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Abstract

We propose a new framework for hybrid system identification, which relies on continuous optimization. This framework is based
on the minimization of a cost function that can be chosen as either the minimum or the product of loss functions. The former
is inspired by traditional estimation methods, while the latter is inspired by recent algebraic and support vector regression
approaches to hybrid system identification. In both cases, the identification problem is recast as a continuous optimization
program involving only the real parameters of the model as variables, thus avoiding the use of discrete optimization. This
program can be solved efficiently by using standard optimization methods even for very large data sets. In addition, the
proposed framework easily incorporates robustness to different kinds of outliers through the choice of the loss function.

Key words: hybrid system; identification; robustness to outliers; large-scale.

1 Introduction

Consider a class of discrete-time ARX hybrid systems of
the form

yi = fλi
(xi) + vi, (1)

where xi = [yi−1 . . . yi−na
, ui−nk

. . . ui−nk−nc+1]
T is

the continuous state (or regression vector) of dimension
p containing the lagged nc inputs, ui−k, and na outputs,
yi−k, λi ∈ {1, . . . , n} is the discrete state (or mode) de-
termining which one of the n subsystems, {fj}

n
j=1, is ac-

tive at time step i, and vi is an additive noise term. Two
classes of hybrid models can be distinguished on the ba-
sis of the evolution of the discrete state λi. In particular,
Switched ARX (SARX) models assume that the system
switches arbitrarily, while PieceWise ARX (PWARX)
models consider a dependency between the discrete state
and the regression vector. The latter are usually defined
by piecewise affine maps of the type f(x) = fj(x), if
x ∈ Sj , j = 1, . . . , n, where {fj} are affine functions

⋆ A preliminary version of this paper was presented at the
15th IFAC symposium on system identification, Saint-Malo,
France, July 6-8, 2009.
⋆⋆This work was partially supported by ANR project
ArHyCo, Programme ”Systèmes Embarqués et Grandes
Infrastructures” - ARPEGE, ANR-2008 SEGI 004 01-
30011459, and by the grant NSF CNS 0931805.

and {Sj} are polyhedral domains defining a partition of
the regression space Rp.

This paper concentrates on the problem of finding a hy-
brid model f = {fj}

n
j=1 of the form (1) from input–

output data {(xi, yi)}
N
i=1. We assume that the number

of models n and their orders are known and focus on the
identification of SARX models. However, the proposed
estimators are able to deal with PWARX models with-
out any modification. They provide an estimate of the
parameters of an SARX model. Then, determining the
partition of the regression space amounts to a pattern
recognition problem [2], where the labeling of the points
is given by the estimated discrete state.

Related work. One of the main challenges in hybrid
system identification is that one needs to simultaneously
classify the samples into their respective modes and es-
timate the model parameters for each mode. A general
and straightforward approach to this problem is to opti-
mize over both the model parameters and a set of binary
variables, that control the assignment of the samples to
the modes. This, however, amounts to a nontrivial and
non-continuous optimization problem.

Two main classes of methods have been proposed to
solve directly this problem. The first class includes the
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clustering-based approach, using either k-means [3] or
Expectation Maximization (EM) [11], and the Bayesian
approach [5]. These methods alternate between solving
the classification problem for fixed model parameters
and solving the estimation problem for a fixed classifica-
tion. Hence they are prone to lead to local minima and
are sensitive to initialization. On the other hand, meth-
ods in the second class optimize over both continuous
and discrete variables simultaneously. This involves solv-
ing a combinatorial optimization problem, which can be
prohibitively time consuming. The mixed integer pro-
gramming (MIP) approach [12] and the bounded-error
approach [1] fall into this category.

Beside these methods, the algebraic approach [14,10,13]
circumvents the aforementioned issues thanks to a con-
tinuous approximation of the general optimization prob-
lem. This approximation results in a closed form solu-
tion to the identification of SARX systems. However, the
algebraic method is rather sensitive to noise compared
to the other approaches. Inspired by the algebraic ap-
proach, the Support Vector Regression (SVR) approach
[6,7] provides a convenient way of dealing with noisy data
and small sample sizes by incorporating regularization
into the optimization framework. However, it optimizes
over a number of variables that grows with the num-
ber of data points, thus it is limited to small data sets.
We conclude this short review of the related methods by
noting that, other than the bounded-error approach [1],
none of them explicitly deals with outliers in the data.

