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We report on an experience to support multiple views of programs to solve the tyranny of the dominant
decomposition in a functional setting. We consider two possible architectures in Haskell for the classical
example of the expression problem. We show how the Haskell Refactorer can be used to transform one view
into the other, and the other way back. That transformation is automated and we discuss how the Haskell
Refactorer has been adapted to be able to support this automated transformation. Finally, we compare
our implementation of views with some of the literature.

1 Introduction

Evolutivity is a major criteria of quality for enterprise software. Evolutivity is strongly related to the design
choices on the software architectures. However, it is generally impossible to find software architectures that
are evolutive with respect to all concerns. So, one of these concerns has to be privileged (section 2.1).
As shown by the solutions to the expression problem [28], there are many ways, often based on specific
language features, to provide modular extensions which are orthogonal to the main axis of decomposition
of the architecture (section 2.2). However, these solutions focus on extensions and generally break the
regularity of the initial architecture, leading to a decrease in the maintainability (section 2.3). This shows
that the modular extensibility and maintainability on orthogonal concerns are difficultly supported at the
language level.

Multiple views [7] tackle the problem of modular evolutivity with a program transformation approach
instead of a programming language approach. For a given application, the source code of several equivalent
architectures can be computed one from another, so that the programmer who has to implement an evolution
can choose the architecture which his the most convenient for his task. With proper tools, the implemented
evolutions are reflected in all the available architectures.

In this paper, we report on an experience of providing support for multiple views for a functional lan-
guage. In the following, we consider the classical example of a simple evaluator coming from the expression
problem [28] and we illustrate how multiple views can provide modular extensions as well as modular
changes on several orthogonal axis (section 3). Then, we propose an implementation of a transformation
from one view to another. That transformation is based on a refactoring tool (section 4). Last, we discuss
the work to make this kind of tool usable for enterprise software (section 5) and we compare our experience
to other tools for multiple views (section 6.3).

2 Modularity and Evolution

In this section, we illustrate the tyranny of the dominant decomposition in a functional language setting
with a simple example (section 2.1), we recall the definition of the expression problem (section 2.2), which
is closely related to our problem, and we focus on maintenance and show that it is not well covered by the
expression problem as extensions tend to degrade the initial structure (section 2.3).

∗This is the second version of the report initially entitled Views, Program Transformations, and the Evolutivity Problem.
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2.1 Each Architecture privileges extensibility on a given axis

When choosing a module structure for a given program, one has to choose between several possibilities with
different advantages and disadvantages [22]. We illustrate this with two possible module structures for a
simple evaluator which have dual advantages and disadvantages. This program is the same that is often
used to motivate the expression problem, here given in Haskell.

data Expr =

Const Int

| Add (Expr,Expr)

eval (Const i) = i

eval (Add (e1,e2)) = eval e1 + eval e2

toString (Const i) = show i

toString (Add (e1,e2)) = (toString e1) ++ "+" ++ (toString e2)

The data type Expr represents the expression language to be evaluated. This data type has a constructor
for literals (Const for integers) and another for an operator (e.g., Add represents the addition). Two
functions, for evaluating or printing expressions, are defined by pattern matching: a case is provided for
each constructor.

This code is modular with respect to functionalities (because of the scope introduced by function dec-
larations). The modularity is better seen in Figs. 1 and 2(a) where modules are used to structure the
program.

�

module Expr where

data Expr =

Const Int

| Add (Expr ,Expr)

e1 = Add (Add (Const 1,Const 2),Const 3)

e2 = Add (Add (Const 0,Const 1),Const 2)

�

module EvalMod where

import Expr

eval (Const i) = i

eval (Add (e1,e2)) = eval e1 + eval e2

�

module ToStringMod where

import Expr

toString (Const i) = show i

toString (Add (e1,e2)) = (toString e1) ++ "+" ++ (toString e2)

�

module Client where

import Expr

import ToStringMod

import EvalMod

r1 = print (toString e1)

r2 = print (show (eval e1))

r3 = print (toString e2)

r4 = print (show (eval e2))

Figure 1: Functional decomposition in Haskell – program Pfun
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Figure 2: Coverage of modules with respect to functions and data constructors

Fig. 2(a) shows a matrix indexed on constructors and functions where the modules of interest have been
pictured. For instance, the module EvalMod deals with the two constructors but with only one function.

This program architecture makes it easy to modify an existing function since the code to deal with is
localized by syntactic module boundaries. It is also easy to add a new function by adding a new module.
However, this code is not modular with respect to data constructors. The code corresponding to a given
constructor (e.g., Add) crosses module boundaries. So, when the data type is extended and a new constructor
(e.g., Mult) is introduced, each function module must be modified in order to take into account the new
constructor.

Figs. 3 and 2(b) describe an alternate code architecture. That structure gathers all the pieces of code
related to a given constructor into a single module. For instance, the module ConstMod collects the parts
of the definition of eval and toString for the Const case. Fig. 2(b) pictures this architecture: modules in
the matrix do not cover functions anymore but constructors.

This alternative code is modular with respect to data constructors. Indeed, this program structure
makes it easy (modular) to add a new constructor (e.g., Mult for a product): the corresponding module
is introduced (and fold is extended with a new case). However, this code is not modular with respect to
functionalities: the code corresponding to a given function (e.g., eval) is spread in all constructor modules.
So, when a new function is introduced, each module must be modified in order to take the implement the
new function.

