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1 Texture-based analysis

1.1 2D structure extraction
The issue of extracting some structures, in the sense of some relevant part of images
or videos is really interesting in both the context of 2D and 3D video coding. The
possibility of extracting and tracking an object can be exploited to achieve a more
efficient prediction. The techniques of structure extraction include all contours, motion
and regions extraction.
Here we focus on some techniques for 2D video coding for contour and motion

extraction and trajectory estimation.
The paper [25] by Dubuisson and Jain presents an innovative (at the date of the

publication) approach to the extraction of the contour of a moving object. The method
is based on the fusion of a motion segmentation technique using image subtraction
and a coulor segmentation technique based on the split-and-merge paradigm and edge
information obtained from using the Canny edge detector [12]. The advantages of this
method are that it can detect large moving objects no matter how complicated the
background is, and it requires only three image frames that need not be consecutive
provided that the moving object is entirely contained in the three frames.
Another method for tracking, in an image sequence, complex object is presented

in the article by Bouthemy, Chaumette, Moreau and Marchand [11]. The approach
relies on the estimation of the 2D object image motion along with the computation
of the 3D object pose. The proposed method fulfills real-time constraints along with
reliability and robustness requirements.
As mentioned, the structure extraction can be exploited also for the extraction and

classification of motion in an image sequence basing on motion trajectories. The paper
by Yang, Ahuja and Tabb [80] presents an algorithm that first perform a multiscale
segmentation to generate homogeneous regions in each frame. Regions between consec-
utive frames are then matched to obtain two-view correspondences. Affine transforma-
tions are computed from each pair of corresponding regions to define pixel matches.
Pixels matches over consecutive image pairs are concatenated to obtain pixel-level
motion trajectories across the image sequence. Motion patterns are learned from the
extracted trajectories using a time-delay neural network. Experimental results show
that motion patterns of hand gestures can be extracted and recognized accurately
using motion trajectories.
Object segmentation and trajectory estimation can be also exploited to create a

successful object tracking system [57]. A new efficient motion detection algorithm re-
ferred to as the flux tensor is used to detect moving objects in infrared video without
requiring background modeling or contour extraction. The flux tensor-based motion
detector when applied to infrared video is more accurate than thresholding "hot-spots",
and is insensitive to shadows as well as illumination changes in the visible channel.
The object segmentation algorithm uses level set-based geodesic active contour evo-
lution that incorporates the fusion of visible color and infrared edge informations in
a novel manner. Touching or overlapping objects are further refined during the seg-
mentation process using an appropriate shape based model. Multiple object tracking
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is extended to handle groups of objects and occlusion events by Kalman filter-based
cluster trajectory analysis and watershed segmentation.
Most of the existing salient object detection approaches detect visually conspicuous

structures in images, while it can be useful also to find regions that may be important
for indexing in a video database system. In [5] is described a method to automatically
extract important video objects for object-based indexing. First there’s a segmentation
of each frame to obtain homogeneous regions in terms of color and texture. Then,
there’s the extraction of a set of regional and inter-regional color, shape, texture and
motion features for all regions, which are classified as being important or not using
SVMs trained on a few hundreds of example regions. Finally, each important region
is tracked within each shot for trajectory generation and consistency check.

1.2 3D structure extraction
1.2.1 Depth maps extraction

Recently the 3D video coding is assuming a relevant importance in the contest of
video processing and coding. Most of the times when we refer to 3D content, we are
considering stereo or multiview sequences with depth maps.
The extraction of depth maps is a very important issue for the context of 3D video

processing and coding. Here we try to resume some relevant or innovative techniques
for depth maps extraction that have been developed in the last years.
A relative depth layer extraction for monoscopic video using multi-line filters and

a layer selection algorithm is presented in the paper [14]. Main ideas are to extract
multiple linear trajectory signals from videos and to determine their relative depths
using the concept of motion parallax. The proposed superficial line model used for
detecting slow moving objects provides sufficient taps within few frames to reduce
frame buffer, while the closest-hit line model used for detecting fast motion objects
provides few enough taps to prevent blurring. To increase the correctness of layer map,
three-level layer map codecision is used to compensate low texture region defect.
Obtaining an accurate and precise depth map is the ultimate goal for 3D shape

recovery.
For depth map estimation, one of the most vital parts is the initial selection of the

focus measure and processing the images with the selected focus measure. Although,
many focus measures have been proposed in the literature but not much attention
has been paid to the factors affecting those focus measures as well as the manner
the images are processed with those focus measures. In the paper by Malika and
Choi [52], for accurate calculation of depth map, the authors consider the effects of
illumination on the depth map as well as the selection of the window size for application
of the focus measures. The resulting depth map can further be used in techniques and
algorithms leading to recovery of three-dimensional structure of the object which is
required in many high-level vision applications. It is shown that the illumination effects
can directly result in incorrect estimation of depth map if proper window size is not
selected during focus measure computation. Further, it is shown that the images need
some kind of pre-processing to enhance the dark regions and shadows in the image.
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For this purpose, an adaptive enhancement algorithm is proposed for pre-processing.
Without such pre-processing for image enhancement and without the use of proper
window size for the estimation of depth maps, it is not possible to obtain the accurate
depth map.
Three-dimensional shape recovery from one or multiple observations is a challenging

problem of computer vision. In this paper by Malika and Choi [51], it is presented
a new focus measure for the estimation of a depth map using image focus. This
depth map can subsequently be used in techniques and algorithms leading to the
recovery of a three-dimensional structure of the object, as required by high level vision
applications. The proposed focus measure has shown robustness in the presence of
noise as compared to the earlier focus measures. This new focus measure is based on
an optical transfer function implemented in the Fourier domain. The results of the
proposed focus measure have shown drastic improvements in estimation of a depth
map, with respect to the earlier focus measures.
With the development of 3DTV, the conversion of existing 2D videos to 3D videos

becomes an important component of 3D content production. One of the key steps in
2D to 3D conversion is how to generate a dense depth map. In the paper [38], it is
presented a novel depth extraction method based on motion and geometric informa-
tion for 2D to 3D conversion, which consists of two major depth extraction modules,
the depth from motion and depth from geometrical perspective. The H.264 motion
estimation result is utilized and cooperates with moving object detection to diminish
block effect and generates a motion-based depth map. On the other hand, a geometry-
based depth map is generated by edge detection and Hough transform. Finally, the
motion-based depth map and the geometry-based depth map are integrated into one
depth map by a depth fusion algorithm.
The emergence of three dimensional (3D) video applications, based on Depth Image

Based Rendering (DIBR) has brought up more requirements of bandwidth, due to the
need of depth information. This additional bandwidth requirement need to be tackled
to enable the widespread of 3D video applications based on DIBR. Exploiting visual
correlations between the colour image and the depth image, in depth image coding, will
reduce the requirement of high bandwidth required to transmit the additional depth
information. In the paper by De Silva, Fernando and Yasakethu [64], an object based
depth image coding technique is presented which is suitable for low bit rate 3D-TV
applications that are based on Depth Image Based Rendering. The proposed method
achieves at most 50% bit rate reduction at low bit rates.
A novel dense depth map estimation algorithm is proposed by Çigla and Alatan