Paper contribution. We propose a continuous opti-
mization framework for hybrid system identification that
benefits from the advantages of the algebraic and SVR
approaches, while also tackling their respective weak-
nesses. By continuous optimization we refer to the op-
timization of a continuous cost function over a non-
discontinuous domain, which excludes for instance inte-
ger programs. In particular, two reformulations of the
mixed integer program at the core of hybrid system
identification are considered. The first one is based on
a non-differentiable cost function involving min opera-
tions. The second one offers a differentiable approxima-
tion using products of error terms, as in the algebraic
method. These reformulations give rise to the following
contributions.

• The proposed framework can include any suitable loss
function. Thus robustness to outliers and leverage
points is easily incorporated through the choice of a
robust loss function as defined in the analysis. In ad-
dition, the derivation of the method in the maximum
likelihood framework allows the loss function to be
chosen with respect to the noise density model as in
standard estimation theory.

• This paper proposes a reformulation of the hybrid sys-
tem identification problem as an unconstrained opti-
mization program. Though non-convex, this nonlinear
program involves a low number of variables, equal to

the number of parameters in the hybrid model, which
allows its complexity to scale only linearly with the
number of data. Thus, the problem can be solved ef-
ficiently for any number of data by standard global
optimization algorithms.

Paper organization. The paper starts in §2 by pre-
senting the hybrid system identification problem and the
main inherent issues. §3 then details the proposed ap-
proach in both the maximum likelihood (§3.1) and the
error minimization (§3.2) frameworks, before describing
the product-of-errors based approximation (§3.3) and
analyzing the robustness to outliers (§3.4). Optimiza-
tion issues are discussed in §3.5, while examples can be
found in §4 and conclusions in §5.

2 General formulation of the problem

One of the main difficulties in hybrid system identifica-
tion is that it involves optimization over both discrete
and continuous variables. To see this, notice that one
can write the problem as the mixed integer program

minimize
{fj},{βij}

N
∑

i=1

n
∑

j=1

βij l(yi − fj(xi)) (2)

s.t. βij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , n,
n
∑

j=1

βij = 1, i = 1, . . . , N,

where βij is a binary variable and l(yi−fj(xi)) is a suit-
able loss function, e.g., the squared loss, l(yi−fj(xi)) =
(yi − fj(xi))

2. The discrete variables βij encode the as-
signment of point i to submodel j, while continuous vari-
ables encode the parameters of the submodels fj .

One way to solve this mixed program is to use alter-
nating minimization: i) given the submodels {fj}, com-
pute the assignment of points to submodels according to
βij = 1, if j = argmink=1,...,n l(yi−fk(xi)), and 0 other-
wise; and ii) given the assignments βij , compute one sub-
model for each group of points. This approach is effective
when the submodels are linear, i.e., fj(xi) = θ

T
j xi, and

a convex loss function is used, because the estimation
of each submodel is a linear system identification prob-
lem. However, this approach is sensitive to initialization.
Note that problem (2) can also be solved directly by us-
ing mixed integer programming techniques, as proposed
in [12] for hinging hyperplane models. These latter op-
timization techniques can guarantee to find the global
minimum, but, due to their high complexity, they can
only be used in practice for small data sets.

3 Continuous optimization approach

This section presents the proposed estimators for hybrid
systems. In particular, two closely related estimators are
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derived in the maximum likelihood (§3.1) and the error
minimization (§3.2) frameworks, respectively. In order
to remain efficient on large data sets, these estimators
are devised so as to lead to continuous optimization pro-
grams with a small number of variables, which does not
depend on the number of data. The section ends with the
description of a smooth approximation to the proposed
estimators and an analysis of the robustness to outliers.

