, resolution, and diversity. A
selection of image datasets are contained in Table 2.1, which are often utilised
by the SR community. In addition to these datasets, several others often

11
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used for further vision tasks, including ImageNet, MS-COCO, VOC2012,
and CelebA, are also utilised for SR. It is also common to combine various
datasets for training.

Table 2.1: Super-resolution public image datasets. [24]

Dataset Amount Avg. Resolution Avg. Pixels Format Category Keywords
BSDS300 300 (435.367) 154,401 gpg  Awimal, building, food,
landscape, people, plant, etc.
BSDS500 500 (432,370) 154,401 gpg  animal, building, food,
landscape, people, plant, etc.
DIV2K 1000 (1972,1437) 2703250  pNg  Cnviromment, flora, fauna,
handmade object, people, scenery, etc.
General-100 100 (435,381) 181,108 pyp  Awimal, daily necessity,
food, people, plant, texture, etc.
L20 20 (3843,2870) 11577492 PN Animal, building, landscape,
people, plant, etc.
Mangal09 109 (826,1169) 966,011 PNG manga volume
OutdoorScene 10624 (553,440) 249,593 png ~ onimal, building, grass,
mountain, plant, sky, water
, environments, flora, natural scenery,
PIRM 200 (617,482) 292,021 PNG objects, people, etc.
Seth 5 (313,336) 113,491 pNg  Daby, bird, butterly,
head, woman
Set14 14 (492,446) 230,203 pNg  lumans, animals, insects,
flowers, vegetables, comic, slides, etc.
T91 91 (264,204) 58,853 png  can flower, fruit,
human face, etc.
Urban100 100 (984,797) 774,14 PNG architecture, city, structure,

urban, etc.

Image quality is a term that relates to the visual characteristics of pictures
and focusses on the perceptual evaluations of viewers. Subjective approaches
based on human perception (i.e., the perceived realism of the image) and ob-
jective computational approaches are employed in image quality assessment
(IQA).

One of the most frequent quality measurements for reconstruction of lossy
transformation is the peak signal-noise ratio (PSNR). To determine PSNR,
the greatest pixel value (denoted as L) and the mean squared error (MSE)
between images are used. PSNR is the most often utilised assessment crite-
rion for SR models due to the need for comparison in literature research and
the absence of entirely reliable perceptual measures.

The structural similarity index (SSIM) is presented as a means of quanti-
fying the structural similarity of images, given that the human visual system
(HVS) is highly specialised for processing picture structures. Given that the
SSIM measures reconstruction quality from the standpoint of the HVS, it
better fits perceptual evaluation standards and is thus frequently employed.

Due to the fact that SR models may often assist with other visual tasks,
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measuring reconstruction performance via other operations is another pop-
ular method in IQA. In particular, scientists input the original and rebuilt
images into trained models by comparing the effects of the prediction per-
formance to assess the reconstruction quality. In the assessment, object
recognition, face recognition, face alignment and parsing, and other vision
tasks are employed.

The YCbCr colour space, in addition to the generally known RGB colour
space, is often used for SR. At the moment, there is no universally acknowl-
edged standard for executing or assessing super-resolution for a particular
space. Thus, it is important to bear in mind that the assessment findings
might vary substantially when working (training or assessment) in dissimilar
colour spaces or channels.

The following subsections ( 2.1.1 - 2.1.5) introduce the main concepts
around supervised super-resolution and the subsection 2.1.6 presents an
overview of unsupervised super-resolution and domain-specific applications
according to the research from [24]. In that study, the authors mention that
researchers have presented a number of super-resolution models using deep
learning in recent years. The main area of these models is supervised SR, i.e.,
both LR and related HR images are trained. Basically, various configurations
of a variety of components comprise these models. Some examples of these
components include up-sampling techniques, model architectures, network
architecture, and learning methodologies. These components are utilized by
researchers to develop an integrated SR model for particular objectives.

2.1.1 Upsampling Methods

To successfully up-sample, it is important to know how to do it. Using CNNs
to learn end-to-end up-sampling has increasingly become a trend despite the
fact that there have been several conventional up-sampling approaches. Im-
age interpolation, often known as image scaling, is a technique for resizing
digital pictures that is frequently employed in image-related applications.
The most conventional interpolation techniques are nearest-neighbour inter-
polation, bi-linear and bi-cubic interpolation, and Sinc and Lanczos resam-
pling. However, the common side-effects of interpolation-based up-sampling
algorithms include computational complexity, noise amplification, and blur-
ring outcomes. As a result, the current tendency is to use learnable up-
sampling layers (e.g., deep neural networks) instead of interpolation-based
approaches.

Transposed convolution layers and sub-pixel layers are inserted into the
SR field to overcome the drawbacks of interpolation-based approaches and
learn up-sampling in an end-to-end way. The inverse of a normal convolution
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is a transposed convolution layer, also known as a deconvolution layer. The
intent of a transposed convolution layer is to forecast the probable input by
utilizing features of the convolution output, as Figure 2.1 shows.

MR | E T
M CEEEH
NEE EHEE

(a) Starting  (b) Expanding (c) Convolution

Figure 2.1: Transposed convolution layer. The input is represented by blue
boxes, while the kernel and convolution result are represented by green boxes.

[24]

Another end-to-end learnable up-sampling layer, the sub-pixel layer, achieves
up-sampling by convolutionally creating a number of channels and then re-
shaping them, as shown in Figure 2.2. The sub-pixel layer has a larger
receptive field, allowing it to supply contextual information in order to cre-
ate more realistic details.

_____________

(a) Starting (b) Convolution (c) Reshaping

Figure 2.2: Sub-pixel layer. The input is represented by the blue boxes, while
the boxes with various colours represent different convolution procedures and
output feature maps. [24]

Finally, the meta-upscale module technique employs metalearning to solve
the SR of variable scaling factors, as Figure 2.3 shows. This differs from the
prior methods, which require a predefining of the scaling factors, i.e., training
distinct up-sampling modules for various factors, which is not efficient and
does not meet real-world demands.

The previously mentioned learning-based layers are now the most often
utilised up-sampling techniques. These layers are often employed in the last
up-sampling step, specially for the post up-sampling architecture, to rebuild
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Figure 2.3: Meta upscale module. The projection patch is shown by blue
boxes, while the convolution process with expected weights is represented by
green boxes and lines. [24]

HR images using high-level representations derived in low-dimensional space.
This achieves end-to-end SR while mitigating excessive operations in high-
dimensional space.

2.1.2 Super-resolution Architectures

In a SR model architecture, the central challenge is to identify a means for
accomplishing up-sampling (i.e., how to obtain HR output from LR input).
While the topologies of current models vary significantly, they may be clas-
sified into four model architectures (as seen in Figure 2.4) based on the
up-sampling techniques used and their position within the model.

A simple method to address this (e.g., the pre-upsampling SR architec-
ture) is to employ classic up-sampling methods to create higher-resolution
images, which are subsequently refined using deep neural networks. Gener-
ally, traditional approaches (e.g., bi-cubic interpolation) are applied to up-
sample the LR images to rough HR images of the necessary size, after which
deep CNNs are utilized to recreate high-quality details. This architecture has
increasingly gained popularity, and the primary distinctions between similar
models are in the posterior model design and learning procedures. Neverthe-
less, since the specified up-sampling often has undesirable side effects (e.g.,
noise amplification and blurring) and since the majority of tasks are con-
ducted in high-dimensional space, the time and space costs are much greater
than for other architectures.

It has been suggested by some researchers to replace predetermined up-
sampling with end-to-end learnable layers that are incorporated at the final
point of the models, with the goal of increasing computing efficiency and
maximising the usage of deep learning technologies for higher resolution.
Thus, the computation and spatial difficulty are greatly decreased since the
feature extraction step, which has a high computational cost, happens only
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(d) Iterative up-and-down Sampling SR

Figure 2.4: Deep learning-based super-resolution model architectures. The
output size is represented by the cube size. Predefined up-sampling is rep-
resented by grey, whereas learnable up-sampling, down-sampling, and con-
volutional layers are represented by green, yellow, and blue, respectively.
Stackable modules are the blocks contained by dashed boxes. [24]
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in low-dimensional space and the resolution grows only at the end. This
deep learning architecture has been a popular one and is now one of the
most widespread architectures around.

Although the post-upsampling SR architecture significantly reduces com-
puting costs, it still has certain drawbacks. On the one hand, due to the fact
that the up-sampling is conducted in a single step, the learning complexity for
high scaling factors is significantly increased. On the other hand, each scaling
factor necessitates the training of a separate SR model, which is insufficient
to handle the requirements for multi-scale SR. To address this issue, models
based on a cascade of CNNs that gradually recreate higher-resolution images
have been developed under a different architecture (e.g., the progressive up-
sampling SR architecture). By separating a complex job into easier tasks,
the models in this architecture considerably minimise learning difficulties,
particularly with large variables, and also manage multi-scale SR without
incurring excessive spatial and temporal costs. Nevertheless, these models
have several limitations, such as difficult model design for several stages and
training stability, and further modelling guidelines and sophisticated training
procedures are required.