[40] in order to meet the requirements of N-view plus N-depth representation, which
is one of the standardization efforts for the upcoming 3D display technologies. Hence,
extraction of multiple depth maps is achieved from multi-view video. Starting from
the piecewise planarity assumption of the scene, estimation of 3D structure of the
patches, obtained through color-based over-segmentation, is achieved by plane- and
angle-sweeping for every view independently. Markov Random Field (MRF) modeling
is utilized for each view in pixel-wise manner in order to relax and refine the estimated
planar models while incorporating visibility and consistency constraints. In this algo-
rithm, the fusion of multiple depth maps is performed by updating belief values on
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the observed nodes based on depth and color consistency during the refinement step.
The proposed method handles untextured surfaces, as well as depth discontinuities at
object boundaries. The experimental results illustrate reliability and the robustness
of the proposed algorithm for different type of scenes.
Experimental prototypes of entire 3DTV processing chains have been demonstrated

successfully during the last few years. In this context the paper by Kauff, Atzpadin
and Fehn [44], discusses an advanced approach for a 3DTV service, which is based on
the concept of video-plus-depth data representations. It particularly considers aspects
of interoperability and multi-view adaptation for the case that different multi-baseline
geometries are used for multi-view capturing and 3D display. Future 3DTV displays
will use different techniques for 3D reproduction, such as standard stereo systems
with glasses, tracked auto-stereoscopic single-user displays supporting HMP viewing or
auto-stereoscopic multi-view displays allowing several users to watch the same 3D scene
from different perspectives. Furthermore, future 3DTV systems should be backwards
compatible to existing 2D digital broadcast services. In this context, the estimation of
suitable depth maps from stereo or multi-baseline systems is certainly one of the most
challenging tasks. The only geometrical restriction on the multi-baseline configuration
is that the cameras are arranged along an almost straight or slightly curved line and
that they converge to one common 3D point. First a rectification process is performed:
a rotation of the two cameras within a stereo pair is used in order to obtain a pair of
rectified cameras with parallel optical axes.
After the rectification a disparity matching is applied to each pair of rectified cameras

using a hybrid-recursive-matching (HRM) algorithm.
After checking and correcting the mismatching, a post processing analyzes the fail-

ures due to occlusions and ambiguities.
Starting from a disparity map it is possible to calculate a depth map by using

geometrical relations between the rectified cameras.
So an alternative method to exploit the correlation between different cameras in

order to provide depth information is using the disparity between the cameras. In the
paper by Daribo, Kaaniche, Miled, Cagnazzo and Pesquet-Popescu [20] the authors
propose a dense motion/disparity estimation algorithm, designed to replace the clas-
sical temporal/inter-view unit within the MVC extension of H.264/MPEG- 4 AVC,
which uses a block-based motion/disparity estimation. The dense disparity estimation
problem has been formulated by Miled, Pesquet and Parent[55] as a convex program-
ming problem within a global variational framework. Numerical studies have shown
that variational-based disparity estimation methods are among the most powerful tech-
niques meanwhile preserving the depth discontinuities. A quantitative comparison
with results from other stereo algorithms, shows that this approach is competitive
with state-of-the-art methods. This naturally motivates the choice to integrate this
global convex variational framework, along with the motion and disparity estimation,
within a multiview video coder. The retained variational convex optimization ap-
proach generates smooth displacement vector fields with ideally infinite precision. The
estimation problem is solved through the minimization of a global objective function,
which is the sum of Displaced Frame Differences (DFD), under various convex con-
straints. The problem of coding the resulting dense motion and disparity vectors is
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a challenging issue because of the high bitrate needed to transmit such fields. What
is proposed in [20], is to reduce the bitrate needed for the coding of the dense dis-
placement fields by preforming a RD segmentation and coding. This is achieved by
optimizing a Lagrangian cost function which takes into account the accuracy and the
coding cost of the displacement field. The dense estimation framework followed by the
segmentation step can replace therefore the block-based motion/disparity estimation
stage in the MVC extension.
In the paper by Alvarez, Deriche, Sanchez and Weickert [2], it is presented an

energy based approach to estimate a dense disparity map from a set of two weakly
calibrated stereoscopic images while preserving its discontinuities resulting from image
boundaries. First it is derived a simplified expression for the disparity that allows to
estimate it from a stereo pair of images using an energy minimization approach. It is
assumed that the epipolar geometry is known, and this information is included in the
energy model. Discontinuities are preserved by means of a regularization term based
on the Nagel-Enkelmann operator. The associated Euler-Lagrange equation of the
energy functional is investigated, and the solution of the underlying partial differential
equation (PDE) is found using a gradient descent method. The resulting parabolic
problem has a unique solution. In order to reduce the risk to be trapped within some
irrelevant local minima during the iterations, it is used a focusing strategy based on a
linear scale-space.

1.2.2 Vanishing points, Planar regions

Motivations Taking into account geometrical cues human observers are sensitive to
can help to better representing an object in 3D. Incorporating constraints extracted
from this estimated geometry should consequently improve the perceptual quality of
the rendered image, as suggested in [65]. As exemples, 3D lines, planes, vanishing
points can be extracted. The computer vision community has proposed many methods
to extract some geometrical features in field such as augmented reality, for example.

Commonly used methods for 3D cues extraction Deducing 3D structure from im-
age sequences has been a central problem in computer vision for many years. 3D
reconstruction needs correspondences between features in consecutive frames. Differ-
ent approaches can help finding such correspondences in a relative reliable way. In
optical-flow-based methods, a velocity vector is computed for each pixel. In feature-
based methods, primitives such as lines and points are extracted and matched to
corresponding primitives along the frames of the sequence.
This problem has been addressed in various fields: it is known that the knowledge
of the scene structure can help the rendering process by the addition of appropriate
3D constraints. Those constraints are meant to ensure a certain consistency of the
rendered scene and improve the perceptual quality. For example, the computer vision
community uses methods that extract scene topology information in augmented reality
applications (analysis of the orientation for re-illumination, planes structure, presence
of vanishing points, detection of occlusions). A large number of examples of the use
of 3D cues extraction for improving image quality can be found in the literature, in
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various fields. In what follows, we refer some pieces.

The necessity to have a knowledge of the scene structure is imperative when deal-
ing with augmented reality, say, for the superimposition of images onto target planes
in the scene. Smith et al. addressed this problem in [65] and proposed methods
to improve the rendering of augmented scenes. Three types of augmented tasks are
presented:

• the planar surface augmentation, where a 2D homography is computationally
determined. Here, some artefacts are avoided by identifying and tracking oc-
clusion boundaries, when the augmented plane is not a foreground plane.The
method for surface augmentation is based on three main technologies: bundle
adjustment, geometrically constrained optimization and line tracking.

• the connected planes augmentation, where the line of intersection of the two
planes is extrapolated from close views. Here, for perceptual purposes, this line
must be accurately located. A temporal extrapolation is also needed so that the
line appear rigidly fixed in all frames (the constraint used for accuracy is the
parallelism constraint).

• the 3D augmentation, where reference points are determined to augment a 3D
object within the scene. For instance, the authors wish to add a 3D box on the
roof of a building. They need a 3D coordinate system that they extract by using
a perspective camera and tracking the vanishing points of three sets of parallel
lines. The 3D intersection points of the lines are estimated, then an affine system
can be computed.

A few works about how and what 3D information can be retrieved are now pre-
sented. This is not exhaustive as 3D reconstruction deals with many applications
domains, data and methods.

The quality of reconstruction can be improved via use of planarity constraints ac-
cording to [66] and [1]. In [1], the proposed method is based on the extended Kalman
filter (EKF) and experiments were performed on synthetic and real imagery. It shows
an improvement in accuracy and stability to noise. The method models planar struc-
ture without any assumption about the initial orientation of the plane with respect to
the camera. The method can be applied in real time applications.

In [30], an approach is proposed to embed planar structural components from points
lying on the same plane. It allows the discovery of planes in a sequence of images.
The authors confirm a gain in time of computation (and it can be used in real-time
application), of scalabitlity and a higher level of description of the scene. The method
is based on a visual Simultaneous Localization and Mapping (SLAM) system. SLAM
is a technique used by robots and autonomous vehicles to build up a map within an
unknown environment (without a priori knowledge) and update the map while keep-
ing track of their current location. With SLAM techniques, various features can be
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estimated. Though these methods can not be directly applied to video coding, they
can be helpful to retrieve 3D information from multiviews.