3.1 Maximum likelihood framework

Let the random variables (x, y) be described by a joint
probability density function (pdf) p(y,x). Assume that
the conditional pdf p(y|x) takes the functional form
p(y|x, f), dependent on the model f . Then, the maxi-
mum likelihood approach consists in finding the model
f that most likely generated the data. For N i.i.d. sam-
ples, this is equivalent to maximizing the log-likelihood,
∑N

i=1
ln p(yi|xi, f), with respect to f .

In the context of hybrid systems, the Maximum Likeli-
hood (ML) estimator assigns each data sample (xi, yi)
to the most likely submodel fj , i.e., the one with maxi-
mal likelihood of the sample w.r.t. fj . This leads to

λ̂i = arg max
j=1,...,n

p(yi|xi, fj). (3)

This allows the likelihood of a sample with respect
to f to be written as p(yi|xi, f) = p(yi|xi, fλ̂i

) ∝
maxj=1,...,n p(yi|xi, fj). The log-likelihood is thus given
by

N
∑

i=1

ln p(yi|xi, f) ∝
N
∑

i=1

ln max
j=1,...,n

p(yi|xi, fj), (4)

which is equivalently maximized by solving

maximize
{fj}

N
∑

i=1

max
j=1,...,n

ln p(yi|xi, fj). (5)

Finally, the ML estimator is given as the solution to

minimize
{fj}

JML =

N
∑

i=1

(

min
j=1,...,n

− ln p(yi|xi, fj)

)

. (6)

Note that the minimum of a finite set of continuous
functions of some variables is a continuous function of
these variables (discontinuities only occur in the deriva-
tives). Therefore, if the submodels {fj} are given by con-
tinuous functions of their parameters and if the likeli-
hood function p(yi|xi, fj) is continuous in fj , then the
minimum over j of the negative log-likelihood functions
− ln p(yi|xi, fj) in (6) is a continuous function of the pa-
rameters to be estimated. As a consequence, the cost

function in (6) is a continuous function of the variables
parametrizing the submodels {fj} and (6) is a continu-
ous optimization problem.

3.2 Minimum-of-errors estimator

In the following, we derive theMinimum-of-Errors (ME)
estimator in the framework of loss function minimization
and show its relationship to the ML estimator.

The formulation in (2) relies on the assumption that
sample xi must be assigned to the submodel that best
estimates the target output yi. In order to minimize the
overall cost, we thus have to set the estimated mode as

λ̂i = arg min
j=1,...,n

l(yi − fj(xi)), i = 1, . . . , N. (7)

Explicitly including this result in (2) leads to the ME
estimator obtained by solving

minimize
{fj}

JME =

N
∑

i=1

(

min
j=1,...,n

l(yi − fj(xi))

)

. (8)

The relationship between ML and ME estimators ap-
pears when choosing the loss function l in the ME esti-
mator (8) according to l(yi− fj(xi)) = − ln p(yi|xi, fj).
This provides the choice of the loss function in the case
of a known noise distribution.

Using a similar continuity argument for the cost in (8)
as for that in (6), we see that, for all loss functions l(e)
that are continuous in their argument, (8) is a continuous
optimization problem with respect to the parameters of
the submodels {fj}. Thus instead of solving (2), which is
a non-continuous problem due to the discrete variables
{βij}, we can equivalently solve the continuous problem
(8), which only involves real variables. After solving for
the submodels {fj}, the mode estimates are simply re-

covered by using (7) (or λ̂i = argminj=1,...,n |yi−fj(xi)|,
if the loss function l cannot yield the decision).

3.3 Product-of-errors estimator

For a smooth loss function l, the Product-of-Errors (PE)
estimator is obtained by solving the smooth optimiza-
tion program

minimize
{fj}

JPE =

N
∑

i=1

n
∏

j=1

l(yi − fj(xi)). (9)

The cost function of the PE estimator in (9) can be seen
as a smooth approximation to the ME cost function in
(8). In particular, for noiseless data, they share the same
global minimum JME = JPE = 0.