This illustrates the tyranny of the dominant decomposition in action. Whatever primary program
structure is chosen, some extensions will not be modular.

2.2 The Expression Problem

The problem we have described has been subject to many proposals in the context of the so-called Ex-
pression Problem (see [29] for a review of some solutions). The expression problem tries to tackle modular
extensibility from a language point of view and imposes constraints that are coherent for this point of view.
These constraints are the following [28]:

• The extension should come as a separate file/module and should not require to modify existing
files/modules.

• The files/modules that were already in the program before the extension should not be recompiled.

• The type system should be able to ensure that the extension is safe.

Several works (for instance those listed in [29]) show that specific features of the host language makes
it possible to design a program structure where it is modular to extend the data type, and also modular
to extend the functionalities. However, as we will see, these solutions share a drawback: maintenance is
not modular. Indeed, successive evolutions tend to break the initial structure [6]. This is not taken into
account by the expression problem.

2.3 Extension is only part of the problem

In order to illustrate the deviation from structural regularity with referenced solutions to the expression
problem, we consider an incremental development scenario for our example of application. However, we
abstract the code of our example and consider a data-type with two constructors C1 and C2 (instead of
Const and Add), as well as two functions f1 and f2 (instead of eval and toString).
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�

module Expr where

data Expr =

Const Int

| Add (Expr ,Expr)

fold a c (Const i) = c i

fold a c (Add (e1,e2)) = a (fold a c e1) (fold a c e2)

e1 = Add (Add (Const 1,Const 2),Const 3)

e2 = Add (Add (Const 0,Const 1),Const 2)

�

module ConstMod (toString ,eval) where

toString x = show x

eval x = x

�

module AddMod (toString ,eval) where

toString x y = x ++ "+" ++ y

eval x y = x + y

�

module Client where

import Expr

import ConstMod (eval ,toString)

import AddMod (eval ,toString)

toString x = fold AddMod.toString ConstMod.toString x

eval x = fold AddMod.eval ConstMod.eval x

r1 = print (Client.toString e1)

r2 = print (show (Client.eval e1))

r3 = print (Client.toString e2)

r4 = print (show (Client.eval e2))

Figure 3: Constructor decomposition in Haskell – program Pdata
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The initial program considered in this scenario has an architecture focusing either on function extensi-
bility or on data extensibility, depending on a design choice. These two possible architectures are pictured
in the following two diagrams.

C1 C2

f1

f2

C1 C2

f1

f2

The left hand side diagram means that there is a module1 for each constructor of the data type and
the code of the functions is spread over these modules. This illustrates the situation in the architecture of
Fig. 3 and also in the classical object approach (Composite design pattern). The right hand side diagram
means that there is a module for each function and the code corresponding to a constructor of the data
type is spread over these modules. This illustrates the situation of the classical functional approach (Fig. 1)
and also in the Visitor design pattern.

1. Extension : Introduce a new constructor C3 (for instance Mult).

2. Extension : Introduce a new function f3 (for instance derive).

3. Extension : Introduce a new constructor C4 (for instance Div).

4. Extension : Introduce a new function f4 (for instance check div by zero).

5. Maintenance : Modify the function f1.

6. Maintenance : Modify the data constructor C1.

Figure 4: Evolution scenario

We now assume that we have chosen a particular solution to extend any axis by providing a new module
(for instance, one of the solutions cited in [29]) and we examine what happens with the scenario of Fig 4.
The progress of this scenario is illustrated by Figure 5(a) and is detailed below. Grey zones in the figure
represent the code which has been added or modified.

Two first extensions (evolutions 1 & 2). After the first two evolutions, we are in one of the following
situations, depending on the initial program:

C1 C2

f1

f2

C3

f3

C1 C2

f1

f2

C3

f3

In the left-hand side diagram, the extension of the data type with C3 is natural, and adding the function
f3 can be done with the chosen specific language feature (in this case, the “module” for f3 has a different
nature from the three other modules of the application).

In the right-hand side diagram, we have extended f1 and f2 with the chosen specific modular feature to
take C3 into account and then we add f3. If we want the extension for f3 to be fully modular, we have to
define f3 on C1, C2 and C3 in a single module. (Another solution would have been to make a module with
f3 defined on C1 and C2 and to complete the module of C3, but we do not consider this is modular). Even
if the modules for f1, f2 and f3 are of the same nature, they do not cover the same subset of constructors.

This means that one cannot fully rely on f1 or f2 as patterns to write f3 (problem 1: loss of regularity

for extensions).

1We generalize the definition of module to: “any modular entity of the programming language”. For instance, a function
definition is a modular entity.
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(a) Progress with a language-level solu-
tion for two initial architectures.
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(b) Progress with architecture transformations.

Figure 5: Progress of the evolution scenario in different cases.
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Two following extensions (evolutions 3 & 4). Now, let us take two more extensions into account.

C1 C2

f1

f2

C3

f3

C4

f4

C1 C2

f1

f2

C3

f3

C4

f4

In the left-hand side diagram, C4 is added naturally as a module, but we see that the corresponding
module does not cover the same functions as the modules for C1, C2 and C4 (this boils downs to the
problem 1). Then f4 is added with the same technique as f3 but, again, the module for f4 does not cover
the same cases as the module for f3.

We meet the same problems in the case of the right-hand side diagram.
We can observe that the regular architecture of the initial programs rapidly becomes disordered with

incremental extensions. This will reveal to be bad at maintenance time.