In [48], a quasi-dense approach to 3D surface model acquisition from uncalibrated
images is proposed. The algorithm includes the computation of correspondence infor-
mation and geometry from a subsample of points of interest. The modelling requires
few largely separated images. This method delivers a high level of quality of 3D points
reconstruction on which a surface can be reconstructed.
In [? ], the method is supposed to avoid visual distortions through the use of 3D scene
characteristics inherent in image sequences(detection of edges, vanishing points and
vanishing lines). It is based on a robust estimation of such 3D structural properties.

Conclusion The knowledge of the scene structure helps in the improvement of the
rendered images in fields such as augmented reality. Methods used in augmented reality
are reliable because the constraints are chosen to respect perceptual cues. Many tools
are used to extract and enhance the 3D model of a scene. Those tools can inspire
new methods in 3D video compression that preserve the topology: the exploitation
of the multi view data can lead to the extraction of 3D constraints that could be
used during the coding process or the rendering process for example. In the image
coding community, the idea already came out with [? ]. MVD data provide a large
amount of information from which 3D cues, special features, can be extracted and
exploited. It is worth adding appropriate geometric contraints (parallelism constraint
or detection of vanishing points, consistency over frames, respect of occlusion areas,
planarity constraint) to 3D video codecs in order to improve the perceptual quality of
the rendered views, and to the rendering process.

2 Texture synthesis and inpainting

2.1 Texture prediction
Spatial and temporal texture prediction can be regarded as particular and simple
texture synthesis techniques. Along the temporal dimension, the motion information
allows the selection of one predictor (a texture patch) along the motion trajectory
of objects in the scene. In spatial prediction, a set of directional predictors, which
propagate neighbouring pixel values along specified directions, is often used. These
predictors are well suited if the block to be predicted contains structures with orien-
tations close to the ones defining the predictors.
In particular we focus on texture prediction techniques developed for H.264.
Intra prediction is an effective method for reducing the coded information of an

image or an intra frame within a video sequence. The conventional method today is to
create a sample predictor block by extrapolating the reconstructed pixels surrounding
the target block to be coded. The sample predictor block is subtracted from the
target block and the resulting residual coded using transformation, quantization and
entropy coding. This is an effective method for sample predictor block creation in
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most sequences. However the extrapolation method is not able to represent sample
prediction blocks with complex texture. Furthermore, pixels that are far from the
surrounding pixels are usually badly predicted. In the paper by Tan, Boon and Suzuki
[67], a new method for sample predictor creation by template matching in a region of
reconstructed pixels is presented.
Efficient intra prediction is an important aspect of video coding with high com-

pression efficiency. H.264/AVC applies directional prediction from neighbouring pixels
on an adjustable block size for local decorrelation. In the paper by Ballè and Wien
[3], it is presented an extended prediction scheme in the context of H.264/AVC that
comprises two additional prediction methods exploiting self-similar properties of the
encoded texture. A new macroblock type is implemented, allowing for exible selection
of the available prediction methods for sub-partitions of the macroblock. Depend-
ing on the content of the encoded video sequence, substantial gains in rate-distortion
performance are achieved.
Texture prediction techniques can also be extended to the case of 3D video coding

by combining the texture prediction and the depth maps approaches. In the paper
[49] authors developed a smoothed reference inter-layer texture prediction mode for bit
depth scalability based on the Scalable Video Coding extension of the H.264/MPEG-
4 AVC standard. With this approach, the base layer encodes an 8-bit signal that
can be decoded by any existing H.264/MPEG-4 AVC decoder and the enhancement
layer encodes a higher bit depth signal (e.g. 10/12-bit) which requires a bit depth
scalable decoder. The approach presented uses base layer motion vectors to conduct
motion compensation upon enhancement layer reference frames. Then, the motion
compensated block is tone mapped and summed with the co-located base layer residue
block prior to being inverse tone mapped to obtain a smoothed reference predictor.
In addition to the original inter-/intra-layer prediction modes, the smoothed reference
prediction mode enables inter-layer texture prediction for blocks with inter-coded co-
located block. The proposed method is designed to improve the coding efficiency for
sequences with non-linear tone mapping.

2.2 Epitomes
The epitome of a video sequence is a spatially or temporally compact representation
of the video that retains the video’s essential textural, shape, and motion components.
The video epitome is a three-dimensional construct that can represent the video in
both a spatially and temporally compact form.
The epitomes can be considered as a simple appearance and shape model. The

epitome model was first introduced for single images: the epitome of an image is
its miniature, condensed version containing the essence of the textural and shape
properties of the image. The size of the epitome is considerably smaller than the size
of the image or object it represents, but the epitome still contains most constitutive
elements needed to reconstruct the image. A collection of images often shares an
epitome, e.g., when images are a few consecutive frames from a video sequence, or
when they are photographs of similar objects. A particular image in a collection is
defined by its epitome and a smooth mapping from the epitome to the image pixels.
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In the paper by Jojic, Frey and Kannan[42], when the epitomic representation is used
within a hierarchical generative model, appropriate inference algorithms can be derived
to extract epitome from a single image or a collection of images and at the same time
perform various inference tasks, such as image segmentation, motion estimation, object
removal and super-resolution.
As mentioned, "epitomes" were introduced as patch-based probability models that

are learned by compiling together a large number of examples of patches from input
images. Moreover epitomes can be used to model video data. In the paper by Che-
ung and Frey[17] there are described significant computational speedups that can be
incorporated into the epitome inference and learning algorithm. In the case of videos,
epitomes are estimated so as to model most of the small spacetime cubes from the
input data. Then, the epitome can be used for various modelling and reconstruction
tasks. Besides computational efficiency, an interesting advantage of the epitome as a
representation is that it can be reliably estimated even from videos with large amounts
of missing data.
Epitomes can be used to achieve a high reduction of transmission bandwidth and

memory space for images by factoring their repeated content as shown in the paper
by Wang, Wexler, Ofek and Hoppe [73]. A transform map and a condensed epitome
are created such that all image blocks can be reconstructed from transformed epitome
patches. The transforms may include affine deformation and color scaling to account
for perspective and tonal variations across the image. The factored representation
allows efficient random-access through a simple indirection, and can therefore be used
for real-time texture mapping without expansion in memory. This scheme is orthogonal
to traditional image compression, in the sense that the epitome is amenable to further
compression such as DXT.
The epitomes can be efficient method to perform a good reconstruction in the case

of dropped frames in a network, to realize denoising and impainting techniques, but
epitomes can be applied for labelling problems. In the paper by Warrell and Prince[74]
is considered the problem of parsing facial features from an image labelling perspective.
The authors use an Adaboost-based unary classifier, and develop a family of priors
based on ’epitomes’ which are shown to be particularly effective in capturing the non-
stationary aspects of face label distributions.
It is also possible to realize an epitome tree model which combines the epitome with

a tree structured belief network prior [75]. The authors consider three existing priors,
and show how each can be extended using the epitome. The simplest prior assumes
patches of labels are drawn independently from either a mixture model or an epitome.
Next we investigate a ’conditional epitome’ model, which substitutes an epitome for a
conditional mixture model. Finally, we develop an ’epitome tree’ model. Each model
is combined with a per pixel classifier to perform segmentation. In each case, the
epitomized form of the prior provides superior segmentation performance, with the
epitome tree performing best overall.
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2.3 Graph-cut

2.4 Diffusion equation
The diffusion equation is a partial differential equation which describes density fluctu-
ations in a material undergoing diffusion.
Results given in this part (see figure 2 and 3) are obtained by our own software, that
is available for research purpose on http://www.irisa.fr/temics/staff/lemeur/.