To better represent the mutual reliance of LR-HR picture pairings, SR
incorporates an efficient iterative process called back-projection. This SR
architecture, known as iterative up-and-down sampling SR, attempts to it-
eratively perform back-projection refinement, which entails calculating the
reconstruction error and then fusing it back to optimise the HR image inten-
sity. However, the design parameters for the back-projection modules remain
still uncertain.

2.1.3 Network Design

One of the most essential aspects of deep learning is the network design.
To build the final networks in the super-resolution scene, researchers employ
a variety of network design strategies on top of the SR architectures (See
Figure 2.5).

SR models have made extensive use of residual learning as part of these
strategies. These residual learning strategies are divided into two types:
global and local residual learning. Instead of learning a difficult transforma-
tion from one full image to another, global residual learning merely involves
learning a residual map to restore the missing high-frequency features. Due
to the fact that the residuals in the majority of areas are near zero, the model
complexity and learning difficulty are significantly decreased. Local residual
learning is used to address the degradation issue caused by ever-increasing
network depths, to decrease the training complexity, and to enhance the
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sharing parameters

input
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(a) Residual Learning (b) Recursive learning (c) Channel attention d) Dense connections
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(e) Local multi-path learning (f) Scale-specific multi-path learning (g) Group convolution (h) Pyramid pooling

Figure 2.5: Network design strategies. [24]

learning ability. Both approaches utilize shortcut connections (e.g., typically
scaled by a tiny constant) and element-wise addition. The distinction be-
tween these is that the former links the input and output pictures directly
whilst the latter generally adds many shortcuts across layers of varying depths
inside the network.

Recursive learning, which involves applying the same modules numerous
times in a recursive way, was brought into the SR field to learn higher-level
features without adding excessive parameters. Although recursive learning is
capable of learning increasingly sophisticated representations without adding
extra parameters, it cannot escape large computing costs. Multi-path learn-
ing is the process of sending information down many pathways; each of which
performs a separate function, and then it fuses them back together to improve
the modelling skills. Multi-path learning may be split into three categories:
global, local, and scale-specific. Utilizing numerous pathways to extract the
characteristics of various elements of the pictures is referred to as global
multi-path learning. In their propagation, these routes might cross one an-
other, considerably enhancing the learning capacity.

In the Dense Connections network design strategy, the feature maps of
all previous layers are utilised as inputs for each layer in a dense block, and
its own feature maps are utilised as inputs for all following layers. The dense
connections do not only assist to decrease gradients, improve signal propa-
gation, and promote reuse of features but also to decrease model size greatly
by applying a low growth rate (i.e., the number of channels in dense blocks);
after all the input characteristics, the channels are then combined. The
Channel Attention network design strategy incorporates the Global Average
Pooling (GAP) to flatten each input channel descriptor into a constant (i.e.,
a value that holds true for all channels) and passes these constants into two
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dense layers to create channel-wise scaling factors.

Because convolution operations are the foundation of deep neural net-
works, it has been attempted by researchers to enhance convolution oper-
ations for improved performance or efficiency in the Advanced Convolution
network design method. One attempt has been group convolution (See [24]).
At the cost of a little performance loss, group convolution greatly decreases
the number of parameters and operations. The Region-recursive Learning
network design method is capable of adaptively customising an optimum
search route for each picture based on its unique characteristics, completely
exploiting the global intra-dependence of the pictures. While this technique
performs somewhat better, the recursive technique necessitates a lengthy
propagation channel, which significantly increases the computational cost
and training complexity, particularly for super-resolving HR images.

2.1.4 Learning Strategies

Loss functions are utilised in the super-resolution discipline to quantify the
reconstruction error and assist model improvement. Arguably,it was common
to use the pixel-wise L2 loss in early periods; however later, it was identified
that reconstruction effectiveness cannot be precisely measured. A number
of loss functions (e.g., content loss, adverse loss) are thus employed to bet-
ter measure reconstruction errors and to provide more realistic and better
outcomes.

Pixel loss quantifies the difference between two images at the pixel level
and is mostly comprised of L1 loss (i.e., the mean absolute error) and L2
loss (i.e., the mean square error). In reality, the L1 loss outperforms the L2
loss in terms of performance and convergence. Gradually, pixel loss became
the most often utilized loss function. Nonetheless, pixel loss does not truly
consider the visual qualities of a picture (e.g., the perceptual quality and
textures); hence, the outputs often miss higher-frequency features and result
in images that seem uninteresting and too smooth.

Content loss uses a pre-trained image classification network to evaluate
semantic differences between the images. Instead of pushing images to match
pixels perfectly, the content loss promotes the output image to be perceptu-
ally close to the target image.

Due to their remarkable capacity to learn, GANs have gained increasing
interest in recent years and have been applied to a variety of visual applica-
tions. The GAN is composed of a generator that generates results (e.g., text
creation and image modification) and a discriminator that accepts as input
the created results and instances sampled from the target distribution and
determines if each input is from the target distribution. During the GAN
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training, two stages are followed alternatively: a) fixing the generator and
training the discriminator to discriminate more effectively and b) fixing the
discriminator and training the generator to mislead the discriminator. With
regard to super-resolution, adverse learning is easy to follow because the SR
model must only be treated as a generator, and an additional discrimina-
tor must be defined in order to assess whether or not the image is created.
Although the SR models with adverse loss and content loss produce a lower
PSNR than those with pixel loss, the perceived quality advantages are consid-
erable. The discriminator takes several difficult-to-learn latent patterns from
genuine HR images and forces the produced HR images to comply, thereby
assisting in the generation of more realistic images. Currently, however, the
GAN training is not easy nor reliable.

While doing research, academics typically take into account various types
of loss functions employing a weighted average in order to set overall con-
straints on the whole generation process. But even though there are a num-
ber of methods for measuring loss, their weights need empirical research,
and identifying approaches to combine them fairly and effectively remains a
challenge.

Batch normalisation (BN) has been suggested to decrease the internal
covariate shift in deep CNNs in order to speed up and stabilise training.
In the calibration of the intermediate feature distribution, as well as in the
mitigation of vanishing gradients, the BN is able to apply larger learning
rates and make use of less caution during initialisation. However, it is claimed
that the BN eliminates the scale information included in each picture, thus
omitting the range flexibility inherent in networks (See [24]).

Curriculum learning proposes starting with an easy job and progressively
incrementing the complexity. Curriculum training is added to reduce learn-
ing difficulties. Curriculum learning significantly decreases the difficulty of
training and significantly decreases the overall training time, particularly for
large components.

Multi-supervision is the process of incorporating numerous supervision
signals into a model to improve gradient propagation and prevent disappear-
ing and bursting gradients. To build an HR picture, each recursive output
of the unit is input into a reconstruction module, and the final prediction is
constructed by combining all of the intermediate reconstructions. In reality,
this multi-supervision strategy is commonly utilized by adding certain terms
to the loss functions, and supervision signals are thus more successfully sent
backwards, hence reducing the difficulty of training and improving the model
training.
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2.1.5 Other Improvements

Along with network design and learning strategies, there are other approaches
that may be used to improve SR models. Firstly, context-wise network fusion
(CNF) involves training discrete SR models with distinct architectures indi-
vidually, feeding their predictions into individual convolutional layers, and
eventually combining their outputs to obtain the final prediction result. In
this CNF architecture, the final model generated by three lightweight SRC-
NNs is similar in performance and efficiency to state-of-the-art models, while
utilizing significantly less computational resources.

Secondly, one of the most common methods for improving deep learning
performance is data augmentation. Cropping, flipping, scaling, rotating,
colour jittering, and other image augmentation techniques are important for
image super-resolution.

Thirdly, multi-task learning is a term that refers to the process of en-
hancing the generalisation capacity by the use of domain-specific knowledge
included in training signals for related tasks, such as object identification
and semantic segmentation, head posture estimation, and face attribute in-
ference. Due to the fact that different activities often concentrate on distinct
elements of the data, the integration of related activities with SR models of-
ten enhances SR performance by offering more information and knowledge.

Fourthly, in Network Interpolation, relevant results are obtained with
fewer artefacts by changing the interpolation weights without retraining net-
works. Finally, Self-ensemble, often known as improved prediction, is an
inference approach often utilised by SR models.

More and more attention has been given to image super-resolution models
based on deep learning in recent years, and they have reached the highest
levels of performance. The majority of contemporary state-of-the-art SR
models may be traced to a mixture of the strategies mentioned above. Besides
SR accuracy, efficiency is another key factor. Some strategies might have a
greater influence on efficiency, while others might have a lesser one.