Maintenance time (evolutions 5 & 6). Now we have to modify f1 (to correct an error or to cope
with a change in its specification). In the (initially) data-centered architecture (left-hand side), the code
for f1 is already spread over several modules in the original program. In the (initially) operation-centered
architecture, the code is finally also spread over several modules. This means that we have lost the benefit
of the initial modularity: the maintenance is no more modular (problem 2: loss of the initial modularity

properties).
This is the same for the maintenance of C1: in the data-centered architecture, the code has become

spread over several modules. Moreover, the number of modules on which the code dealing with a constructor
is spread is different for C1 and C3.

The example of this section shows that the technical solutions for modular extensibility are not sufficient
for modular maintainability.

3 Views and Transformations

Multiple views [7] aim at solving the problem described in the previous section. We now recast this in our
setting.

3.1 Programs and Views

We call views of a program two or more textual representations of programs that have the same behavior
(they are semantically equivalent in a given calculus). For instance, Pdata and Pfun are two views of the
same program (this is justified later in the paper).

3.2 A Solution to the Modular Maintenance Problem

We illustrate the use of views to solve the problem of modularity in evolutions by building an automated
transformation of Pdata into Pfun and its reverse transformation.

With such a tool, the programmer can choose the view in which the evolution he has to implement is
modular. Fig. 5(b) illustrates the scenario given in section 2.3 with this approach. For instance, when the
programmer wants to add a new constructor (evolution 1), the program is presented in the data-centered
view; when the programmer wants to add a new function (evolution 2), the program is presented in the
operation-centered view. Since none of these evolutions has to be made transversely to the considered axis
of decomposition, the views of interest always keep a regular architecture. This approach enables to solve
the problems 1 and 2 described in section 2.3.

This approach also has the following advantages compared to solutions to the expression problem:

• It does not rely on a particular programming language. As soon as two alternative programming
structures can be expressed in a language, the corresponding transformation can be defined.
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• The programmer who implements the evolution does not have to learn a new language or possibly
complex language features. Of course, he has to cope with several views.

• The programmer does not have to learn a new type system. In particular, if the programming language
is strongly typed, the different views are also strongly typed and the types they introduce are closely
related. In this case, typing issues boil down to verify once for all that the program transformations
do not break typing.

• The approach is not limited to the data-centered view versus the function-centered view. It is not
even limited to two views.

Of course, this approach is not free from disadvantages:

• The programmer who implements the evolution has to cope with several views.

• The transformation has to be implemented, which requires some work from a “transformation de-
signer” and a supporting tool.

3.3 Refactoring tools to navigate between views

Developing a program transformation from scratch is not easy. Refactoring tools provide a simple, high-
level way to transform programs and are available for several kinds of languages. For this reason, we have
chosen to explore the use of a refactoring tool to build our example of transformation.

“Refactoring is the process of changing a software system in such a way that it does not alter the external

behavior of the code yet improves its internal structure” [13]
Given our definition of programs and views, a code refactoring changes the views of the considered

program (a refactoring tool enables to pass from one view to another). Griswold [14] shows that refactoring
tools can be used to change a function-centered architecture into a data-centered architecture. In particular,
he exemplifies his technique with the program Parnas [22] had employed to illustrate different architectures
for a same program, each with different advantages and disadvantages. Griswold uses refactoring tools to
improve the structure of code. We adopt a more dynamical point of view, where an improvement is not
absolute, but driven by a temporary need: once the driving evolution is implemented, we may need to
revert to the initial architecture.

Some refactoring tools are provided with most popular IDEs, for several mainstream languages (Java
in Eclipse [3] and NetBeans [1], C++, C#, VB in Visual Studio [5]). Refactoring tools have also found
an interest in the academic community, and some tools which are based on sound foundations have been
proposed, for instance for Haskell and Erlang [20], C [25], Smalltalk [23] or Lisp [15]. Finally, some
refactoring tools have been specifically designed to support views in an object-oriented context [7, 24] (see
section 6.3).

It is important to note that some refactoring tools are not sound. In particular, with the Eclipse
refactoring tool for Java, after refactoring operations have been applied, the user has to fix broken code
himself [3, 2]. For this reason, we focus in this paper on one of the refactorers which provides operations
whose principles have been proved correct: the Haskell Refactorer (HaRe) [4, 19, 26]. The formalism used
in [19] is a λ-calculus with let-rec with a mixed call-by-name/call-by-need strategy. A relation of equivalence
based on the reduction rules of that calculus expresses the behavior preservation which is used to prove the
correctness of the operations.

Before applying a refactoring operation, the Haskell Refactorer checks that the conditions to ensure its
correctness are verified. For instance, it checks that a renaming does not introduce a name clash. When
these conditions are not verified, the refactorer does not apply the changes and explains why.

4 Implementation of an Architecture Transformer with a Refac-

torer

In this section, we show how Pfun can be transformed into Pdata by using the Haskell Refactorer, and the
other way around. We also show how the chain of refactoring operations can be automated.

4.1 Decomposing the transformation into refactoring operations

We describe in this section the steps to transform Pfun into Pdata with the Haskell Refactorer. As already
said, each of these operations checks that the conditions that make the refactoring correct are verified.
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In the following, we consider only the eval function. The chain of operations is the same on the
toString function. Here is the code which is considered in Pfun :

�

-- from EvalMod

eval (Const i) = i

eval (Add (e1,e2)) = eval e1 + eval e2

�

--from Client

r2 = print (show (eval e1))

r4 = print (show (eval e2))

We now present the transformation steps. All the fragments of code we show in this section are the
result of the use of the refactorer (except for the comments introduced by -- and some empty lines which
are skipped).