2.4.1 Isotropic diffusion

The isotropic diffusion directly stems from the heat equation, given below:{
I(t=0) = Ĩ
∂I
∂t = ∆I

(1)

where Ĩ is a degraded version of the original picture I.
Linear isotropic diffusion not only smoothes noise but also simultaneously blurs fea-
tures such as edges. The isotropic filtering behaves as a low-pass filtering suppressing
high frequencies in the image I. For many applications, the blur effect is not accept-
able. The need to find more complex and more adpative filtering methods has quickly
appeared.
To overcome the aforementionned limitations of linear isotropic diffusion, a first idea
was to propose a non-linear extension of the heat equation. Perona and Malik [59] were
the first to make this kind of extension. This extension relies on the re-formulation of
the heat equation:

∂I

∂t
= ∆I = div (∇I) (2)

where div(.) is the divergence operator.
Perona and Malik [59] proposed to add a function g(.) (called diffusivity function) in
order to control the amount of diffusion. The new diffusion equation was then given
by:

∂I

∂t
= div

(
g(|∇I|2)∇I

)
(3)

where the function g(.) is bounded in [0, 1] and is a decreasing function vanishing on
edges (high gradients) and close to 1 on flat regions (low gradients). Therefore, the
diffusion process is lessened (or stopped) near the edges and is strong on homogenous
areas.
The diffusivity functions proposed by Perona and Malik have the following expressions:

g(s2) = 1

1+ s2

λ2
λ > 0

g(s2) = exp(− s2

λ2 ) λ > 0
(4)
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Another diffusivity function was proposed by Charbonnier [15]:

g(s2) = 1√
1+ s2

λ2

λ > 0 (5)

where λ is a fixed gradient threshold separating low contrast and high contrast diffu-
sion areas. The optimal value of this threshold depends on the problem.

In order to be more robust to noise and to improve the diffusion process, some
authors replace the diffusivity function g((|∇I|2)) by g((|∇I ∗Gσ|2)). The diffusion
equation becomes:

∂I

∂t
= div

(
g(|∇I ∗Gσ|2)∇I

)
(6)

where Gσ = 1
2πσ2 exp

(
−x

2+y2

2σ2

)
is a normalized 2D Gaussian kernel of variance σ.

By convolving the gradient with a Gaussian, a smoothed version of the image I is
used in the evolution process. It is then more robust to noise. Moreover, as a larger
neighborhood is involved in the computation of the local image structures, the diffusion
process is improved in term of local diffusion geometry.

2.4.2 Anisotropic diffusion

Non-linear isotropic diffusion presents significant advantages compared to isotropic
diffusion. Indeed, although that the diffusion process is still isotropic, there is almost
no diffusion when the gradient is greater than the given threshold (|∇I|2 > λ2). Edges
are preserved.
A better solution is the anisotropic diffusion. Contrary to isotropic diffusion (linear or
not), the anisotropic diffusion favors a given direction. Two kinds of diffusion scheme
can be considered: a diffusion process based on the divergence operator and a diffusion
process based on second-derivative expressions.

Divergence-based diffusion Weickert [78] proposed a generalization of divergence-
based diffusion. The diffusion equation is given by:

∂I

∂t
= div (D∇I) (7)

where D is a diffusion tensor (2×2 matrices). The diffusion tensor is used to steer the
filtering process in a given direction. The principal directions of smoothing are based
on the description of the local structures. The diffusion tensor D is deterined by the
eigen vectors and eigen values of the structure tensor.

The structure tensor of a coordinate in the image I is a symmetric positive semi-
definite 2× 2 tensor given by ([77]):

Jp(∇I) = Gp ∗
(
∇I∇IT

)
(8)
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Figure 1: Position of vectors u and v.

where Gp is a Gaussian kernel of variance p. Principal axis transformation gives the
eigenvectors and eigenvalues of Jp(∇I):

Jp(∇I) =
[

u∗ v∗
] [ µ1 0

0 µ2

] [
u∗T

v∗T

]
(9)

The eigen vectors u∗ and v∗ give the local image orientations with u∗ = [ux, uy]T .
The eigen values µ1 ≥ µ2 give the average contrast in those directions (the asterix
upperscript is explained below). The first eigen vector u∗ of the structure tensor
points in the direction of the highest gray level fluctuation.
Finally, the corresponding diffusion tensor D is given by:

D = λ1u∗u∗T + λ2v∗v∗T (10)

where u∗ and v∗ are smoothed version of u and v. u is orthogonal to the edges and v
is tangent to the isophote lines (contours in the image) (see figure 1). The λ1 and λ2

values, that steers the diffusion play a fundamental role in the way the diffusion acts.
For instance, we can have λ1 ≈ λ2. In this case, the diffusion will be isotropic (any
direction is favoured). When λ2 >> λ1, the diffusion is anisotropic, directed along the
isophote.
Two kinds of anisotropic diffusion were introduced by Weickert:

• Edge-Enhancing Diffusion (EED) [76] designed to smooth noise while enhancing
edges:

λ1 =

{
1 |∇I|2 = 0
1− exp(− C

((|∇I|2)/λe)4
) |∇I|2 > 0

λ2 = 1
(11)

where, C = 3.311488.
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• Coherence-Enhancing Diffusion (CED) [79] designed to enhance line-like texture:

λ1 = α

λ2 =
{
α µ1 = µ2

α+ (1− α)exp(− C
(µ1−µ2)2

) else
(12)

where C is a positive value and α ∈ [0, 1].

Laplacian-based diffusion The Laplacian-based diffusion relies on the decomposition
of the diffusion equation as followed [46]:

∂I

∂t
= c1Iuu + c2Ivv (13)

where u⊥v and Ixx is the second derivatives of I in the direction x. The diffusion
behavior is entirely defined by the directions u and v and the corresponding weights
c1 and c2. The previous formulation can also written as

∂I

∂t
= trace(TH) (14)

where H is the hessian of I given by

H =
[
Ixx Ixy
Ixy Iyy

]
(15)

and

T = c1uuT + c2vvT (16)

is a 2×2 symmetric matrix whose eigenvalues are c1 and c2 and respective eigenvectors
are u and v.
From the previous introduced notation (see figure 1), when c1 = 0 and c2 = 1, the
mean curvature flow is obtained:

∂I

∂t
= Ivv (17)

Such approach acts only along the isophote lines (edges). In the next section, some
examples are given in figure 3.

2.4.3 Noise reduction Applications

One of the most interesting applications is the image restoration. Figure 2 shows an
example of noise reduction based on different diffusion algorithms.
Results show that image features are better preserved by the non-linear isotropic dif-
fusion and by the anisotropic diffusion than with the isotropic one. The image is
significanlty blurred by the isotropic scheme (the noise as well as the edges) whereas
the two other approaches succeed in removing the noise and in keeping the edges. An
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(a)

(b) PSNR=23.06dB (c) PSNR=24.93dB (d) PSNR=28dB

(e) (f) (g)

Figure 2: (a) Original picture corrupted with a gaussian Noise; (b), (c) and (d) are
the filtered picture with a linear isotropic diffusion, a non linear isotropic
diffusion (Charbonnier diffusivity function λ2 = 0.01) and the anisotropic
diffusion proposed by Tschumperlé [71], respectively. The last row shows
the residual picture (difference between original picture uncorrupted by noise
and the filtered picture).
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objective quality measure (PSNR) is given for each case. Figure 3 shows an exam-
ple of noise reduction based on an anisotropic diffusion. The scheme used is the one
proposed by Tschumperlé [71] and described in the section called Laplacian-based dif-
fusion. The goal of this figure is to show how the anisotropic diffusion can be steered
by the coefficient c1 and c2 of the following equation:

T = c1uuT + c2vvT (18)

2.5 Sparse representation
2.5.1 Optimization problems

Sparse decompositions aim at describing a signal as the combination of a small number
of vectors. In the sequel, we will adopt the following definitions and notations.
We call sparsity of the vector x = [x1, . . . , xm]T the number of zero coefficients in

x. The diversity of x corresponds to the number of nonzero coefficients in x. If x is
M -dimensional, we obtain thus

diversity = M − sparsity. (19)

The sparse expansion is considered in the general framework where the dictionary is
eventually redundant: the selection set of vectors is expressed as a matrix D with M
columns dk ∈ RN , M ≥ N . Each column corresponds to a vector, also called atom.
This redundancy has a sizeable interest in the description of complex signals as audio

signals or images. Let us consider a N -dimensional signal y = [y1, . . . , yN ]T and its
sparse approximation defined as the combination of L atoms. For a given sparsity (i.e.,
for a given L), the more the dictionary is redundant, the more the sparse approximation
can be close to the signal y. Reciprocally, for a given approximation error, a redundant
dictionary could decrease the number of atoms required to approximate the signal y.
The sparse model can be expressed as follows:

y = Dx + n. (20)

The product Dx is the sparse approximation of y in dictionary D. The gap between
this approximation and the real signal y is seen as a noise, denoted n. If this gap is
null, the product Dx is called sparse representation of y in D.
Finally, we denote s = [s1, . . . , sM ]T the support of the sparse expansion, such as

si =
{

1 if xi 6= 0,
0 otherwise. (21)

Sparsity measures We find in the literature several sparsity measures.
The “ideal” measure is formalized as the `0-pseudo-norm and is written as ‖.‖0. This

pseudo-norm counts the number of nonzero coefficients:

‖x‖0 =
M∑
i=1

|xi|0 = |I|, (22)
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(a)

(b) PSNR=28dB (c) PSNR=25.33dB (d) PSNR=26.58dB

(e) (f) (g)

Figure 3: (a) Original picture corrupted with a gaussian Noise; (b), (c) and (d) are the
filtered picture with the anisotropic diffusion proposed by Tschumperlé [71]:
T = c1uuT + c2vvT ; (b) c1 = 0 and c2 = 1, Mean curvature flow; (c) c1 = 1
and c2 = 0; (d) ci are function of the eigen values, respectively. The last row
shows the residual picture (difference between original picture uncorrupted
by noise and the filtered picture).
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where I = {i|xi 6= 0}.
Note that a norm G on a set XM satisfies the three following properties:

• Positivity : ∀x ∈ XM \ {0MX }, G(x) > 0,

• Homogeneity : ∀x ∈ XM , ∀λ ∈ K, G(λx) = |λ|G(x),

• Triangle inequality : ∀(x1,x2) ∈ (XM )2, G(x1 + x2) ≤ G(x1) + G(x2).

The sparsity measure (22) does not satisfy the homogeneity condition, it is thus defined
as a pseudo-norm.
We find also “relaxed” sparsity measures, corresponding to `p-(quasi-)norms of x:

‖x‖p = (
M∑
i=1

|xi|p)
1
p , 0 < p <∞. (23)

For 0 < p < 1, the triangle inequality is not satisfied, but is replaced by the quasi-
triangle inequality

∀(x1,x2) ∈ (XM )2, ‖x1 + x2‖pp ≤ ‖x1‖pp + ‖x2‖pp,

the measure (23) constitutes so a quasi-norm. On the other hand, for p > 1, the three
properties are verified, the measure (23) is definitely a norm. In the sequel, we will
generally use the term “norm” to express the three notions of pseudo-norm, quasi-norm
et norm.
Several considerations can lead to choose one or the other norm. Among them, the

convexity is useful for the resolution of some inverse sparse problems, as we will see in
the next subsections. According to the value of the parameter p, a `p-norm will present
level curves convex or not: for p ≥ 1, they will be convex, for p < 1, not. Figure 4
illustrates this point. Let us consider a one-dimensional signal y and a dictionary D
made up of 2 one-dimensional atoms (N = 1, M = 2). The representation of y in
D will be the two-dimensional vector x = [x1, x2]. We look for the solution of the
following problem :

Pp : min
x
‖x‖p subject to Dx = y. (24)

A graphical interpretation of this problem is given by Figure 4 for three different
“classes” of values for p: p < 1, p = 1, p > 1. To each of this class corresponds a graph
(resp. figures 4(a), (b) et (c)). The level curves of the norms are represented, as well
as the straight line defined by y = Dx (in red). The solution of problem (24) is the
point x? = [x?1, x

?
2], located at the intersection of the straight line defined by y = Dx

and the smallest-valued level curve (in blue on the figures).
If the convexity can be interesting for the resolution of some optimization problems

(see next sections 2.5.1 and 2.5.1), Figure 4 illustrates at the same time the fact that
any norm does not give the same result and the same performance in terms of sparsity.
Hence, while for p ≤ 1, the solution will be actually sparse (x1 = 0, x2 6= 1), for
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x1

x2

(x?
1, x

?
2)

(a) p < 1

x2

x1

(x?
1, x

?
2)

(b) p = 1

x2

x1

(x?
1, x

?
2)

x?
1

x?
2

(c) p > 1

Figure 4: (Non-)convexity of `p-norms, for (p < 1, figure (a)) p ≥ 1, figures (b) and
(c)

p > 1, it will have a dimension upper than the one of the signal we want to represent
(xi 6= 0 ∀i ∈ {1, 2}).
In practice, several contributions propose to replace the `0-norm by the `1-norm.

Attractive because of its convexity, the `1-norm presents also the interest to be equiv-
alent to the `0-norm under some conditions (see Theorem 1, next section). It is not
the case for `p-norms with p > 1, which are convex but do not favour sparsity. In the
sequel, we restrain our study to values of p comprised between 0 and 1.

Sparse representations The “standard” inverse problem related to sparse represen-
tations consists in looking for the vector x containing the lowest number of nonzero
coefficients which leads to an exact reconstruction of vector y in dictionary D. We
already saw the formulation of this problem in previous section:

Pp : min
x
‖x‖p subbject to Dx = y. (24)

During the last years, several studies allowed to characterize the solutions admitted
by the problem (Pp) according to the value of p. In particular, the contributions
of Donoho and Elad [22], contemporary with those of Gribonval and Nielsen [32],
have been interested in the conditions ensuring the uniqueness and equivalence of the
solutions of problems (Pp), for resp. p ∈ {0, 1} et p ∈ [0, 1]. Theorem 1 sums up their
results.

Theorem 1 Assume D is an arbitrary dictionary in a finite or infinite Hilbert space.
If y =

∑
i xidi with

‖x‖0 <
1
2

(1 +
1

µ(D)
), (25)

then x is the unique and simultaneous solution of the minimization problems (Pp), for
0 ≤ p ≤ 1.

The parameter µ(D) is called coherence of the dictionary D and is defined as µ(D) ,
maxk 6=k′ |〈dk,dk′〉|. The coherence measures the maximal proximity between atoms
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of a dictionary, its value is comprised between 0 and 1 if the atoms are normed to 1.
Hence, if D is an orthonormal basis, µ(D) = 0 and Theorem 1 states that any vector x
can be recovered univocaly whatever the sparsity; on the other hand, if two atoms are
colinear (equal if they are normed to 1), µ(D) = 1 and no vector x can be recovered
univocally.
Other conditions were highlighted by Fuchs [28] and Tropp [70] to ensure the equiv-

alence of problems (P1) et (P0).

Theorem 2 Assume y has an expansion y =
∑L
i=1 xidi in an arbitrary dictionary.