3



Remark 1: Note that for the particular case of linear
submodels fj and squared loss function l(e) = e2, the cost
function of the PE estimator in (9) coincides with the
cost minimized by the algebraic approach [10]. However,
the PE estimator aims at directly minimizing this cost
with respect to the model parameters, while the algebraic
approach minimizes this cost with respect to the tensor
product of the parameters. This allows the algebraic al-
gorithm to obtain the solution more efficiently by solving
a linear system, but introduces errors in the case of noisy
data, because the tensor product of the parameters is an
overparametrization of the space of parameters.

Remark 2: The PE estimator given by (9) is also
equivalent to the (unregularized) SVR-based approach de-
scribed in [6] when using the ε-insensitive loss function
defined as l(e) = max(0, |e|−ε), for a threshold ε. In this
case, the proposed method allows to reduce the number of
optimization variables from n(p+N) to np.

3.4 Robustness to outliers and leverage points

Two types of outlying observations, i.e., points which
deviate significantly from the rest of the data, are com-
monly distinguished. Arbitrary large values |yi| in the
response variable are simply called outliers, while arbi-
trary large values in the regression vector xi are called
leverage points. It is worth noting that, for the estima-
tion of ARX model parameters, due to the presence of
lagged outputs in the regression vector, the same abnor-
mal value can be both an outlier and a leverage point.

For an estimator to be robust to outliers, the effect of
a single point on the estimation must be bounded. For
instance, in classical regression problems, the influence
function of the squared loss, i.e., its derivative with re-
spect to yi, is unbounded. On the other hand, the abso-
lute loss, l(e) = |e|, has an influence function bounded
by 1 and thus leads to more robust estimators.

In this subsection, the different cases are investigated
for the ME and PE estimators in the context of hybrid
systems. l′(e) = dl(e)/de denotes the derivative of the
loss function l with respect to its scalar argument e.

Minimum-of-errors estimator. For a given xi with
an arbitrary large |yi|, we can consider the estimated
mode as fixed (either given by λi = argmaxj fj(xi) or
λi = argminj fj(xi), depending on the sign of yi). Then
we can write the influence of this point as

∂JME

∂yi
=

∂l(yi − fλi
(xi))

∂yi
= l′(yi − fλi

(xi)). (10)

This implies that the influence of an outlier is bounded
if l has a bounded derivative l′(e), as is the case with
l(e) = |e|. On the other hand, the influence of leverage

points

∂JME

∂xi

= −l′(yi − fλi
(xi))

dfλi
(xi)

dxi

, (11)

with λi = argminj=1,...,n l(yi − fj(xi)), is unbounded
even with bounded derivative l′(e).

Product-of-errors estimator. The sensitivity of the
cost function in (9) with respect to outliers is

∂JPE

∂yi
=

n
∑

j=1

l′(yi−fj(xi))
∏

k∈{1,...,n}\j

l(yi−fk(xi)), (12)

and its sensitivity with respect to leverage points is

∂JPE

∂xi

= −
n
∑

j=1

l′(yi−fj(xi))
dfj(xi)

dxi

∏

k∈{1,...,n}\j

l(yi−fk(xi)).

(13)
In these cases, the terms l(yi − fk(xi)) are unbounded,
hence both sensitivity functions are unbounded.

To summarize, the only way to guarantee that the influ-
ence of outliers and leverage points on both the ME and
PE estimators is bounded and obtain robust estimators
is to use a loss function l leading to l′(e) = 0, for large
values of the error |e|.

Such loss functions are considered in the framework of
redescending M-estimators, where l′(e) is known as the
Ψ function and decreases smoothly towards zero when
|e| increases. As an example, the Hampel’s loss function,
defined as

l(e) =

{

δ2/π (1− cos(πe/δ)) , if |e| ≤ δ,

2δ2/π, otherwise,
(14)

which satisfies that l′(e) = 0 for |e| > δ, will be consid-
ered in §4.1. Further experiments with other loss func-
tions and the PE estimator can be found in [9].