2.1.6 Unsupervised Super-resolution and domain-specific
applications

Research to date on super-resolution focuses mostly on supervised learning,
that is, learning using matched LR-HR picture pairings. However, since
collecting photographs of the same scene at multiple resolutions is challeng-
ing, the LR images in SR datasets are often created by conducting preset
degradation on HR images. Thus, trained SR models really learn how to
reverse the prescribed deterioration process. To determine the real-world
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LR-HR mapping without the need for prior manual degradation, researchers
are increasingly focusing on unsupervised SR, in which only unpaired LR-HR
pictures are employed for training, since the resultant models are more likely
to deal with SR difficulties in real-world circumstances.

Some domain-specific applications of image super-resolution are the fol-
lowing: first, depth maps are useful for numerous tasks, such as posture esti-
mation and semantic segmentation because they record the depth (i.e., dis-
tance) between the viewpoint and objects in the scene. Nevertheless, due to
cost and manufacturing restrictions, sensor-generated depth maps are often
low-resolution and subject to degrading effects, such as noise, quantisation,
and missing data. As a result, super-resolution is used to improve the spatial
resolution of depth maps. Second, hyper-spectral images (HSIs) with hun-
dreds of bands provide rich spectral characteristics and aid numerous visual
tasks as compared to panchromatic images (PANs). Nevertheless, collecting
high-quality HSIs is significantly more difficult than collecting PANs (i.e.,
RGB images with three bands) due to technology restrictions, and the reso-
lution is significantly lower. As a result, super-resolution has been brought
into this area, and researchers are increasingly utilising a combination of HR
PANs and LR HSIs to forecast HR HSIs. Third, when it comes to gener-
ating LR training images for SR models, it is normal to downsample RGB
photos manually (e.g., by bicubic downsampling). Real-world cameras, on
the other hand, collect 12-bit or 14-bit raw pictures and then execute a num-
ber of processes (e.g., demosaicing, denoising, and compression) employing
camera image signal processors (ISPs) to generate 8-bit RGB pictures. Af-
ter running the pre-processing and enhancement algorithm, the RGB images
have lost much of their original content and are markedly different from
the original images captured by the camera. As a result, using the manu-
ally downsampled RGB picture directly for SR is unsatisfactory. To address
this issue, academics are investigating means to utilise real-world images for
SR. Fourth, multiple frames provide substantially more scene information
for video super-resolution, and there is not only intra-frame spatial but also
inter-frame temporal interdependence (e.g., motions, brightness, and colour
changes). Thus, present research focusses on exploiting spatio-temporal in-
terdependence more effectively, including explicit motion compensation (e.g.,
optical flow-based, learning-based) and recurrent methods, among others.
Furthermore, others attempt to learn the motion compensation directly. For
instance, the Video-ESPCN (VESPCN) method, covered later in subsection
2.2.4, learns motion compensation based on neighbouring frames utilising a
trainable spatial transformer and feeds multiple frames into a spatio-temporal
ESPCN for end-to-end prediction. In summary, super-resolution technology
has a significant role to play in a wide variety of applications, particularly
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when we are capable of handling large objects well but not small ones.

2.2 Super-resolution Research

Super-Resolution is a technique that has been studied for around 20 years.
During this time, many techniques have been introduced to address this
research area. Some of the latest super-resolution research is presented in
this section.

First, the subsection 2.2.1 presents some relevant reasons behind making
the deployment of this work in a cloud environment. Second, the subsections
2.2.2 - 2.2.4 describe three different state-of-the-art techniques for image
and video super-resolution. One of these models, the ESPCN-model, was
employed in the deployment of this work.

2.2.1 Latency and Throughput Characterisation of Con-
volutional Neural Networks for Mobile Computer
Vision
The following subsection discusses the work of [13]. The machine learning
arena is progressing continuously. In this regard, specialised hardware, run-
times optimised by vendors, and lightweight inference models are contribut-
ing to a continuously increasing inference performance. However, model
conversion and portability are still a challenge due to immature tools and
frameworks.

There are important latency-throughput trade-offs in CNNs for mobile
computer vision, and its behaviour is quite complicated. One set of CNNs
are MobileNets, which provide faster inference than state-of-the-art CNN,
such as visual geometry group (VGG) and residual neural network (ResNet).
The primary uses of MobileNets are mobile and embedded computing.

Accuracy, inference latency, and system throughput are the most rele-
vant metrics for a computer vision system. The end-to-end inference can be
conducted on-device or remotely. In the former case, there is an extra la-
tency due to the model loading and initialisation, and in the latter one, there
exists an additional network latency. With reference to system throughput
batching, as mentioned in subsection 2.1.4, can be used to improve the total
processing time, but increases the latency.

In on-device object recognition and detection, the optimal batch size de-
pends on the inference model and the computation platform, and it is gener-
ally calculated with real measurements. From a practical standpoint, the real
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performance of a model on a certain hardware depends on many elements.
In general, in remote object recognition, the inference is executed at a higher
speed mainly when an application needs to employ various neural networks.

Even though the optimisation problem of a CNN inference model run-time
performance is reduced using same initial parameters, such as the Graphics
Processing Unit (GPU) architecture or the inference model version, its per-
formance estimation is complex because of the different behaviour of comput-
ing hardware, optimised run-times, software libraries, and inference models.
Furthermore, in an actual implementation, the uncertain essence of a system
input further complicates the prediction. Machine learning frameworks are
able to automatically optimise their configurations, but many parameters
related to, for instance, the placement of a model operation in a Central
Processing Unit (CPU) or in a GPU, still require a manual tuning. We
faced this dilemma when implementing the SR video service of the present
work. Memory limitations and the latency related to the model load and
initialisation inhibit the use of only on-device deployments.

2.2.2 Lightweight Image Super-Resolution with Infor-
mation Multi-distillation Network

The following subsection discusses the work of [15]. In this paper the authors
argue that the purpose of single image super-resolution (SISR) is intrinsi-
cally ill-posed due to the fact that many HR images may be down-sampled
to an identical LR picture. Several image SR approaches based on deep neu-
ral networks have been suggested by [15] to solve this challenge and have
demonstrated promising results. To improve the quality of produced images,
a deeper model would be useful.

The predominant tendency in present SR algorithms is towards increas-
ing the number of convolution layers in order to enhance performance. As a
consequence, the majority of them are forced to contend with a high num-
ber of model parameters, a large memory footprint, and poor training and
testing velocities. These methods are still not suited to be employed with
resource-constrained equipment. This limitation was addressed in the pre-
vious subsection. Numerous applications, such as video applications, edge
devices, and smartphones, demand not just high performance but also fast
execution speed. As a result, it is critical to develop a model that is both
lightweight and efficient in order to achieve these requirements. This work
aims to find a solution for this performance-speed combined goal.

To solve the aforementioned challenges, a lightweight information multi-
distillation network (IMDN) was developed in order to better balance per-
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formance and applicability. In this network, a complex information multi-
distillation block (IMDB) was created. The suggested IMDB extracts gran-
ular characteristics that preserve partial information and treat additional
characteristics at every stage (layer). To aggregate the numerous refined
information acquired in all phases, a contrast-aware channel attention layer
was created, geared primarily for the lower-level vision tasks. When it comes
to image restoration, aspects that are more helpful (i.e. edges, corners, tex-
tures) are better used. The input image should be scaled to the intended size
to handle the SR of any arbitrary scale factor utilising a single model. More-
over, a suggested adaptive cropping approach should thus be used to achieve
image patch sizes suited to lightweight SR models with down-sampling layers.
The graphical representation of this network is presented in Figure 2.6.
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Figure 2.6: Architecture of the information multi-distillation network
(IMDN). [15]

The following are the benefits of this method according to [15]. Firstly,
it allows rapid and precise super-resolution of images. With a small number
of parameters, competitive results are produced using the information multi-
distillation block (IMDB) with a contrast-aware channel attention (CCA)
layer. Secondly, the adaptive cropping strategy (ACS) enables network-based
down-sampling processes (for example, a convolution layer with a stride of
2) to handle images of any size. By employing this approach, the cost of
computing, memory, and downtime in the event of treating indefinite SR
magnification may be greatly reduced. Thirdly, the experiments were con-
ducted to determine the factors impacting real inference time, and it was dis-
covered that the depth of the network is connected to the execution speed.
The authors in [15] suggest that this may serve as a guide for designing
a lightweight network. The model strikes an ideal balance between visual
quality, quickness of inference, and memory occupation.
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2.2.3 Real-Time Single Image and Video Super-Resolution
Using an Efficient Sub-Pixel Convolutional Neu-
ral Network

The following subsection discusses the work of [19]. The SR operation is
essentially a one-to-many mapping from the LR to the HR space, with several
possible solutions. Underlying all SR strategies is the presumption that much
of the data has redundancy, so much that it can be derived from the lower
frequencies. As a result, SR is an inference challenge.