For I = {i|xi 6= 0}, denote ΦI the linear operator ΦIx =
∑
i∈I xidi. If

sup
i/∈I
‖Φ+
I di‖1 < 1, (26)

where .+ is the pseudo-inverse, then x, the solution of problem (P1), is also the solution
of problem (P0).

The consequences of Theorems 1 and 2 are very important: the problem (P0) is
NP-hard, i.e., all possible combinations of atoms have to be considered to find the
optimal solution, which is not conceivable in high dimension. Theorems 1 and 2 allow
and motivate the use of relaxed measures for the sparsity. In particular, the `1-norm
enables the use of linear programming to solve (P1) (the equivalence between `1-norm
optimization and linear programming is proved in [8]). This is the approach adopted
by Chen et al. in [16] for the design of the Basis Pursuit (BP) algorithm.

Sparse approximations In practice, the problem of sparse representations is useful
only in case of redundant dictionaries. If the dictionary D has more lines than columns
(M < N), problem (Pp) has possibly no solution and if D is a basis, the solution is
straightforward.
The sparse approximation offers a more general research framework. It consists in

looking for the sparsest vector resulting in the closest approximation to the real signal
y. This problem relies on the two notions of approximation quality and sparsity of the
decomposition vector. The approximation quality is in general measured by a square
error between the real signal y and the sparse approximation Dx :‖y−Dx‖22. Sparsity
is taken into account according to the measures presented in the subsection 2.5.1.
Three main types of optimization problems can be then considered.

Sparsification The first one is analogous to problem (24). We want to find the spars-
est vector x under the constraint that the approximation error is lower than a given
threshold ε ≥ 0. This can be formalized as follows:

PPp : min
x
‖x‖p subject to ‖y −Dx‖22 ≤ ε. (27)

Approximation Inversely, we can look for the sparse vector x which leads to the closest
sparse approximation to y, under the constraint that x has a sparsity upper than a
given threshold. This can be expressed as follows:

PAp : min
x
‖y −Dx‖22 subject to ‖x‖p ≤ L. (28)
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If the sparsity of x is measured by the `0-norm, the parameter L corresponds to the
maximal number of nonzero coefficients in x.

Regularization Finally, the vector x can be considered as the solution of a compromise
between approximation quality and sparsity. The compromise is fixed by a parameter
λ ≥ 0 and the problem can be formalized as follows:

PRp : min
x
‖y −Dx‖22 + λ‖x‖p. (29)

A factor 1
2 is sometimes added as weighting factor of the approximation error ‖y−Dx‖22

to facilitate the derivation of algorithms. Note that this formalization can be seen as
a Lagrangian version of the approximation and regularization problems (27)-(28).

2.5.2 Sparse decomposition algorithms

Each of the formalization (27) to (29) leads to the design of one or several different
algorithms. In this section, we review the main existing algorithms. We first begin by
the particular case where the dictionary D is an orthonormal basis.

Particular case: orthonormal basis The use of an orthonormal basis (i.e., ‖dk‖2 = 1
∀k∈{1, . . . ,M}, 〈dk,d′k〉 = 0 if k 6= k′, and N = M) as approximation dictionary is
a simple case allowing a fast resolution of approximation problems (PP0 ), (PA0 ) and
(PR0 ) under the “ideal” sparsity constraint p = 0.
The resolution is thus immediate for the sparsification and approximation problems

by noticing that

‖y −Dx‖22 = ‖x−DTy‖22. (30)

Hence, the solution x? to these problems is obtained by thresholding the coefficients
of the product DTy:

x? = Tλ(DTy), (31)

where Tλ is a thresholding operator.
In the sparsification case (PP0 ), the solution x? is obtained by setting to zero suc-

cessively, in the increasing order of their values, the coefficients of the product DTy,
until the constraint ‖x?−DTy‖22 ≤ ε is satisfied. In the approximation case (PA0 ), the
solution x? is obtained by keeping the L largest coefficients of the product DTy.
The resolution of the regularization problem (PR0 ) is less obvious but reduces also

to a simple thresholding operation ([63]):

x?i = T 0
λ ((DTy)i) =

{
(DTy)i if |(DTy)i| >

√
λ,

0 otherwise,
(32)

where (DTy)i is the ith coefficient of the product DTy.
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A similar result has been obtained by Donoho in [23] for the regularization problem
(PR1 ). In case of an orthonormal basis, he showed that this problem can be solved by
a soft-thresholding:

x?i = T 1
λ ((DTy)i) =

 (DTy)i − λ/2 si (DTy)i > λ/2,
0 si |(DTy)i| ≤ λ/2,
(DTy)i − λ/2 si (DTy)i < −λ/2.

(33)

General case: redundant dictionaries In the general case where D is a redundant
dictionary (M > N), problems (PP0 ), (PA0 ) and (PR0 ), which use the “ideal” sparsity
measure, are NP-hard. Suboptimal algorithms are then designed to approximate “at
best” the optimal solution.

Gradient descent The simpliest resolution method is the gradient descent. This method
is general and can be used in minimization problems involving a differentiable function.
In our case, the gradient descent can be applied to the regularization problem (PR1 ).
The resulting algorithm is iterative and suggests then the following update equation

x̂(n+1) = x̂(n) − η∇f(x,y,D) |x̂(n) , (34)

where f(x,y,D) = 1
2‖y−Dx‖22 +λ‖x‖1, ∇ is the gradient operator and η is the scale

parameter. Used in the first works on sparse approximations, this method was rapidly
supplanted by other efficient algorithms.

Iterative thresholding algorithms Solving the regularization problem (PRp ) with p = 0
or p = 1, the iterative thresholding algorithms are an extension of the hard- and soft-
thresholding algorithms introduced in previous subsection 2.5.2 to the general case
where D is an arbitrary redundant dictionary.
We find in the literature several different versions of iterative thresholding algo-

rithms.
The first relevant works were realized by Kingsbury et Reeves. In [45], they derive

an iterative thresholding method allowing to solve problem (PR0 ). However, their
contribution is done without a clear connection to the objective function (PR0 ). We
find a more explicit version of their results in [9]. Blumensath and Davies show thus
that the problem (PR0 ) can be solved by the following update equation:

x
(n+1)
i = T 0

λ (x(n)
i + dTi (y −Dx(n))), (35)

where T 0
λ is defined by equation (32).

A similar result is proved for problem (PR1 ). In [21], Daubechies et al. give rise to
a solution obtained by iterating the following expression:

x
(n+1)
i = T 1

λ (x(n)
i + dTi (y −Dx(n))), (36)

where T 1
λ is defines by equation (33). In the same idea, we can mention the contribu-

tions of Combettes and Pesquet in [18].
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Algorithme 1: Matching Pursuit
0. Initialization : r(0) = y.
Until the stopping criterion is reached, repeat:
1. Support update (Selection of the atom the most correlated with the residual)

ŝ
(n)
j =

{
1 if j = arg maxi〈r(n−1),di〉2,
ŝ
(n−1)
j otherwise.

(37)

2. Coefficient update (Computation of the corresponding coefficient)

x̂
(n)
j =

{
x̂

(n−1)
j + 〈r(n−1),dj〉 if j = arg maxi〈r(n−1),di〉2,
x̂

(n−1)
j otherwise.

(38)

3. Residual update: r(n) = r(n−1) − 〈r(n−1),dj〉dj .

Pursuit algorithms The pursuit algorithms, or greedy algorithms, deal with problems
(PP0 ) or (PA0 ). Their process is iterative: at each iteration, at most one atom is added
to the decomposition. This is done until the stopping criterion is reached, which can
be a maximal approximation error ε, or a maximal atom number in the decomposition,
L.
The decisions are taken locally, there is no guarantee to obtain a global optimum.