3.5 Optimization of linear hybrid models

All the results developed in the previous sections apply
similarly to linear and nonlinear submodels fj . In the
following, we focus on linear hybrid models, in which the
submodels fj(x) are given in the linear form

fj(x) = θ
T
j x, j = 1, . . . , n, (15)

where the parameter vectors θj to be estimated are of
dimension p = na + nc. Note that affine submodels can
be equivalently considered by appending a 1 to the re-
gression vector and considering p = na + nc + 1.
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For all continuous loss functions l, the cost functions in
(8) and (9) are both continuous functions of the param-
eters θj . Moreover, the number of variables involved in
these problems is small and fixed to the number of model
parameters, n×p, for any number of data N . These two
combined features allow a solver for continuous prob-
lems to find a satisfying solution in reasonable time, de-
spite the NP-hard nature of the problem. Note however
that the cost functions in (8) and (9) require to compute
a sum over N terms, hence the linear complexity of the
algorithm with respect to N .

In the following, we propose to solve (8) and (9) with
theMultilevel Coordinate Search (MCS) algorithm 1 [4],
that is guaranteed to converge if the objective is con-
tinuous in the neighborhood of the global minimizer.
This optimizer uses only function values (when required,
derivatives are estimated from these) and alternates be-
tween global and local search. The local search, done via
sequential quadratic programming, speeds up the con-
vergence once the global part has found a point in the
bassin of attraction of the global minimizer.

4 Examples

We now present some illustrative examples and start
with the identification of a switched linear system
(Sect. 4.1), including a comparison with the algebraic
procedure and the study of the robustness to outliers of
the estimators. Large-scale experiments (Sect. 4.2) are
then presented to analyze the complexity of the method
with respect to the number of data and the number of
parameters in the model.

Assuming no prior knowledge on the parameters, box
constraints that limit the search space in the MCS algo-
rithm are set for all variables θjk to the quite large inter-
val −100 ≤ θjk ≤ 100. Beside this, the MCS parameters
are all of time-limiting nature (maximum number of it-
erations or function evaluations), for which the default
values led to satisfying results. For all the problems, N
samples are generated by

yi = θ
T
λi
xi + vi, i = 1, . . . , N, (16)

where the θj ∈ R
p are the true parameters to be re-

covered and vi ∼ N (0, σ2
v) is a Gaussian noise. The

methods are compared on the basis of the Normal-
ized Mean Squared Error on the parameters, NMSE =
∑n

j=1
‖θj−θ̂j‖

2
2/‖θj‖

2
2, where the θ̂j are the estimated

parameters. In the Tables, all numbers of the formA±B
correspond to averages (A) and standard deviations (B)
over 100 trials. The Tables also show the number of fail-
ures (# fail) of the algorithms, i.e., the number of trials
for which the parameter estimates are irrelevant. It is

1 http://www.mat.univie.ac.at/˜neum/software/mcs/.

worth noting that the NMSE is computed without tak-
ing these trials into account. All experiments are per-
formed on a standard desktop computer with Matlab.

4.1 Switched linear system identification

Consider the example taken from [13]. The aim is to
recover, from N = 1000 samples, the parameters θ1 =
[0.9, 1]T and θ2 = [1,−1]T of a dynamical system, arbi-
trarily switching between n=2 modes, with continuous
statexi=[yi−1, ui−1]

T and input ui ∼N (0, 1). The stan-
dard deviation of the generated trajectories is σy≈2.

Table 1
Average NMSE (×10−3) and number of failures over 100
trials.

σv ME PE Algebraic

0.00 NMSE 0.00 0.00 0.00

# fail 0 0 0

0.02 NMSE 0.00± 0.00 0.00± 0.00 0.05± 0.28

# fail 44 0 0

0.10 NMSE 0.03± 0.03 0.08± 0.06 2.99± 12.32

# fail 20 0 4

0.20 NMSE 0.09± 0.10 0.27± 0.23 4.86± 10.38

# fail 28 0 10

0.30 NMSE 0.27± 0.22 0.77± 0.65 10.31± 13.46

# fail 27 0 10

Comparison with the algebraic approach. As de-
scribed in [14], the algebraic method is originally imple-
mented as a linear problem solved w.r.t. the tensor prod-
uct of the parameters. It can also be implemented in the
proposed PE framework (9), with squared loss, as the
direct minimization over the model parameters (see Re-
mark 1). These two algorithms are compared in Table 1
for different noise levels σv. The ME estimator (8) with
squared loss is also included in the comparison. The re-
sults highlight the gain in solving the problem directly
for the model parameters θj versus the optimization
over the product of the parameters. However, the gain
in NMSE obtained by solving directly for the θj comes
at the cost of solving a nonlinear optimization program
instead of a linear problem. This leads to a computing
time about 30 times larger with the PE estimator (0.3
sec.) than with the algebraic method (0.01 sec.). Note
however, that for N = 1000 points these times remain
below one second, whereas directly solving (2) is already
prohibitively time consuming.