Multiple approaches presuppose that various images of the same scene
with varying viewpoints are usable as LR occurrences. These are classified
as multi-image SR algorithms. Typically, these approaches necessitate com-
putationally intensive image registration and fusion phases. SISR techniques
are an additional class of methods. These techniques employ the tacit redun-
dancy inherent in natural data in order to retrieve lost human resource data
from a single LR occurrence. Typically, this manifests itself as local spatial
correlations in images and extra temporal correlations in videos.

SISR techniques are used to recover an HR image from an individual LR
input image. Recently, neural network-derived image representations have
shown potential for SISR. One advantage of these approaches is that they
can learn non-linear mappings, including LR and HR image patches, from
the training on massive image databases, such as ImageNet. Other classifiers,
such as random forests, have also effectively supported SISR.

The reliability of the algorithms, in particular their computing and mem-
ory costs, gains in significance with the growth of CNN. In comparison to
previous manual modelling, the versatility of deep network design to learn
non-linear connections has proved to be better in its reconstruction accuracy.

It is suggested in this technique to increment the resolution from LR to
HR only at the termination point of the network, using a post-upsampling SR
architecture as stated in subsection 2.1.2, and to super-resolve HR data from
LR attribute maps. This removes the requirement for the majority of SR op-
erations to be performed at the far larger HR resolution. To accomplish this,
a more effective sub-pixel convolution layer for learning the super-resolution
upscaling of images and videos is advised, as shown in Figure 2.7.

Given tha the upscaling is performed by the final tier of the network, the
network receives each LR picture directly, and features are extracted utilizing
nonlinear convolutions in LR space. For high definition (HD) videos, the
lower resolution and smaller filter are both adequate to process the data
while maintaining enough computational and memory complexity to enable
super-resolution to be achieved in real time. Since no specific interpolation
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Figure 2.7: The efficient sub-pixel convolutional neural network (ESPCN),
contains two convolution layers for extracting feature maps and a sub-pixel
convolution layer for aggregating the feature maps from LR space and con-
structing the SR picture in a single step. [19]

filter is used, the network knows the processing employed for SR implicitly.
In comparison to a single fixed filter upscaling at the first layer, the network
will learn a stronger and more dynamic LR to HR mapping.

The performance of the network is a significant benefit. This makes it
an excellent candidate for SR video, which enables frame-by-frame super-
resolution of images. The SR model is faster by a factor of ten times com-
pared with the quickest methods previously released. In comparison to the
SRCNN 9-5-5 ImageNet model, the number of convolutions required to super-
resolve a single image is r x r times lower, and the total number of model
parameters is 2.5 times smaller. Thus, the super-resolution overall difficulty
of the operation is 2.5 X r X r times smaller.

In conclusion, the function extraction stages are suggested to be per-
formed in the LR space rather than the HR space. For this, a novel sub-pixel
convolution layer capable of super-resolving LR data into HR space at a very
low computational expense is proposed. This CNN model is the first that is
able to create real-time SR HD videos on a single GPU.

2.2.4 Real-Time Video Super-Resolution with Spatio-
Temporal Networks and Motion Compensation

The following subsection discusses the work of [8]. That study is an evolution
of the ESPCN-model presented in the previous subsection but now focused
in videos. In order to transition from images to videos, the authors consider
time as another data dimension (which has a strong degree of correlation).
The development of video SR methods have mostly taken place in a sim-
ilar fashion to the development of image SR methods. Similarly, approaches
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to dictionary learning have been adjusted from images to videos. Example-
based patch recurrence is another method, which considers that patches in a
single picture or video follow multi-scale connections.

Motion estimation and compensation is an important tool for revealing
temporal associations. As a result, video SR methods that directly model
motion across frames are quite popular. Motion compensation may also
be achieved concurrently with the SR job as part of the broader modelling
of the down-scaling mechanism. Moreover, recurrent bidirectional networks
have been used to investigate joint motion compensation for SR with neural
networks.

Due to the absence of appropriate solutions for High Definition (HD)
video SR, prior solutions were not capable of successfully using temporal
correlations when running in real-time. Although the ESPCN-model makes
effective employment of sub-pixel convolution, its naive extension to videos,
handling frames separately, struggles to take advantage of inter-frame redun-
dancy and does not implement a temporally compatible outcome. Inferring
parameters for a spatial mapping between two images is possible with spatial
transformer networks. To achieve a quick and precise video SR algorithm,
the efficiency of sub-pixel convolution is merged with the success of spatio-
temporal networks and motion compensation in this method. Furthermore,
a spatial-transformers-based motion compensation scheme is built, which is
coupled with spatial and time models to achieve a rather effective, end-to-
end solution for video SR with motion compensation. A high-level diagram
of the suggested method is depicted in Figure 2.8.
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Figure 2.8: Suggested design for video SR. [§]

The starting point of this method is the real-time image SR ESPCN-
model. The other modules that are part of the proposed design for video
SR are the following: sub-pixel convolution SR, spatio-temporal networks
(i.e. early fusion, slow fusion, and 3D convolutions), and spatial transformer
motion compensation.

The performance benefits of sub-pixel convolutions are combined with
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temporal fusion techniques in [8] to show real-time spatio-temporal SR
models. In comparison to independent single frame processing, the employed
spatio-temporal models in [8] improve reconstruction accuracy and temporal
consistency while also reducing computing complexity. The examined mod-
els in [8] are expanded to provide a motion compensation system focused
on spatial transformer networks that is both effective and trainable for video

SR.

2.3 Cloud Computing

Cloud computing is a relevant element of the video super-resolution service
because it makes possible the provisioning of large amounts of computing
power that, for instance, are not available in mobile devices to up-scale in
real-time the input video stream. Likewise, cloud computing is a borderless
and global tool, thus the service can be accessed from any place [4].

Cloud computing was made possible by the fast advancement of pro-
cessing and storage technology, as well as the success of the Internet. In
this approach, resources (such as CPU and storage) are made available to
users as general utilities, which can be leased and released over the Internet
on-demand.The conventional service provider position in cloud computing is
split into two: infrastructure providers that administer cloud platforms and
lease resources depending on use, and service providers who rent resources
from one or more infrastructure providers to serve end users. The following
subsections ( 2.3.1 - 2.3.3) discuss related topics based on the work of [25].

2.3.1 Overview

The National Institute of Standards and Technology (NIST) supplies a com-
prehensive definition of cloud computing that encompasses all critical ele-
ments of the technology: ”Cloud computing is a model for enabling conve-
nient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or
service provider interaction” [as quoted in [25]].

Rather than a new technology cloud computing is an operational model
that integrates a number of already existing technologies to do business dif-
ferently. The following technologies are often compared to cloud computing.
Grid Computing is a distributed computing approach in which networked
resources are coordinated to accomplish a shared computational goal. Util-
ity Computing is an approach for delivering on-demand resources and billing
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consumers based on use instead of a fixed fee. Virtualization is a technology
for abstracting physical hardware specifics and providing high-level applica-
tions with virtualized resources. A VM is a term used to describe a virtualized
server. Virtualization technology is the underlying component of cloud com-
puting. Autonomic Computing seeks to create computer systems that can
manage themselves, i.e., respond to internal and external observations with-
out the need for human involvement. Virtualization technology is utilised
in cloud computing to accomplish the aim of offering computer resources as
a utility. Certain elements of it are similar to those of grid computing and
autonomous computing, but it differs from them in other features.

2.3.2 Architecture

As shown in Figure 2.9, the architecture of a cloud computing environment
is split into four layers: the hardware/data centre layer, the infrastructure
layer, the platform layer, and the application layer.
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Figure 2.9: Cloud computing architecture. [25]

The hardware layer includes physical servers, switches, routers, and power
supplies and is in charge of managing the physical resources of the cloud. In
reality, data centres usually implement the hardware layer. Using virtual-
ization technologies, such as VMware, the infrastructure/virtualization layer
provides a pool of storage and computational resources. The platform layer
is comprised of operating systems and application frameworks. Its goal is
to reduce the amount of time and effort required for delivering apps directly
into VM containers. The application layer contains the real cloud applica-
tions that may benefit from the automatic-scaling functionality in order to
gain higher performance, greater availability, and lower operating costs.
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Cloud computing has a more modular design. This is comparable to how
the OSI model for network protocols is designed. The architectural flexibility
of cloud computing enables it to accommodate a broad variety of application
needs while lowering administration and maintenance costs.

Clouds provide services that may be classified into three types. Firstly,
Infrastructure as a Service (IaaS) manages the supply of infrastructure re-
sources on demand, typically in the form of VMs. Secondly, Platform as a
Service (PaaS) addresses the provision of platform-layer resources, such as
operating system support and frameworks for software development. Thirdly,
Software as a Service (SaaS) relates to the delivery of on-demand applications
via the Internet. These three types represent the cloud computing business
model, which is depicted in Figure 2.10.