1. We introduce new local definitions for the code of each constructor case (Haskell Refactorer’s Introduce
New Definition operation).

�

eval (Const i) = evalConst

where

evalConst = i

eval (Add (e1,e2)) = evalAdd

where

evalAdd = (eval e1) + (eval e2)

2. In each of these new definitions, depending on the constructor concerned (Const or Add), we generalize
either the arguments of the constructor, or the recursive calls of eval on these arguments (Generalise

def ).
�

eval (Const i) = evalConst i

where

evalConst x = x

eval (Add (e1,e2)) = evalAdd (eval e1) (eval e2)

where

evalAdd x y = (x) + (y)

3. We lift the new local definitions to make them global (Lift Definition to Top Level).
�

eval (Const i) = evalConst i

eval (Add (e1,e2)) = evalAdd (eval e1) (eval e2)

evalAdd x y = (x) + (y)

evalConst x = x

4. In the definition of eval, we generalize evalConst and evalAdd (Generalise def ).
�

eval a c (Const i) = c i

eval a c (Add (e1,e2)) = a (((eval a) c) e1) (((eval a) c) e2)

By applying that operation, all the existing references to eval, in particular in the module Client,
are transformed to take the new parameters into account. In the body of eval, references to eval

are replaced by ((eval f Add) f Const). In the module Client, references to eval are replaced by
eval eval gen 1 eval gen where eval gen is defined by evalConst in EvalMod and eval gen 1 is
defined by evalAdd.
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�

-- from EvalMod module

eval_gen_1 = evalAdd

eval_gen = evalConst

�

-- from Client module

r2 = print (show (eval eval_gen_1 eval_gen e1))

r4 = print (show (eval eval_gen_1 eval_gen e2))

5. We rename eval into fold1 (Rename).
�

-- from EvalMod module

fold1 a c (Const i) = c i

fold1 a c (Add (e1,e2)) = a (((fold1 a) c) e1) (((fold1 a) c) e2)

�

-- from Client module

r2 = print (show (fold1 eval_gen_1 eval_gen e1))

r4 = print (show (fold1 eval_gen_1 eval_gen e2))

6. We introduce a new definition named eval for the expression fold1 eval gen 1 eval gen e1 in the
module Client, we lift it at the top level, and abstract it over e1.

�

r2 = print (show (eval e1))

eval x = fold1 eval_gen_1 eval_gen x

r4 = print (show (fold1 eval_gen_1 eval_gen e2))

7. We fold the definition of eval to make it appear in r4 (Fold Definition).
�

r2 = print (show (eval e1))

eval x = fold1 eval_gen_1 eval_gen x

r4 = print (show (eval e2))

8. We unfold the occurrences of eval gen and eval gen 1 (Unfold def ) and we remove their definitions
(Remove def ).

�

eval x = fold1 evalAdd evalConst x

9. We move the definitions of evalConst and evalAdd from EvalMod to ConstMod and AddMod and
rename them into eval.

�

r2 = print (show (Client.eval e1))

eval x = fold1 AddMod.eval ConstMod.eval x

r4 = print (show (Client.eval e2))

10. We move the definition of fold1 into the Expr module. The module EvalMod is now empty.

11. We remove useless imports of module EvalMod in the module Client (Clean imports).

In practice, after this sequence of refactorings, fold1 and the fold2 we get from the transformation of
toString are α-equivalent. One of them may be deleted to find the exact Pdata described in section 2.1
(this seems not to be supported by the Haskell Refactorer at the moment).

The layout is also not exactly the same as expected (e.g., there are additional pairs of parenthesis).
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Soundness. If we use behavior preserving refactoring operations, then the chain of refactoring operations
is also behavior preserving (and Pfun is equivalent to Pdata ). Some Haskell Refactorer’s operations’s princi-
ples have been shown to be correct [26, 19]. However, there are some bugs left in the implementation, and
not all the available operations have been proved correct, including some of the ones we are using2

Reverse transformation. A simple approach to build the reverse transformation would be to use the
inverse of each operation used in the Pfun → Pdata transformation in the reverse order (since (f ◦ g)−1 =
g−1 ◦ f−1). However, the Haskell Refactorer does not provide an inverse for each operation, so our reverse
transformation cannot be automatically derived from the first transformation.

We do not detail here the reverse transformation (the script is given in Figs 8 and 9 ). The key steps
are to unfold the instances of ConstMod.eval, ConstMod.toString, AddMod.eval, AddMod.toString and
to transform eval and toString, which are defined by calls to fold 1 and fold 2, into plain recursive
function definitions. This particular step is done by using the Generative Fold operation of the Haskell
Refactorer (folding in [10], see [9]). Note that to use the generative fold, a preliminary step has to be done
by hand: a function definition must be duplicated into a comment. We have introduced in the Haskell
Refactorer a feature to support this duplication into comments in order to make the whole chain supported
by the tool and to be able to automate it.

We also have had to add some features to the refactorer to simplify the code we get after unfolding
some functions defined by equations with patterns in order to reach the code of Pdata (see appendix B for
the list of operations we have implemented into HaRe).