In practice, the algebraic method estimates the nor-
mals bj to the hyperplanes on which the data lie as
[xi,−yi]bj = 0, and assigns a coefficient to the output
yi. Thus, the original model parameters are recovered by
dividing all the coefficients in bj by the last component
of bj , which leads to failure when this number is close
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Table 2
Average NMSE (×10−3) over 100 trials for the proposed estimators using either the squared loss or the Hampel’s (robust) loss
function when applied to data sets with additive Gaussian noise (σv = 0.2) and an increasing percentage of outliers.

% of outliers 0 % 10 % 20 % 30 % 40 % 50 %

Robust ME NMSE 0.14± 0.12 0.14± 0.14 0.27± 0.22 0.22± 0.21 0.43± 0.44 0.71± 0.64

# fail 10 11 15 19 21 27

ME NMSE 0.09± 0.10 40.3± 43.8 118.8± 47.7 280.6± 72.3 379.6± 103.6 496.2± 149.3

# fail 28 15 13 22 11 12

Robust PE NMSE 0.15± 0.12 0.15± 0.11 0.22± 0.21 0.26± 0.24 0.43± 0.39 0.84± 0.89

# fail 0 0 0 0 0 6

PE NMSE 0.27± 0.23 118.0± 0.83.4 251.7± 139.4 215.5± 96.3 425.2± 177.7 501.3± 210.0

# fail 0 0 0 0 4 14

to zero. For the ME estimator, the failures are due to
the convergence of the optimizer to bad local minima.
However, failures aside, the ME estimator leads to an
NMSE that is similar to the one obtained by separate
least squares estimations for each mode with knowledge
of the true mode λi. This indicates that good local, if
not global, minima are found. Note that in these exper-
iments, the PE estimator does not suffer from the con-
vergence to bad local minima, but leads to slightly less
accurate estimates.

Robustness to outliers. We now illustrate the robust-
ness to outliers of the ME (8) and PE (9) estimators ob-
tained by using the Hampel’s loss function (14) instead
of the squared loss. The data are corrupted with addi-
tive Gaussian noise (σv = 0.2) and an increasing per-
centage of outliers by forcing yi, at random time steps i,
to take uniformly distributed random values in the in-
terval [−10, 10]. Note that this also introduces outliers
in the regressors xi, which are built from lagged out-
puts. According to the previous results shown in Table 1,
the algebraic method cannot handle these highly cor-
rupted data. Table 2 shows the benefit of using the robust
versions of the proposed estimators over their standard
counterpart. The resulting NMSE remain in the order
of 10−4 to 10−3 with up to 50% of outliers for both the
Robust ME and the Robust PE estimators, while being
comparable to the NMSE obtained with the non-robust
squared loss in the outlier-free case. However, the num-
ber of failures of the Robust ME estimator slightly in-
creases with the number of outliers. Again, the Robust
PE estimator is not susceptible to these failures even in
the presence of outliers, except for the extreme case of
50 % of outliers. In these experiments, the parameter of
the Hampel’s loss function was set to δ = 2. The esti-
mation of the optimal value for δ is left to future work.