[ End User J
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Figure 2.10: Business model of cloud computing. |[25]

According to the objective, when moving an application to the cloud
environment, there are distinct kinds of clouds to consider, each with its own
set of advantages and disadvantages. A Public Cloud is a cloud in which
service providers make their resources available to the broader public as a
service. A Private Cloud / Internal Cloud is intended for usage only by a
particular company. A Hybrid Cloud is a mix of public and private cloud
models in which part of the service infrastructure is hosted in private clouds
and the rest is hosted in public clouds. A Virtual Private Cloud (VPC) is a
platform built on top of public clouds. A VPC makes use of virtual private
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network (VPN) technology, which enables service providers to create their
own topology and security configurations, such as firewall rules.

2.3.3 Characteristics

The following are some of the key differences between cloud computing and
conventional service computing. Multi-tenancy is a co-location of services
owned by different providers in the same data centre. The service providers
and the infrastructure provider share responsibility for the performance and
administration of these services. In shared resource pooling, the infrastruc-
ture provider makes available a pool of computing resources that may be
dynamically allocated to various resource users. Geo-distribution and ubig-
uitous network access refers to clouds which are widely accessible through the
Internet and utilise it as a service delivery network. As a result, cloud services
may be accessed from any device with an Internet connection. Furthermore,
many of the clouds today are made up of data centres spread throughout
the world. Service oriented is a type of cloud computing which is based on a
service-oriented operating model. As a result, it puts a high value on service
management. In dynamic resource provisioning, computing resources may
be acquired and released on an adaptive form. In this provisioning, service
providers may obtain resources depending on current demand via dynamic
resource provisioning. In self-organizing, service providers have the ability
to control their resource usage based on their own requirements. In utility-
based pricing, cloud computing pricing is based on a pay-per-use basis. By
charging consumers on a per-use basis, utility-based pricing reduces service
running costs.

2.3.4 Virtualization

This subsection presents the definition of a VM as stated by [20]. When a
device or resource, such as a server, storage equipment, network or operating
system, is virtualized, the virtualization framework separates the resource
into one or more execution environments, and the virtualization framework
creates a virtual instance of the device or resource. A VM is a virtual in-
stance of a physical host. Virtualization refers to the process of deploying
and managing virtual instances. A hypervisor or virtual machine monitor is
the software or firmware that builds a virtual machine on the host hardware.
The supply of consolidated VM instances according to the needs of comput-
ing clients is an essential component of virtualization in cloud computing.
Multiple VMs may be hosted on the same physical host, allowing dynamic
multiplexing of computing and communication resources and increasing the
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resource usage of the physical infrastructure and its scalability. In cloud data
center settings, VM consolidation is a common practice.

Creating a virtual hard drive image, configuring virtualized resources,
installing the operating system, and initialising application services are all
steps in the VM creation process. After being generated from scratch or
copied from templates, each VM is immediately paused. Each paused VM is
a static instance that takes up disc space; during the VM initialization phase,
it may be changed by installing new programmes or altering the related
settings. A VM is a virtual instance that must be scheduled to allocate
computing resources on a physical host. When a real CPU is assigned to a
virtual machine, it enters the operating state. On a local host, a VM may
be halted or suspended, or it can be transferred to another host. The state
transition diagram of the VM lifespan is shown in Figure 2.11.
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Figure 2.11: Diagram of virtual machine state transitions. [20]

Template-based VMs, process forking, and VM forking are all methods
for deploying virtual machines. To decrease startup latency, service providers
use VM templates. The state of a running application is not stored in a
template-based image.

2.4 Streaming Protocols

This section on streaming protocols is based on the research of [17] and [6].
Internet video, also known as over-the-top (OTT) services, can be classi-
fied into three distinct categories: user-generated content created primarily
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by amateurs (such as the content served by YouTube), professionally gener-
ated content created by studios and networks to promote their commercial
offerings and programming (such as the content served by ABC.com), and
direct movie sales to consumers over the Internet (also referred to as elec-
tronic sell-through, or EST). Netflix and Apple TV are included in the last
category.

Cable and IPTV services are distributed over managed networks because
they utilise multicast transmission and require certain quality-of-service (QoS)
characteristics. Traditional streaming technologies like Microsoft Windows
Media and Apple QuickTime, as well as adaptive streaming technologies like
Microsoft Smooth Streaming and Apple HT'TP Live Streaming, all run on
essentially unmanaged networks. These streaming protocols transmit video
to viewers over a unicast connection (from a host or content delivery network
[CDN]) using either a proprietary streaming mechanism built on top of an
existing transport protocol, usually TCP and rarely UDP, or the standard
HTTP protocol over TCP.

Due to its ease, progressive download, which employs HT'TP over TCP,
has been a popular method for viewing online information in the past. The
playout can begin as soon as enough relevant data has been obtained and
buffered in a progressive download. Progressive download, on the other hand,
lacks the flexibility and rich features of streaming. If there are various options
with varying resolutions for the same material, the viewer must pick the most
appropriate version before the download begins. If the selected version does
not have enough band width, the viewer may encounter frequent freezes
and re-buffering. Adaptive streaming overcomes these disadvantages while
maintaining the ease of progressive download.

Progressive downloads are used with streaming to provide adaptive stream-
ing. Progressive download, on the one hand, occurs when an adaptive stream-
ing client sends HT'TP request messages to an HT'TP server to retrieve spe-
cific segments of material, and then displays the media as the content is being
delivered. These segments, on the other hand, are brief, allowing the client to
download only what is required and to employ trick modes more effectively,
creating the appearance that the client is streaming. More crucially, short-
duration chunks (for example, MPEG4 file fragments) are available at several
bitrates, corresponding to various resolutions and quality levels, allowing the
client to move between them at each request. Since adaptive streaming makes
use of HT'TP, it is able to take use of the ubiquitous connection that HTTP
provides.

Video streaming is the process of transmitting information, more specifi-
cally, a video from a source to one or more destinations. Information may be
shared between nodes in a network in a variety of ways. Typically, the kind of
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information shared by the system dictates the communication method used.
In general, the media streaming protocol is a method for sending real-time
media across a network that takes into consideration the packet structure
and algorithms. When streaming, there are two types of communication
protocols: push-based and pull-based protocols.

The complexity of the server architecture is one of the key distinctions be-
tween push-based (real-time) and pull-based (on-demand) streaming. On the
one hand, bitrate control is generally a client duty in pull-based streaming,
which makes server implementation much easier. Pull-based streaming may
also run on top of HT'TP. As a result, a standard Web server may provide
media content via pull-based streaming with minimum modifications.

On the other hand, push-based streaming requires a dedicated server that
supports Real-Time Streaming Protocol (RTSP) or a comparable purpose-
built protocol that includes built-in algorithms for bitrate control, re-transmission,
and content caching. As a result, pull-based streaming may be more cost ef-
fective than push-based streaming.

Regardless of the reduced server expenses, pull-based streaming is typ-
ically less efficient than push-based streaming in terms of overhead related
to the underlying transport protocol. RTP, the push-based protocol, has a
lower transmission overhead than HTTP over TCP. Furthermore, because
RTP often operates on top of UDP, RTP lacks the re-transmission dynamics
of TCP and congestion management features.

Client buffering is supported by both push- and pull-based streaming pro-
tocols, both at the start of a session as well as following trick-mode switches
such as fast forward to play. Since the client can start with a lower-bitrate
stream in adaptive streaming techniques, the initial client buffering period
can be significantly smaller than in non-adaptive streaming methods. This
provides for a quicker starting time and improved responsiveness. However,
multicast support is one of the major advantages of push-based streaming.
Multicast allows servers to deliver a packet just once to a group of clients
that are waiting for it.

The use of content caching can improve the efficiency of network routing
and packet delivery. Pull-based adaptive streaming, where each fragment
may be stored in the network individually, is most likely the most effective
use of caching.

On the one hand, when a server and a client establish a connection in
push-based streaming, the server begins to stream packets to the client until
the client terminates or interrupts the session. On the other hand, the media
client is the active entity that requests content from the media server in pull-
based streaming. Thus, whether the server is inactive or blocked for that
client, the answer of the server is determined by the requests of the client.
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The distinctions between push-based streaming and pull-based stream-
ing (here, pull-based streaming exclusively refers to streaming over HTTP)
are summarised in Table 2.2. This data was derived from an evaluation
of the transmission protocols for the H.265 encoder. According to [6] the
push-based protocols are more efficient than pull-based protocols in terms of
overhead.

Table 2.2: Comparison between push-based and pull-based streaming proto-
cols. [17]

Characteristic Push-based Pull-based

Broadcasters and servers like
. ) } : Web servers such as
Windows media, QuickTime,

Source RealNetworks Helix Cisco kﬁgi’()&??%ggékégghx’
CDS/DCM ’

Protocols RTSP, RTP, UDP HTTP

Bandwidth usage Likely more efficient Likely less efficient

Video monitoring RTCP (RTP transport) Currently propietary

Multicast support Yes No

As a result of the advantage in push-based protocols, firstly RTSP, which
is based on RTP, is examined in subsection 2.4.1. RTSP is used to play
and pause, for instance, a video transfer over RTP. Secondly, the WebRTC
project, which is managed by Google and is based on RTP, is analysed in
subsection 2.4.2. This latter system enables real-time communications with
a high degree of quality, low latency, and minimal bandwidth usage through
certain Application Programming Interfaces (APIs). WebRTC is a standard
for media streaming from/to browsers. This was the protocol used in the
implementation of this work because the service is called from a web browser.
Thirdly, the On-Demand hypertext transfer protocol (HTTP), which could
have also been utilised in the implementation of this work, is explained in
subsection 2.4.3.