4.2 Automation of the process.

An engineering effort has been necessary to automate the transformation since the API of the Haskell
Refactorer does not match our needs. In particular, HaRe is designed to be used interactively with text
editors as Emacs and the parameters of the operations are cursor positions (line and column numbers)
in source files. For this reason we have developed functions to locate sub-expressions of interest in files
before calling HaRe operations with the computed parameters. This allows us to provide new interfaces
for HaRe operations (at least for those we needed) that do not rely on the particular layout in the source
files (see appendix A for the list of interfaces to HaRe operations we have implemented). Like original
HaRe operations, our interfaces to HaRe operations are available as Emacs-Lisp functions in addition to
interactive menu entries. This allows to invoke them in Emacs-Lisp programs.

Our transformations can thus be expressed by Emacs-Lisp programs. Since these programs are re-
duced to sequences of operations with side-effects, we call them scripts. Fig. 7 shows the script of the
transformation Pfun → Pdata (we assume the definitions of Fig. 6 are evaluated first).

�

(defvar f1 "eval" )

(defvar f2 "toString " )
(defvar c1 "Const" )
(defvar c2 "Add" )

(defvar f1mod "EvalMod " )
(defvar f2mod "ToStringMod" )

(defvar f1c1 (concat f1 c1) )
(defvar f1c2 (concat f1 c2) )
(defvar f2c1 (concat f2 c1) )

(defvar f2c2 (concat f2 c2) )
(defvar c1mod (concat c1 "Mod"))

(defvar c2mod (concat c2 "Mod"))
(defvar f1reducer "fold1" )

(defvar f2reducer "fold2" )
(defvar dummyc1 "c" )
(defvar dummyc2 "a" )

(defvar clientmod "Client" )

Figure 6: Pfun → Pdata script preliminary definitions

2This problem is different from the problem in Eclipse for which the answer is : “If the refactoring causes problems in

other methods, these are ignored and you must fix them yourself after the refactoring.” [3] and “Note that some modifications

you make to the method, such as adding a parameter or changing a return type, may cause the refactored code to contain

compiler errors because Eclipse doesn’t know what to enter for those new parameters.” [2].
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;; 1 - introduce new definitions
(haskell-refac-exhibitFunction f1 c1 f1c1 f1mod)
(haskell-refac-exhibitFunction f1 c2 f1c2 f1mod)

(haskell-refac-exhibitFunction f2 c1 f2c1 f2mod)
(haskell-refac-exhibitFunction f2 c2 f2c2 f2mod)

;; 2 - abstract some arguments in these definitions
(haskell-refac-generalise f1 c1 f1c1 f1mod "0" "x" "Curried " "OtherType")

(haskell-refac-generalise f2 c1 f2c1 f2mod "0" "x" "Curried " "OtherType")
(haskell-refac-generalise f2 c2 f2c2 f2mod "1" "y" "UnCurried" "RecType ")

(haskell-refac-generalise f2 c2 f2c2 f2mod "0" "x" "UnCurried" "RecType ")
(haskell-refac-generalise f1 c2 f1c2 f1mod "1" "y" "UnCurried" "RecType ")

(haskell-refac-generalise f1 c2 f1c2 f1mod "0" "x" "UnCurried" "RecType ")

;; 3 - lift the new functions to the top-level

(haskell-refac-makeGlobalOfLocalIn f1 f1c1 f1mod)
(haskell-refac-makeGlobalOfLocalIn f1 f1c2 f1mod)

(haskell-refac-makeGlobalOfLocalIn f2 f2c1 f2mod)
(haskell-refac-makeGlobalOfLocalIn f2 f2c2 f2mod)

;; 4 - abstract the functions of interest from the introduced functions
(haskell-refac-generaliseIdent f1 f1mod f1c1 dummyc1 )

(haskell-refac-generaliseIdent f1 f1mod f1c2 dummyc2 )
(haskell-refac-generaliseIdent f2 f2mod f2c1 dummyc1 )

(haskell-refac-generaliseIdent f2 f2mod f2c2 dummyc2 )

;; 5 - rename the functions of interest (they have become traversal functions)

(haskell-refac-renameToplevel f1 f1mod f1reducer)
(haskell-refac-renameToplevel f2 f2mod f2reducer)

;; 6 - reconstruct the functions of interest as calls to the traversal functions

;; with appropriate arguments
(haskell-refac-newDefFunApp f1reducer "3" f1 clientmod)
(haskell-refac-newDefFunApp f2reducer "3" f2 clientmod)

(haskell-refac-makeGlobalOfLocal f1 clientmod)
(haskell-refac-makeGlobalOfLocal f2 clientmod)

(haskell-refac-generaliseIdent f1 clientmod "e1" "x")
(haskell-refac-generaliseIdent f2 clientmod "e1" "x")

;; 7 - propagate the new definitions
(haskell-refac-foldToplevelDefinition f1 clientmod)

(haskell-refac-foldToplevelDefinition f2 clientmod)

;; 8 - unfold dummy definitions and remove them
(haskell-refac-unfoldInstanceIn (concat f1 "_gen") f1 clientmod)
(haskell-refac-unfoldInstanceIn (concat f1 "_gen_1 ") f1 clientmod)

(haskell-refac-unfoldInstanceIn (concat f2 "_gen") f2 clientmod)
(haskell-refac-unfoldInstanceIn (concat f2 "_gen_1 ") f2 clientmod)