4.2 Large-scale experiments

Large data sets. The performance of the method on
large data sets is evaluated on a set of 100 randomly

generated problems with n = 2 and p = 3. The true pa-
rameters {θj} are randomly drawn from a uniform dis-
tribution in the interval [−2, 2]p, while very loose con-
straints, θj ∈ [−100, 100]p, are applied for the estima-
tion. The N data are generated by (16) with uniformly
distributed random regression vectors xi ∈ [−1, 1]p, a
random switching sequence {λi} and additive Gaussian
noise (σv = 0.2). Due to the noise level in the data,
the algebraic method is not included in the compari-
son, which focuses on the ME (8) and PE (9) estimators
with squared loss. Table 3 shows the resulting average
NMSE and computing times for an increasing number
of data N . These times show that the complexity of the
proposed algorithms scales linearly with the number of
data. As a result, the method can be applied to very
large data sets, which cannot be handled by previous ap-
proaches such as the ones described in [1,3,6,12]. Note
that the programs, including the MCS optimization al-
gorithm, are fully implemented in non-compiled Matlab
code and that the variability over the 100 runs comes
from the random sampling of the true parameters gen-
erating the data, not from the optimizer. However, in
5 runs out of 400 (over all experiments), the optimizer
led to local minima for the ME estimator, which failed
to yield a correct model. Note that such failures do not
occur when using the PE estimator. Overall, the ME es-
timator leads to models with less error than the PE esti-
mator, but requires twice as much time to compute and
can occasionally lead to bad local minima.

Larger model structures. The method has been
shown to be very effective on large data sets. How-
ever, the computing time heavily relies on the number
of model parameters n × p, against which the method
is now tested. As before, a set of 100 random experi-
ments is performed for N = 10 000 samples and varying
numbers of modes n and parameters per mode p. To be
able to compare the computing times of the proposed
PE estimator with those of the algebraic method, exper-
iments without noise (σv = 0), for which both methods
perfectly estimate the parameters, are considered. The
results appear in Figure 1 for the PE estimator (9) with
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Table 3
Average NMSE and computing time over 100 randomly gen-
erated problems with N samples.

N NMSE (×10−6) #fail Time (sec.)

10 000 ME 1.3± 0.9 0 2.7± 1.0

PE 3.0± 2.3 0 1.3± 0.2

50 000 ME 0.4± 0.5 0 10.0± 4.0

PE 1.1± 2.8 0 4.2± 0.6

100 000 ME 0.3± 0.2 1 23.4± 10.7

PE 1.0± 1.8 0 10.4± 1.7

500 000 ME 0.3± 0.8 4 158.5± 49.2

PE 0.7± 1.6 0 53.9± 6.1
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Fig. 1. Average computing time in seconds for the PE esti-
mator (left) and the algebraic method (right) over 100 trials
versus the number of parameters per mode p for different
number of modes n.

squared loss and the algebraic method. These curves
show that the PE estimator is clearly slower than the
algebraic method for small model structures. However,
the computing time of the algebraic method increases
quickly with the number of parameters and exceeds the
one of the PE estimator for n = 6 and p = 8. In addi-
tion, similar experiments with noisy data lead to similar
time curves for the PE estimator. Thus the cost in com-
puting time of the proposed method is still reasonable
considering the gain in accuracy obtained by the PE es-
timator over the algebraic method in the noisy case (as
shown by Table 1).

5 Conclusion

Two classes of estimators for hybrid systems have been
proposed: the ME estimator, based on the minimum of
the submodel errors, and the PE estimator, based on
the product of the submodel errors. The ME estimator
benefits from a straightforward maximum likelihood in-
terpretation and is an exact reformulation of the mixed
integer problem (2) into a continuous optimization prob-
lem. The PE estimator has been devised as a smooth
approximation to the ME estimator, which appears as a
convenient substitute in terms of avoiding local minima
while maintaining a similar level of accuracy. In terms of
efficiency, the proposed estimators have been tailored to
tackle large-scale problems and have been shown to yield
fast and accurate results in experiments with numerous

data. The paper also focused on providing an algorithm
which remains robust to high levels of noise compared to
previous approaches such as [14]. In addition, the anal-
ysis shows that robustness to outliers either in the out-
put yi or the regression vector xi can be obtained by a
proper choice of the loss function. Future work will aim
at finding better approximations to the ME estimator
than the PE estimator and extend the approach to the
estimation of unknown nonlinearities in the context of
hybrid systems, as initiated in [8].
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