2.4.1 Real-Time Streaming Protocol

RTSP is a non-connection focused application layer protocol that utilises an
identifier-based session. RTSP often utilizes the UDP protocol to exchange
video and audio data, whereas TCP is utilised for control (i.e., TCP is used
only when necessary). The RTSP protocol has a syntax that is similar to that
of the HTTP protocol and offers three operations. RTSP is a session-based
application layer protocol that does not need a connection. To exchange
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video and audio data, RTSP typically utilises the UDP protocol, whereas
the control protocol is TCP. The RTSP protocol offers three operations and
has a syntax similar to that of the HT'TP protocol. Firstly, in the retrieval
of media from media server operation, the client might request a presenta-
tion description through HTTP or any other approach. The presentation
description includes the multicast addresses and ports that will be utilised
for the continuous media if the presentation is multicast. However, for se-
curity considerations, the client specifies the destination if the presentation
is being transmitted exclusively to the client through unicast. Secondly, in
the invitation of a media server to a conference operation, a media server
might be ”invited” to join an existing conference, either to playback media
within the presentation or to record all or a subset of the media included
inside the presentation. This conference functionality is particularly helpful
for delivering educational software. During the conference, several partici-
pants may take turns ”pressing the remote control buttons”. Thirdly, when
adding media to an existing presentation operation, especially live presen-
tations, it is beneficial for the server to notify the client when new media
becomes available.

The syntax of an RT'SP URL is largely similar to that of an HTTP URL,
with the exception that RTSP uses the scheme rtsp:// rather than http:// as
the HT'TP protocol does. However, it also includes additional request meth-
ods such as DESCRIBE, SETUP, PLAY, PAUSE, and TEARDOWN. The
DESCRIBE method is utilised to obtain information about the presentation
or object specified by the RTSP URL. In response to this request, the server
returns a description of the requested resource. This answer corresponds
to the RTSP startup phase and includes a list of the multimedia streams
that are required. The SETUP method, on the other hand, is employed to
determine the manner in which the stream can be delivered. The URL of
the multimedia stream is contained in the request, as well as a transport
specification that typically incorporates a port for receiving RTP data (i.e.,
video and audio) and another port for receiving RTCP data (i.e., metadata).
The server replies by verifying the chosen parameters for the stream and fill-
ing in the remaining fields, such as the server-selected ports. Consequently,
each stream must be setup prior to submitting a PLAY request. The PLAY
request initiates data stream shipping by a server component through the
ports specified using the SETUP request method. Additionally, the PAUSE
method briefly suspends one or all streams in order to restart them later with
a PLAY request. Finally, the TEARDOWN request method terminates data
shipping, freeing all resources. In this respect, it is worth noting that a TCP
connection is first made between the client and the server, which is initiated
by the client and is usually established on the well-known TCP port 554.
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The precise request order of the RSTP protocol is depicted in Figure 2.12.

DESCRige

<

SETyp

PLAYy

Client | Server

VIDEO

AUDIO

PAUSE

<

<
<

Figure 2.12: RTSP request order. [17]

2.4.2 Web Real-Time Communications Protocol

WebRTC is a World Wide Web Consortium (W3C) set of APIs that enables
browser applications to make calls, video chats, and utilise peer-to-peer (P2P)
files without the need for a plugin. The initial WebRT'C implementation was
developed by Google and was made open source. This implementation has
been worked on by several organisations, such as the Internet Engineering
Task Force (IETF) to standardise protocols and the World Wide Web Con-
sortium (W3C) to standardise browser APIs.

There are four main APIs in WebRTC. The getUserMedia API enables
the extraction of video and audio streams from devices (i.e., microphone
or camera). This API call also enables us to capture a snapshot of our
screen or share it with other users. The RTCPeerConnection API enables
the audio/video stream to be configured. This includes a variety of various
activities such as signal processing, codec execution, bandwidth adminis-
tration, and streaming security. This API enables the implementation of
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these various activities without the need for programmer involvement. The
RTCDataChannel API enables connected users to share video or audio data.
RTCDataChannel is a bidirectional data channel that enables any data type
to be sent between peers. RTCDataChannel does this by using Websockets,
which enable bidirectional communication between the client and server and
enable the utilisation of either a slower and more reliable TCP connection or
a quicker but less trustworthy UDP connection. The geoStats API provides a
means of obtaining various statistics about a WebRTC session. The request
order for the WebRTC protocol, illustrated in Figure 2.13, is employed to
initiate a call with the API as explained previously.

Application
Remote peer PeerConnectionFactory (PeerConnectionObserver) PeerConnection
Receive offer from the remote peer
>Clea(ePeevConnectionFmory

CreateP

ProcessSignalingMessage
(offer)

Createl OnAddStream
CreateLocalVideoTrack
CreateLocalAudioTrack
(Add tracks to the stream.)
AddStream
CommitStreamChanges
OnSignalingMessage
(answer)
Send answer to the remote peer
Media

Figure 2.13: WebRTC request order. [17]

[17] describes the implementation of a system based on each of the
two previously mentioned protocols while taking into consideration the same
scheme and circumstances. The system was built on the usage of Android
devices. For the sake of comparing the streaming establishment and sending
packages with each protocol, various simulations were conducted. For both
communication establishment and package sending, substantial time savings
were observed while using the WebRTC protocol as opposed to the RTSP
protocol in the simulations. As mentioned earlier, due to these significant
advantages, the WebRTC protocol was utilised in the implementation of the
present work. The time advantages of WebRTC over RTSP can be observed
in Figure 2.14.
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Figure 2.14: Times comparative between RT'SP and WebRTC. [17]

2.4.3 On-Demand Streaming Protocol

A pull-based streaming protocol determines the bitrate at which the client
receives the content depending on the connection speed of the client and the
existing network capacity. HT'TP is the principal download protocol on the
Internet and is a widely used protocol for pull-based media delivery.

On IP networks today, progressive download is one of the most exten-
sively utilised pull-based media streaming strategies. The media client sends
an HTTP request to the server and begins extracting content from it as
rapidly as feasible via progressive download. When the client reaches a cer-
tain minimum buffer level, it begins playing the media while downloading
content from the server in the background. The client buffer stays at a suit-
able level to allow continuous playing as long as the download rate does
not fall below the playback rate. Though, if network conditions deteriorate,
download speed may fall behind playback speed, potentially resulting in a
buffer underflow.

Similarly to push-based streaming protocols, pull-based streaming pro-
tocols employ bitrate modification to avoid buffer overflow. The example
implementation shown in Figure 2.15 divides the media material into short-
duration media segments (also known as fragments), each of which is encoded
at a different bitrate and may be decoded separately.
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Implementation

3.1 Architecture

The architecture used for the real-time video super-resolution service was
manly the architecture of a Web application [5]. A high-level overview
of the individual pieces that comprise this service architecture is shown in
Figure 3.1.
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Figure 3.1: Real-time video super-resolution service architecture.
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On the client-side, in any kind of device (e.g., Mobile, MacBook/Laptop
or Desktop) we have a browser. On the server-side, we have the ESPCN-
model and WebRTC (e.g., aiortc) which uses RTP as communication proto-
col. The server is a VM in Microsoft Azure with an NVIDIA GPU.

At a high level, the process that the real-time video super-resolution
service follows to work is very simple. Once the service is started in the
server, the user types the service URL in the address bar of the web browser,
selects the desired configuration parameters and clicks the start button. Then
the camera of the device begins to send the video streaming to the server
where it is up-scaled to the factor that was selected in the configuration
parameters and send back the up-scaled video streaming to the device. The
next section explains this work process with further details.

3.2 Service description

The real-time video super-resolution service developed in this work has two
main code components: aiortc and an implementation of the ESPCN-model
proposed by [19]. These two components were implemented in a VM on
the Microsoft Azure cloud environment !. In the following subsections, the
relevant implementation details of the service code components and cloud
environment are presented.

3.2.1 Code components

The first code component is aiortc, which is an open-source Python library
that implements WebRTC and ORTC. It is based on the standard asyn-
chronous I/O framework of Python, asyncio. The aiortc implementation is
straightforward and easy to understand. Consequently, it is an excellent
starting place for learning about and using WebRTC. Additionally, it is sim-
ple to develop novel products by employing the huge module library of the
Python ecosystem [1]. WebRTC, hence aiortc, allows low-latency video, au-
dio, and arbitrary data streams to be sent and received over the network by
web servers and clients, including web browsers [22].