(haskell-refac-removeDefCmd (concat f1 "_gen") f1mod)
(haskell-refac-removeDefCmd (concat f1 "_gen_1") f1mod)

(haskell-refac-removeDefCmd (concat f2 "_gen") f2mod)
(haskell-refac-removeDefCmd (concat f2 "_gen_1") f2mod)

;; 9 - move business functions to the appropriate modules

(haskell-refac-moveDefBetweenModules f1c1 f1mod c1mod)
(haskell-refac-moveDefBetweenModules f1c2 f1mod c2mod)
(haskell-refac-moveDefBetweenModules f2c1 f2mod c1mod)

(haskell-refac-moveDefBetweenModules f2c2 f2mod c2mod)

;; rename the business functions to make them share the same name
(haskell-refac-renameToplevel f1c1 c1mod f1)
(haskell-refac-renameToplevel f1c2 c2mod f1)

(haskell-refac-renameToplevel f2c1 c1mod f2)
(haskell-refac-renameToplevel f2c2 c2mod f2)

;; 10 - move the functions into the relevant modules

(haskell-refac-moveDefBetweenModules f1reducer f1mod "Expr")
(haskell-refac-moveDefBetweenModules f2reducer f2mod "Expr")

;; 11 - clean imports
(haskell-refac-cleanImportsCmd clientmod)

Figure 7: Pfun → Pdata transformation script
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;; reverse 10 -

(haskell-refac-moveDefBetweenModules f1reducer "Expr" f1mod)
(haskell-refac-moveDefBetweenModules f2reducer "Expr" f2mod)

;; reverse 9 - use specific names for business functions
(haskell-refac-renameToplevel f1 c1mod f1c1)

(haskell-refac-renameToplevel f1 c2mod f1c2)
(haskell-refac-renameToplevel f2 c1mod f2c1)

(haskell-refac-renameToplevel f2 c2mod f2c2)

;; reverse 9 - move business functions to the original modules
(haskell-refac-moveDefBetweenModules f1c1 c1mod f1mod)
(haskell-refac-moveDefBetweenModules f1c2 c2mod f1mod)

(haskell-refac-moveDefBetweenModules f2c1 c1mod f2mod)
(haskell-refac-moveDefBetweenModules f2c2 c2mod f2mod)

;; move f1 f2 to f1mod f2 mod
(haskell-refac-moveDefBetweenModules f1 clientmod f1mod)

(haskell-refac-moveDefBetweenModules f2 clientmod f2mod)

(haskell-refac-cleanImportsCmd clientmod)

;; reverse 4/5/6/7 - transform a call to fold into a recursive function

;; prepare the generative fold operations :

;; the equations for functions of interest are saved into comments
(haskell-refac-duplicateIntoComment f1 f1mod)

(haskell-refac-duplicateIntoComment f2 f2mod)

;; unfold the use of the traversal function

;; in the definition of functions of interest
(haskell-refac-unfoldInstanceIn f1reducer f1 f1mod)

(haskell-refac-unfoldInstanceIn f2reducer f2 f2mod)

;; unfolding has produced case expressions that have
;; to be simplified
(haskell-refac-simplifyCasePattern f1 f1mod)

(haskell-refac-unfoldInstanceIn dummyc2 f1 f1mod)
(haskell-refac-unfoldInstanceIn dummyc2 f1 f1mod)

(haskell-refac-unfoldInstanceIn dummyc2 f1 f1mod)
(haskell-refac-removeLocalDef dummyc2 f1 f1mod)

(haskell-refac-simplifyCasePattern f1 f1mod)
(haskell-refac-unfoldInstanceIn dummyc1 f1 f1mod)

(haskell-refac-unfoldInstanceIn dummyc1 f1 f1mod)
(haskell-refac-unfoldInstanceIn dummyc1 f1 f1mod)

(haskell-refac-removeLocalDef dummyc1 f1 f1mod)

(haskell-refac-simplifyCasePattern f2 f2mod)

(haskell-refac-unfoldInstanceIn dummyc2 f2 f2mod)
(haskell-refac-unfoldInstanceIn dummyc2 f2 f2mod)

(haskell-refac-unfoldInstanceIn dummyc2 f2 f2mod)
(haskell-refac-removeLocalDef dummyc2 f2 f2mod)

(haskell-refac-simplifyCasePattern f2 f2mod)
(haskell-refac-unfoldInstanceIn dummyc1 f2 f2mod)

(haskell-refac-unfoldInstanceIn dummyc1 f2 f2mod)
(haskell-refac-unfoldInstanceIn dummyc1 f2 f2mod)

(haskell-refac-removeLocalDef dummyc1 f2 f2mod)

;; the case expressions introduced by the unfolding

;; have to be transformed into equations
(haskell-refac-caseToEq f1 f1mod)

(haskell-refac-caseToEq f2 f2mod)

;; fold the use of the traversal function in the body of the
;; functions of interest in order to get a recursive definition
;; (without a call to the traversal function)

(haskell-refac-generativeFold f1reducer "3" f1mod)
(haskell-refac-generativeFold f1reducer "3" f1mod)

(haskell-refac-generativeFold f2reducer "3" f2mod)
(haskell-refac-generativeFold f2reducer "3" f2mod)

;; comments introduced for the generative fold can be deleted
(haskell-refac-rmCommentBefore f1 f1mod)

(haskell-refac-rmCommentBefore f2 f2mod)

;; the traversal functions can be deleted
(haskell-refac-removeDefCmd f1reducer f1mod)
(haskell-refac-removeDefCmd f2reducer f2mod)

;; end of the transformation of the call to fold into a recursive function.