However, these algorithms are in general simple and fast, they are in practice very
often used.
There exist many pursuit algorithms. We review the most popular of them:

• Matching Pursuit (MP), first called CLEAN and introduced in 1974 in the astro-
physical community in [37], then in the statistical community in [39] and finally
by Mallat and Zhang in the signal processing society in [53],

• Orthogonal Matching Pursuit (OMP), evolution of MP proposed by Pati et al.
in [58].

Variants and extensions of these two algorithms were derived afterwards. Let us men-
tion for example the algorithms Optimized Orthogonal Matching Pursuit (OOMP,
[62]), Complementary Matching Pursuit (CMP, [60]) and Complementary Orthogonal
Matching Pursuit (COMP, [61]).
Most greedy algorithms estimate successively the support of the sparse decompo-

sition s and the coefficients of the sparse vector x. The algorithm MP relies on a
selection of the atoms the most correlated with the signal. Its general process is given
by Algorithm 1.
Note that an atom can be chosen several times, so that the algorithm requires

sometimes numerous iterations to reach the stopping criterion. However, the algorithm
is ensured to converge if the dictionary D spans the entire space of signals (cf. [43]).
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Algorithme 2: Orthogonal Matching Pursuit
0. Initialization : r(0) = y.
Until the stopping criterion is reached, repeat
1. Support update (Selection of the atom the most correlated with the residual)

ŝ
(n)
j =

{
1 if j = arg maxi〈r(n−1),di〉2,
ŝ
(n−1)
j otherwise.

(39)

2. Coefficient update (Computation of the corresponding coefficients)

x̂ŝ(n) = D+
ŝ(n)y, (40)

where D+
ŝ(n) is the pseudo-inverse of Dŝ(n) , matrix made up of the columns di

such as si 6= 0.
3. Residual udpate: r(n) = y −Dx̂ŝ(n) .

The algorithm OMP performs the same support update as MP but calculates the
coefficients of the sparse vector in a different way. Thus, instead of estimating only
one coefficient per iteration (from the projection of the residual on the selected atom),
OMP recalculates all coefficients by projecting the signal y on the space spanned by all
selected atoms. The operation is performed using a Gram-Schmidt orthogonalization.
Thus a selected atom can not be selected again and, at theN th iteration, theN selected
and orthogonalized atoms constitute an orthogonal basis of RN able to represent with
a null error the signal y. OMP is thus ensured to converge in a finite number of
iterations, at most equal to the signal dimension, N . OMP is described in Algorithm
2.
Several works have been interested to the reconstruction ability of the algorithms

MP and OMP. Tropp [70], and Gribonval and Vandergheynst [33] give rise to some
conditions ensuring exact recovery by MP and OMP.

Theorem 3 Assume y has an expansion y =
∑L
i=1 xidi in an arbitrary dictionary.

For I = {i|xi 6= 0}, denote ΦI the linear operator ΦIx =
∑
i∈I xidi. If

sup
i/∈I
‖Φ+
I di‖1 < 1, (41)

where Φ+
I is the pseudo-inverse of ΦI , then MP and OMP recover the decomposition,

i.e., at each iteration n, a “correct” atom dn is selected (n ∈ I).

Thus, under the same conditions, the algorithms MP and OMP recover the solution
of (PP0 ) or (PA0 ), and BP the solution of (P1) (cf. Theorem 2).
As we saw, pursuit algorithms do not allow to select more than one atom per itera-

tion. This limitation is avoided by the stagewise pursuit algorithms. Among the most
popular of them, we find the Stagewise OMP algorithm (StOMP, [24]), the Subspace
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Algorithme 3: Stagewise Orthogonal Matching Pursuit
0. Initialization : r(0) = y.
Until the stopping criterion is reached, repeat
1. Support update

ŝ
(n)
j =

{
1 if 〈r(n−1),dj〉2 > T (n),

ŝ
(n−1)
j otherwise.

(42)

2. Coefficient update (Computation of the corresponding coefficients)

x̂ŝ(n) = D+
ŝ(n)y, (43)

where D+
ŝ(n) is the pseudo-inverse of Dŝ(n) , matrix made up of the columns di

such as si 6= 0.
3. Residual update: r(n) = y −Dx̂ŝ(n) .

Pursuit algorithm (SP, [19]), similar to the Compressive Sampling Matching Pursuit al-
gorithm (CoSaMP, [56]), or the Morphological Component Analysis algorithm (MCA,
[10]). We detail here the algorithms StOMP and CoSaMP/SP.
StOMP can be seen as a variant of OMP. The computation of the sparse coefficients is

identical, but the choice of the atoms added to the support of the sparse decomposition
at each iteration is performed by a thresholding operation with parameter T (n) on
〈r(n−1),di〉2. Donoho et al. propose in [24] two different approaches to specify the
value of parameter T (n) at each iteration. Algorithm 3 presents the main operations
of StOMP.
The algorithm CoSaMP/SP deals exclusively with problem (PA0 ). But it offers

an additional freedom degree to solve it: the atom deselection. To this purpose,
CoSaMP/SP relies on the knowledge of the maximal number of nonzero coefficients
L. Its principle is described in Algorithm 4.
Algorithms CoSaMP and SP distinguish by the choice of parameter P . In SP, it is

equal to L, the maximal number of nonzero coefficients. In CoSaMP it is set to 2L.

Convex optimization algorithms Convex optimization algorithms deal with regulariza-
tion problem (PR1 ). They are divided into two main classes: the fixed-point algorithms
as the Focal Underdetermined System Solver algorithm (FOCUSS, [31]) and the algo-
rithms based on quadratic programming as algorithms Basis Pursuit Denoising (BPD,
[16]) and Global Matched Filter (GMF, [29]). We do not detail them here, but some
important results deserve to be mentioned in comparison with previous algorithms.
Many numerical simulations tend to prove ([16]) that if the signal y has a very sparse

expansion in dictionary D and D is well-structured, then the sparse decomposition can
perfectly be recovered by algorithms BPD and GMF. This observation has led to a
series of theoretical results for different dictionaries (cf. for exemple [32], [70]). One
of the most general result is the one obtained by Fuchs in [28].
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Algorithme 4: SP/CoSaMP

0. Initialization : r(0) = y.
Until the stopping criterion is reached, repeat
1. Selection of the P atoms the most correlated with the residual

s̃(n) = arg max
s

∑
i

si〈r(n),di〉2 subject to ‖s‖0 = P, (44)

2. Computation of the corresponding coefficient

x̃s̃(n) = D+
s̃(n)y, (45)

where D+
s̃(n) is the pseudo-inverse of Ds̃(n) , matrix made up of the columns di

such as si 6= 0.
3. Support update (Selection of the L atoms corresponding to the L largest
coefficients of x̃)

ŝ(n) = arg max
s

∑
i

si|x̃(n)
j | soumis à ‖s‖0 = L, (46)

4. Coefficient update

x̂(n) = x̃ŝ(n) , (47)

5. Residual update: r(n+1) = y −Dx̂ŝ(n) .

Theorem 4 Assume y has an expansion y =
∑L
i=1 xidi in an arbitrary dictionary.

For I = {i|xi 6= 0}, denote ΦI the linear operator ΦIx =
∑
i∈I xidi. If λ is small

enough and

|〈(Φ+
I )∗sign(x),di〉| < 1, ∀i /∈ I, (48)

where Φ+
I is the pseudo-inverse of ΦI and (Φ+

I )∗ the adjoint of Φ+
I , then BPD recovers

the expansion: each nonzero component of x corresponds to an index i ∈ I.

The convex optimization algorithms present in general a good performance in terms
of approximation quality vs. decomposition sparsity, in comparison with the greedy
algorithms. But this is achieved at the expense of a higher complexity. While MP and
OMP have respectively a complexity of order M and M2 per iteration, GMF requires
near to N3 operations.