The aiortc implementation utilised in this work is based in the server
example provided in the aiortc github site [2]. This example consists of three
files (e.g., server.py, index.html and client.js), which had to be customised
for the particular requirements of the real-time video super-resolution service
that was developed.

!The code is available at https://github.com/lamezkua/Real-Time-Video-Super-
Resolution-Service
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In the server.py file, the code related to the second code component, the
ESPCN-model, was included. This code replaced the server example code
related to different transformations that were aimed to be applied to the
video stream.

The ESPCN-model implementation was developed with the code available
in [10] as a starting point. This code was modified in order to have an
acceptable performance under the demanding operating requirements for a
real-time video super-resolution service. In a first modified ESPCN-model
version, in general, all the original CPU-executable code functions that had
a GPU (Tensor)-executable equivalent were accordingly substituted. In a
second modified ESPCN-model version, the NVIDIA VPF GPU-executable
code framework was employed [3]. For posterior reference in this document,
the first modified ESPCN-model version is called "SWCodec&CPU/GPU
code” configuration if a software codec was used and "HWCodec&CPU/GPU
code” configuration if a hardware codec was used. The second modified
ESPCN-model version is called "HWCodec&GPU code” configuration. In
both versions, the original available pre-trained weights were used. Table
3.1 presents a summary of the two modified ESPCN-model versions.

Table 3.1: Code components of the ESPCN-model versions.

First version Second version

SWCodec&CPU/GPU code HWCodec&CPU/GPU code HW-Codec&GPU code

aiortc X X X
ESPCN-model X X X
GPU (Tensor)-executable code x x

NVIDIA GPU-executable code (VPF) X
software codec X

hardware codec X X

In regard to the code environment, the packages installation for the first
ESPCN-model version combined directly the requirements of the aiortc and
the ESPCN-model. For the second ESPCN-model version, it was necessary
to first install manually the VPF requirements according to the instructions
defined in [23] and then on top of these framework requirements, the packages
required for aiortc and the ESPCN-model were sequentially installed.

3.2.2 Cloud environment

As mentioned in the beginning of this section, the code components that
were described in the previous subsection were implemented on the Microsoft
Azure cloud environment. There was no other reason to choose this cloud
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environment other than the availability; there existed access to Azure with
no cost for this project.

The Azure product that was selected to host the real-time video super-
resolution service was a Virtual Machine [21]. Cloud-based Azure Virtual
Machines offer on-demand computing resources that are billed depending on
consumption. In a broader sense, a virtual machine functions similarly to
a server: it is a computer inside a computer that provides users the same
experience as they would on the host operating system. Virtual machines,
in general, are isolated from the rest of the system, which means that the
programme running inside a virtual machine cannot escape or interfere with
the underlying server itself. Each virtual machine is equipped with its own
virtual hardware, which may include CPUs, RAM, hard drives, network con-
nections, and other components. The main components of the utilised VM
in this project are listed in Table 3.2.

Table 3.2: Azure Virtual Machine components.

. . Memory Disk Size
Size Operating System vCPUs (GB) GPU GPU Card (GB)
Standard_NC6s_v3 Linux (Ubuntu 18.04) 6 112 1 NVIDIA Tesla V100-PCIE-16GB 1024

Moreover, as a means to allow access to the service from the external
clients, the inbound port rules that are shown in Figure 3.2 were defined. As
well, source, destination, port, and protocol were specified for every rule.

Topology

@ Network Interface: testgpuncés899  Effective securty ules  Troubleshoot VM connectio
Vitual network/subnet: testgpuvm-vnevdefault  NIC PublicIP: 168.63.53.178  NIC Private IP: 103.0.5  Acceerated networking; Enabled

Inbound port rules  Outbound port rules  Application security groups  Load balancing

nsg (attached to network interface: testgpuncés899) Add inbound port rule

Priority Name Port Protocol Source Destination Action

@ Network security grou
Impacts 0 subnets, 1 net

300 ass 2 Tco Any Any  Alow
310 ServerHTIP 8080 a8 T Any Any © Alow
320 WebRTC 40000-65535 uop Any Any © Alow
10 htps “w e Any Any © Alow
350 nitp 80 e Any Any © Alow

65000 AllowVnetinBound Any Any VirtualNetwork VirtualNetwork Allow

65001 AllowAzu lancerinBound Any Any AzureLoadBalancer Any © Allow

65500 DenyAllingound Any Any Any Any © Deny

Figure 3.2: Service inbound port rules.

Additionally, Certbot was used to obtain and set up a free digital cer-
tificate from Let’s Encrypt, a collaboration between the Electronic Frontier
Foundation, Mozilla, and a number of other sponsors. Accordingly, a public
key and a private key are utilised by a digital certificate or public key (for-
merly known as an SSL certificate) to enable secure communication between
a client programme (e.g., a web browser or an email client) and a server over



CHAPTER 3. IMPLEMENTATION 46

an encrypted secure socket layer (SSL) or transport layer security (TLS)
connection. The certificate identifies the server and encrypts the first step
of connection (secure key exchange). The certificate contains information
about the key, the identification of the server, and the digital signature of
the certificate issuer. If the programme that begins the contact trusts the
issuer and the signature is legitimate, the key may be employed to securely
interact with the server designated by the certificate [9].

Finally, as long as it is simpler to remember a website name instead of
memorising a numerical IP address, a domain name was defined for the real-
time video super-resolution service (e.g., video-sr.cs.aalto.fi). The domain
name was registered through the domain name service of Aalto University
[11].

3.2.3 Service access

The relevant steps that must be followed up to access the real-time video
super-resolution service include the following.
On the server side,

1. Load the corresponding code environment and

2. Start the server application (e.g., server.py) including the certificate
information.

Then, on the client side,

1. Open a browser window and provide the following Uniform Resource
Locator (URL) and port to start the client side (https://video-sr.cs.aalto.fi:8080/)
and

2. Select from the displayed user interface (UI) the desired parameters to
start the service.

An example of the Ul with the running real-time video super-resolution
service can be seen in Figure 3.3.
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Figure 3.3: Real-time video super-resolution service.
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Evaluation

The code component that was evaluated to measure the performance of the
real-time video super-resolution service was the ESPCN-model. In order to
do this evaluation, the two implemented versions with its three configurations
defined in the previous chapter were tested. Firstly, the ”’SWCodec&CPU/GPU
code” configuration with a software codec was evaluated, secondly the ”HW-
Codec&CPU/GPU code” configuration with a hardware codec was assessed
and thirdly the ”"HWCodec&GPU code” configuration with a hardware codec
was tested.

For the "SWCodec&CPU/GPU code” configuration, the software h264/
libx264 decoder/encoder were used. For the "HWCodec&CPU/GPU code”
configuration the hardware h264_cuvid/h264 nvenc decoder/encoder were
used and for the "HWCodec&GPU code” configuration the hardware h264
codec was used.

Additionally, the two modified ESPCN-model code versions were tested in
a ”stand-alone” environment, that is, they were evaluated independently of
the aiortc component and the input was a video file to facilitate the evaluation
process. The file employed in all the benchmarks was the open-source mp4
video file file_example_MP4_480_1_5MG.mp4 .

Three evaluation criteria were considered for the benchmark of the two
implemented versions with its three configurations. First processing time,
second CPU use and third GPU utilisation.

1This mp4 file can be downloaded from https://www.jdownloads.org/downloads/summary /2-
uncategorised /724-file-example-mp4-480-1-5mg.html

48
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4.1 Processing time evaluation

For the processing/execution time evaluation, python methods and NVIDIA
events were utilized. Moreover, three different frame sizes were evaluated
(e.g., 480x270 base size, 512x288 up-scaled size and 224x126 down-scaled
size). The results of the corresponding evaluations are shown in Figures 4.1,
4.2 and 4.3.

Processing: 480x270 frame size
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Figure 4.1: First evaluation criterion.

4.2 CPU and GPU utilization evaluation

For the CPU and GPU utilization evaluation, the Scalene python library
was used [7]. Scalene is a python module that provides high-performance
CPU, GPU, and memory profiling. When compared to other profilers, it is
orders of magnitude quicker and provides significantly more comprehensive
information. Scalene is an efficient application. It doesn’t use instruments or
tracing tools of python. Instead, it takes samples. Its overhead is normally
between 10% and 20%. (and often less). Scalene does profiling at the line
level and per function, pointing out which functions and lines of code are
taking up the most time in the program [18].
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Figure 4.3: First evaluation criterion.