Figure 8: Pdata → Pfun transformation script (first part)
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;; reverse 1/2/3 - replace calls to the business functions by their bodies (unfold)
;; and delete the business functions.

(haskell-refac-unfoldInstanceIn f1c1 f1 f1mod)
(haskell-refac-unfoldInstanceIn f1c2 f1 f1mod)
(haskell-refac-unfoldInstanceIn f2c1 f2 f2mod)

(haskell-refac-unfoldInstanceIn f2c2 f2 f2mod)

(haskell-refac-removeDefCmd f1c1 f1mod)
(haskell-refac-removeDefCmd f1c2 f1mod)
(haskell-refac-removeDefCmd f2c1 f2mod)

(haskell-refac-removeDefCmd f2c2 f2mod)

Figure 9: Pdata → Pfun transformation script (end)

5 Usage and Future Work

This section discusses the possibility of using views with the tool we demonstrated here and proposes future
works to improve this use.

Development of the transformation. The first problem with our setting is that the transformation
has to be implemented. We could ease this task by several means:

• Compute automatically the transformation based on the hints of the designer, as done in [7] and [24]
or provide a more high level transformation specific language.

• Provide a list of examples to be used as transformation patterns.

• Once a transformation is defined, generate automatically the inverse transformation.

• Record the sequence of commands used in an interactive refactorer (as Eclipse does [2]).

Maintenance of the transformation. As the program evolves, the transformation may need to evolve
too. We could study how an evolution impacts a transformation. Some simple examples seem to be directly
tractable: for instance, if the evolution to be implemented is the renaming of a function, we can imagine
that the refactoring tool that propagates the renaming could also propagate it into the transformation
script.

Duration. The transformation of our example takes about 15 seconds (on a 2.8 GHz Intel Pentium R
processor) and 7 seconds for the reverse transformation. This is longer than the compile time of the program
(less than 1 sec.). We can suppose that the transformations can be integrated into the build process that
takes place once a new version of the code is released, so that when a programmer has to implement an
evolution, all the designed views are available. Of course, this supposes all the views have been designed
together with the initial program.

Availability of a tool for a given language. We have chosen to use an existing refactoring tool instead
or rebuilding one. We have produced 615 LOC to implement missing refactoring operations and 1160 LOC
for the new interface. This has to be compared to the size of a refactoring tool (11 KLOC for Arcum [24]).
So our approach depends on the tools available for the language of interest.

Failures From an operational point of view, as each operation of the chain requires some pre-conditions
to be satisfied, it may occur that the user is informed that the transformation cannot be achieved only
after some operations have been applied. In order to inform the user as soon as possible (statically instead
of dynamically) that the transformation cannot be applied, we could compute the pre-condition of the
transformation, for instance by following the work of Kniesel and Koch [17]. This would imply to provide
a formal description of the pre-conditions and effects (post-conditions or Kniesel and Koch’s backward-
descriptions) of all the operations used.

6 Conclusion

6.1 Contributions.

The contributions of this report are the following:
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• We give an example of use of multiple views in a functional programming language. That example
comes from the expression problem.

• We implement that transformation with an existing refactorer, the Haskell Refactorer, and we auto-
mate it. To be able to do this, we extend the interface of the refactorer and add a few operations in
it.

6.2 Comparison to view tools

Compared to some other multiple views implementations (in particular [7], [24]) and to the implementation
of [15], our approach has the following pros and cons:

• ⊕ We rely on a previously existing refactorer. We had to implement few lines of code to adapt
it to support views. The engineering effort is very small compared to building a dedicated tool.
Moreover, the basic operations are already proved correct (yet not all of them, and not the concrete
implementation).

• 	 The expression of the transformation is rather low level. It is imperative (as in [15]) while in [7]
and [24] it is declarative. Moreover, it is not automatically invertible.

• 6= We focus on dealing with fragments of business code while [7] focuses on classes and method
interactions and [14] focuses on data-structure encapsulation (at least in the example from Parnas).

6.3 Related Work

Offering to the programmer (or designer or specifier) an appropriate view is not a new idea. Here is a
review of some relevant related work.

Before Wadler introduced the expression problem [28], he had already proposed the notion of views [27].
His view feature makes it possible to use pattern matching with different representations of a data structure.
At compile time different views of a data structure are defined and their relationships are specified by
rewriting rules. At run-time, a single data structure is maintained and pattern matching on different
representations are translated to accessor functions that compute a (partial) view from another one. This
is closely related to our problem, but we do not focus on data structures but on code structures and we
extend and maintain programs before run-time.

Griswold [14, 15] shows that elementary refactoring operations can be chained to provide architecture
transformations. However, as already said in section 3.3, while Griswold’s goal is to improve the structure
of code, our goal is to dynamically adopt a structure which is convenient for a given task.

We share with Black and Jones [7] the same motivation and the idea that multiple views solves the
tyranny of dominant decomposition problem. However, the techniques are rather different. In their im-
plementation, the programmer describes properties of the fragments of code which are used to compute
the views. In Shonle et al. [24], it is the transformation which is described. It is described declaratively
by rewriting rules. Both works handle mainly object oriented language concepts (classes, methods, field
accesses).