Bayesians algorithms Recently, new approaches based on a Bayesian framework have
been proposed. These approaches assume the following model:

y = Dx + n, (49)
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where n is a white Gaussian noise with variance σ2
n.

The contributions distinguish first by the a priori probability distribution of the
vector x.
The most intuitive is the Laplacian distribution which implements the sparsity mea-

sure based on the `1-norm ([7]). For each component xi of x,

p(xi) ∝ exp(−λ|xi|), (50)

where ∝ denotes equality up to a normalization factor.
Given the signal y and the dictionary D, we prove easily that the problem (PR1 )

corresponds to a Maximum A Posteriori (MAP) estimation problem on x using prior
(50):

x?MAP = arg max
x

log p(y,x,D), (51)

= arg max
x

log p(y|x,D)p(x),

= arg min
x

1
2
‖y −Dx‖22 + λ‖x‖1.

This relation between inverse sparse problem and Bayesian approximation offers in-
teresting analysis perspectives. In particular, rather than maximizing the posterior
probability distribution p(x|y,D), we can look for an approximation of it. A solu-
tion to the sparse problem can then be obtained on a classical way by a a posteriori
maximization (51), or by a minimization of the mean square error (MMSE):

x?MMSE =
∫
x

p(x|y,D)dx. (52)

This latter approach presents the advantage of integrating over all possible realizations
of x rather than making a hard decision by estimating x as the maximum. In a general
way, estimating the posterior distribution p(x|y,D) allows to take into account the
uncertainties inherent in the approximation of x.
The computation of the posterior distribution p(x|y,D) is impossible under a Lapla-

cian prior since the Laplacian prior is not conjugate to a Gaussian likelihood 1, and
hence the associated Bayesian inference may not be performed in closed form ([7]).
To overcome this difficulty, several substitute distributions have been proposed.
The first one considers the following mixture, for each component xi of vector x:

p(xi) = (1− pi)δ0 + piN (0, σ2
i ), (53)

where δ0 is a Dirac distribution, N (0, σ2
i ) a Gaussian law with zero mean and variance

σ2
i , pi a probability regulating the mixture. In [36], He et Carin assume that the

variables σ−2
i and pi are random and follow respectively a Gamma law and a Beta

1In Bayesian probability theory, a class of prior probability distributions p(θ) is said to be conjugate
to a class of likelihood functions p(z|θ) if the resulting posterior distributions p(θ|z) are in the
same family as p(θ).
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law. A Monte Carlo Markov Chain method (MCMC, [13]) is then used to estimate
the posterior distribution p(x|y,D).
Another approach considers a mixture of two Gaussians, where the components xi

depend on Bernoulli variables si as follows:

p(xi) =
∑

s∈{0,1}

p(si = s)N (0, σ2(si = s)). (54)

We find this model in [4]. The authors use then a belief propagation method to estimate
the posterior distribution p(x|y,D). This technique relies on factor graphs, which
enable a fast computation of global multivariate functions by exploiting the way in
which the global function factors into a product of simpler local functions, each of which
depends on a subset of variables ([47]). In [4], the authors show that, particularized
to the model (54), the resulting algorithm has a complexity O(M log2(M)). Thus
the proposed algorithm remains competitive in comparison with pursuit or convex
optimization algorithms.
A slightly more complex model is adopted in [81]. The authors propose an it-

erative algorithm estimating successively the variables x = [x1, . . . , xM ]T and s =
[s1, . . . , sM ]T with a Maximum A Posteriori approach. The estimation of x for a given
s is relatively easy due to the Gaussianity of x. On the other hand, the estimation
of s for a given x is more subtle. The authors resort to a gradient descent. In this
purpose, they “convert” each discrete variable si to a continuous one via a mixture of
two Gaussians centered around 0 and 1 with sufficiently small variances σ2

0 and σ2
1 :

p(si) = πN (0, σ2
0) + (1− π)N (0, σ2

1), (55)

where π is a parameter comprised between 0 and 1 regulating the mixture. The itera-
tive process they obtain can be compared to an Expectation-Maximization algorithm
(EM). In terms of complexity, their approach is much more costly than the pursuit or
convex optimization algorithms.
Finally, we find in [68] and [41] the following model for each component xi:

p(xi|σi) = N (0, σ2
i ), (56)

where σ−2
i follow a Gamma law for all i ∈ {1, . . . ,M}. We set that the parameter σ−2

n

(σ2
n is the noise variance, cf. equation (49)) follows also a Gamma law. Assuming the

variables σ = [σ1, . . . , σM ]T and σn are known, the posteriori distribution of x can be
expressed analytically as a Gaussian distribution with mean µ and variance Σ such as
:

µ = σ−2
n ΣDTy, (57)

Σ = (σ−2
n DTD + A)−1, (58)

where A = diag(σ1, . . . , σM ). Thus, the estimation of the posterior distribution
p(x|y,D) reduces to the estimation of the parameters σn and σ. In [41], Ji et al.
propose to use the Relevant Vector Machine algorithm (RVM) introduced by Tipping
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in [68]. RVM performs a type-II Maximum of Likelihood (ML) (or evidence maximiza-
tion) procedure, i.e., a maximization of the marginal likelihood p(y|σ, σn) ([6][50]).
Because of the matrix inversion (58), the algorithm complexity is quite high, O(M3).
This defect has motivated the design of a fast RVM ([69]), with an inferior complexity
O(MN2). Finally, RVM presents the interest to make the atom deselection possible
(with σi = 0), as algorithms SP and CoSaMP.

2.5.3 Prediction based on sparse representations

The idea of prediction based on sparse representations relies on the assumption that the
missing data we want to predict and the observed data have a sparse representation
in a given dictionary. Sparsity defines thus a prior on the signal made up of the
concatenation of the observed and the missing data. This can be formalized as follows.
Let y = [yTo ,y

T
m]T be the concatenation of yo ∈ RNo , observed data, and ym ∈ RNm ,

missing data. y is assumed to have a sparse representation in dictionary D. The
missing data ym is thus estimated as

ym = Dmx?, (59)

where the sparse representation x? is calculated from the observed data as the solution
of problem (PPp ), (PAp ) or (PRp ). For example, for the regularization problem (PRp ),

x? = arg min
x
‖yo −Dox‖22 + λ‖x‖o.

Do ∈ RNo×M (resp. Dm ∈ RNm×M ) is the dictionary whose rows correspond to the
elements in yo (resp. ym).
For a proper choice of the dictionary, it has been shown that such an approach can

offer very good performance in prediction or inpainting problems, see e.g., [34, 35, 26,
27, 54, 72].
In [34] and [35], Guleryuz considers an overcomplete dictionary made up of orthonor-

mal bases and proposes an iterative implementation of the sparse representation prob-
lem applied to inpainting. Another approach is presented by Elad et al. in [26]. The
proposed implementation involves a different type of dictionary, made up of atoms
capturing either “cartoon" or “texture" areas. Elad et al. add also a total variation
(TV) penalty term to the standard sparse representation problem. Finally, in [27],
Fadili et al. introduce an implementation based on the expectation-maximization
(EM) algorithm.
Several contributions also consider the problem of prediction based on sparse repre-

sentations in the context of image/video coding, see e.g., [54], [72]. These contributions
mainly distinguish by the choice of the dictionary used to “sparsely” represent the sig-
nal and the choice of the data used for the prediction. In [54], Martin et al. consider
an overcomplete dictionary made up of discrete real Fourier and cosine functions, while
Türkan et al. [72] construct a dictionary from image patches taken in a large causal
area and consider seven possible causal neighborhoods.
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2.6 Depth-aided texture synthesis
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