In the CPU and GPU utilization evaluations, the frame base size 480x270
was only evaluated. Furthermore, in the CPU use evaluation, the three dif-
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ferent but complementary measures that scalene provides (e.g., python, na-
tive and system CPU use) were considered to better understand the whole
behaviour of the three configurations. The python CPU usage measure spec-
ifies the amount of time that the program spent executing python code. The
native CPU utilization gives the amount of time that the program spent
executing non-python code (e.g., libraries written in C/C++). The system
CPU use shows the amount of time that the program spent in the system
(e.g., I/O). Figures 4.4, 4.5 and 4.6 show the three CPU benchmarks and
Figure 4.7 presents the GPU evaluation for each configuration.
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Figure 4.4: Second evaluation criterion.
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Figure 4.5: Second evaluation criterion.
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Figure 4.6: Second evaluation criterion.
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GPU: 480x270 frame size
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Discussion

Qualitative as well as quantitative results were obtained with the implemen-
tation of the present work. Qualitative results are related to the implemen-
tation exposed in chapter 3. Quantitative results are connected with the
experiments explained in chapter 4.

5.1 Qualitative results

In relation to the qualitative results, as I already mentioned, two code ver-
sions were generated. Originally, the second modified ESPCN-model version
(e.g., the VPF version) was created with the hypothesis that it was going to
be much faster than the first version because it consisted of a pure NVIDIA
GPU-executable code implementation. From a qualitative perspective, we
can confirm that it was not. In both versions, for all scale factors but for the
8x factor, practically there was not delay in the video super-resolution ren-
dering. For the 8x scale factor, there was a delay of approximately 2 seconds.
However, the second version helped us instead to realize that the first code
version performance was more efficient than thought. Nevertheless, in future
work it would be desirable to verify if this behaviour is kept when more than
one client is connected to the video super-resolution service.

5.2 Quantitative results

In reference to the quantitative results, as it was also discussed, three criteria
were evaluated. These evaluation elements were processing time, CPU use
and GPU utilization.

o4
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5.2.1 Processing time evaluation

In the evaluation of the first criterion (e.g., execution time), for the ”SWCodec
&CPU/GPU code” and "HWCodec&CPU/GPU code” configurations it was
persistent in the three different frame sizes that for the scale factors 2x-3x and
3x-4x the processing time increase was uniform (the slope of the correspond-
ing lines joining the 2x-3x and 3x-4x processing time values was practically
the same). For the "HWCodec&GPU code” configuration the processing
time was practically the same (the slope of the corresponding lines joining
the 2x-3x and 3x-4x processing time values was practically zero). For the
scale factor 4x-8x, the processing time increase was of approximately 1.5x,
2.5x and 3x for the down-scaled, basic and up-scaled frame sizes. The reason
of this relevant 4x-8x processing time increase is explained in the analysis of
the second criterion (e.g., system CPU use).

Here is important to mention that, due to efficiency and performance,
the implementation of the code versions was focused in maximizing the use
of the GPU and minimizing the utilization of the CPU. Though, the results
were not in all the configurations as good as desired.

5.2.2 CPU and GPU utilization evaluation

In the evaluation of the second criterion (e.g., CPU use), firstly for the python
CPU use, that is, the code where we are able to make improvements, we
can see a consistent important time percentage CPU use for the scale fac-
tors 2x-3x and 3x-4x and a drop of 10-15% for the scale factor 4x-8x in
the "SWCodec&CPU/GPU code” and "HWCodec&CPU/GPU code” con-
figurations. This time percentage CPU use drop should be related to the
corresponding increase of the system CPU use for this same 4x-8x scale fac-
tor. In the "HWCodec&GPU code” configuration, the time percentage CPU
use for the scale factor 2x-3x was the same and for the scale factors 3x-4x
and 4x-8x the time percentage CPU use increased in a consistent manner.

Secondly, the native CPU use (e.g., used by C/C++ libraries) decreased
as the scale factors increased for the three configurations. This behaviour is
most likely related to the increasing frame size, that is, once the native code
is in memory, the CPU focuses in the execution of other instructions related
to the up-scaling of the bigger frame size thus the native CPU percentage
time use decreases.

Thirdly, in the system CPU utilization, we can clearly appreciate that
for the "HWCodec&GPU code” configuration there is practically zero sys-
tem CPU utilization, that is, zero I/O or zero swapping. For the ”SWCodec
&CPU/GPU code” and "HWCodec&CPU/GPU code” configurations we no-
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tice that there is some system CPU utilization for the scale factors 2x-3x and
3x-4x but for the 4x-8x scale factor the system CPU utilization is increased
in a relevant manner (e.g., an increment of 6-10 times). As long as system
CPU utilization or I/O or swapping is a very time consuming operation, this
behaviour explains an important element in the much better performance of
the "HWCodec&GPU code” configuration when compared to the other two
configurations.

In the evaluation of the third criterion (e.g., GPU use), we observe that for
the "SWCodec&CPU/GPU code” and "HWCodec&CPU/GPU code” con-
figurations the GPU time percentage use was always high, that is, between
90-100 % for the different scale factors. For the "HWCodec&GPU code”
configuration this GPU time percentage use was only in this use range for
the 4x and 8x scale factors and for the 2x and 3x scale factors the GPU per-
centage utilization was around half the GPU percentage use for the 4x and
8x factors. This behaviour together with the one described in the python
CPU use criterion where we have similar results, show us the advantage of
using the "HWCodec&GPU code” configuration versus the other two config-
urations when scaling video in applications with the 2x and 3x factors and
provide evidence to answer two of the research questions (e.g., How can these
components be combined to implement a service with a good performance?
and Which are the characteristics of these components?).

Then, if we remember the main research question of this work (e.g., what
are the components of an efficient real-time video super-resolution service
based on the cloud?), we can now claim that one very important element
of an efficient real-time video super-resolution service is a codec with an
outstanding performnce, that is , a codec such as the one used in the "HW-
Codec&GPU code” configuration.

5.3 Additional considerations

Firstly, the default codecs of aiortc were used without change. This was
a limitation for a quantitative testing of the service in real-time (e.g., not
reading from a video file). A substitution of these codecs by the ones used
in the evaluation chapter could be tried in a future. This would imply to
modify the aortic code which might not be a trivial task. In this manner, a
proper evaluation in real-time of the proposed service in this work could be
achieved.

Secondly, another weakness of this work was its purely theoretical scope.
The potential applications of the developed service are many. It would have
been more meaningful to associate this service with a practical use-case (e.g.,
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a surveillance application). To look for this practical usage-scenario combined
with an improved new technique for SR would also be a remaining interesting
future task.

Lastly, the evaluation of the service in real-time was qualitative. To create
the use-case suggested before would also help to clearly define performance
criteria against which real-time performance could be measured [14]. Fur-
thermore, due to the fact that performance uncertainties of the existing cloud
models, which usually do not give any real-time assurances and display non-
deterministic performance because of shared compute and network resources,
have inhibited the adoption of cloud technologies for time-sensitive and cru-
cial services, this future version of the service proposed in this work could
be implemented in a network compute fabric [16] which would provide the
platform of a real-time cloud [12].



Chapter 6

Conclusions

The components defined in this work to create an efficient real-time video
super-resolution service based on the cloud are aiortc (e.g., open-source
Python library that implements Web Real-Time Communication) and an
implementation of the ESPCN-model combined together into a Microsoft
Azure cloud environment with an NVIDIA GPU.

The first code component (e.g., aiortc), allows that low-latency video
is sent and received over the network by web-servers and clients, including
web-browsers. In the second code component (e.g., ESPCN-model), the com-
putational efficiency is improved and the computation and spatial complexity
are considerably reduced.

The original ESPCN-model implementation was modified to implement
a service with a good performance. The first modified ESPCN-model ver-
sion (e.g., where all the original CPU-executable code functions that had a
GPU (Tensor)-executable equivalent were substituted) practically had the
same efficiency as the second modified ESPCN-model version (e.g., where
the NVIDIA VPF GPU-executable code framework was used), which rep-
resents the most efficient currently available model implementation. Hence,
the implementation of the ESPCN-model component can be considered as
efficient from a qualitative/practical point of view.

In a real-time service like the one implemented in this project, every
code line that sends or receives information (frames) from the CPU to the
GPU and vice-versa (e.g., I/O) highly counts to decrease the efficiency of
the whole service thus should be avoided as much as possible. Moreover,
the performance benchmark that was carried-out having as input video files,
from a quantitative perspective, shows that if the default codec that aiortc
employs would have been configured as a HW codec (e.g., the NVIDIA one),
in the real-time service whose qualitative result has just been mentioned
in the paragraph before, the efficiency would have significantly increased in
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its implementation. Thus, we can also conclude that the efficiency /perfor-
mance of the codec plays an outstanding relevant role in the overall service
configuration.

Additionally, the Azure cloud environment component, with its robust
characteristics (e.g., with an NVIDIA GPU) and configured as a server with
the help of the aiortc component, enables an efficient execution of the service
in diverse client devices with limited resources.

In future, besides the further actions suggested in chapter 5 (e.g., Dis-
cussion), a next step for the present research would be to measure the quality
of the video super-resolution done by the method selected in this work (e.g.,
the ESPCN-model) and compare it with other state-of-the-art models to
corroborate how good the generated video is.
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