Functional programs are prone to be transformed. Numerous program transformations have been pro-
posed. Some comes in pairs, or are invertible. For instance, Danvy have studied relationship between the
continuation passing style and the direct style [11]. In general a program transformation is not invertible.
Forster et al. [12] have proposed a domain specific language to define invertible transformations. Once
a transformation is specified, the inverse transformation is automatically derived. This enables them, for
instance, to share data between several applications that require different representations. Note that, a
view can be partial and the original representation can be required in order to transform a modified view
back to its original form by injecting the updated data. This work has been extended in order to deal with
classes of equivalent representations (e.g., two lists of associations (key,value) can be equivalent even if the
order of the pairs are different) [8].

Views have also been introduced at the specification level. For instance, Jackson [16] shows how to
compose Z specifications on different views of the same state. At the specification level, the composition is
not computational (it does not require transformation) but declarative: invariants relate the different views
of the state.

Literate programming [18] proposes to invert the role of code and comments (comments becomes the
main view of a program and is commented by a few pieces of code). More importantly, literate programming
enables to decompose and reorder pieces of programs. This way, the literate view for human has to be
transformed into the code view for the compiler. However, the transformation is single way. This does not
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help for the maintenance or the evolution problem (since the code is not transformed but only reordered)
but this proves its is important to present alternative views for the programmer.

Web Sites
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A Interfaces added to Refactoring Operations

Introduce new def.

• haskell-refac-exhibitFunction f c n m

In the equation concerning the constructor c in the definition of f in the module m, create a new local
definition for the right hand side of the equation as n .

• haskell-refac-newDefFunApp f n f’ m

Find an application of the identifier f to n arguments in the module m and create a new local definition
for that application as f’.

Generalise def.

• haskell-refac-generalise f c f’ m n x curry "OtherType"

In the module m, in the equation concerning the constructor c of the definition of f, let v be the nth

argument of the constructor c in the pattern of the equation, generalise v in the local definition of f’
and name x the new argument.

The flag curry indicates whether the arguments of the constructor are curried or not to count the
arguments.

• haskell-refac-generalise f c f’ m n x curry "RecType"

In the module m, in the equation concerning the constructor c of the definition of f, let v be the nth

argument of the constructor c in the pattern of the equation, generalise an application of f to v in
the local definition of f’ and name x the new argument.

• haskell-refac-generaliseIdent f m v x

In the definition of f in the module m, generalise the variable v and name the new parameter x.
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Lift def to top level.

• haskell-refac-makeGlobalOfLocalIn f d m

Lift the definition of d at the top-level. d is declared inside the definition of f in the module m,

Rename.

• haskell-refac-renameTopLevel f m f’

Rename t declared at the top-level in the module m into f’.

Move def to another module.

• haskell-refac-moveDefBetweenModules f m m’

Move the top-level definition of f from module m to module m’.

Unfold def./Fold def.

• haskell-refac-unfoldInstanceIn d f m

Replace an instance of the identifier d by the boy of its definition, in the body of f in module m. If
possible, a beta-reduction is applied (see the corresponding HaRe operation).

• haskell-refac-foldToplevelDefinition f m

Fold the definition of function f of module m (see the corresponding HaRe operation).

Generative Fold

• haskell-refac-generativeFold f "i" m

Select an application of the identifier f to i arguments in m and apply HaRe Generative Fold operation
on it (a comment must be present before the affected declaration, see the HaRe operation).

Remove def.

• haskell-refac-removeDefCmd f m

Remove the definition of f in the module m. f must not be used elsewhere.

• haskell-refac-removeLocalDef d f m

Remove the definition of d which is local to f in the module m. f must not be used elsewhere.

Clean imports, Remove from export.

• haskell-refac-cleanImportsCmd m

Call the Clean imports operation on the module m (remove the useless imports).

• haskell-refac-rmFromExports f m

Remove f from the explicit exports of the module m. f must not be used in an other module.

B Added Refactoring Operations

Simplify a case pattern matching. This operation transforms the first code below into the second code
below.

�

case (e1, e2, e3) of

(y, p11 , p12) -> b1

(y, p21 , p22) -> b2

�

let y = e1

in case (e2, e3) of

(p11 , p12) -> b1

(p21 , p22) -> b2
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The patterns and the matched expression have to be tuples.

The refactoring applies when there is a same identifier at the same position in all the pattern tuples.

Input : select the whole case expression.

haskell-refac-simplifyCasePattern f m

Apply the above operation on a case expression in the definition of f in the module m.

Transform a case pattern matching into equations. Transforms the first code below into the second
code below.

�

f x = case (x) of

p1 -> e1

p2 -> e2

�

f p1 = e1

f p2 = e2

The pattern in the initial case has to be reduced to a variable which occurs as a parameter of the
function.

A second version of this function is available for pattern matching on pairs:
�

f x y = case (x,y) of

(p11 ,p12) -> e1

(p21 ,p22) -> e2

�

f p11 p12 = e1

f p21 p22 = e2

haskell-refac-caseToEq f m

haskell-refac-caseToEq2 f m

Select the case expression which is at the top-level of the body of the declaration of f in the module
m and transform it into a set of equations.

Copy a declaration into a comment. Makes a copy of a declaration into a comment placed just above
the declaration (to be used before applying Generative Fold).

haskell-refac-duplicateIntoComment f m Copy of the declaration of f of the module m.

Remove a comment. Deletes a comment.

haskell-refac-rmCommentBefore f m Delete the comment occurring before the declaration of f at
the top-level of the module m.
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