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or a rectangle. We present here the algorithms used in this library.
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exitbm: une bibliothèque pour simuler les temps et positions
de sortie de domaines simples du mouvement brownien

Résumé : Cette bibliothèque en langage C calcule et simule diverses quantités et variables
aléatoire reliées au temps et positions de sortie pour un mouvement brownien d’un intervalle,
d’un carré ou d’un rectangle. Nous présentons ici les algorithmes utilisés dans cette bibliothèque.

Mots-clés : Mouvement brownien, mouvement brownien biaisé, temps de sortie, position de
sortie, équation de la chaleur, opérateur de Laplace
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1. Introduction

This numerical library provides a way to compute several quantities related to the Brownian mo-
tion on an interval (first exit time, ...), a square or a rectangle and to generated the corresponding
random variates.

The motivation beyond this library is to provide all the necessary basic bricks to implement the
methods of random walk on squares and random walk on rectangle, as a substitute to the method
of random walk on spheres. These Monte Carlo methods aim at solving for example Dirichlet
problems, to compute the density of the first exit time and position from a domain as well as
other quantities (some effective coefficients [8, 28], the first eigenvalue and eigenfunction of the
Laplace operator [17,18],...).

The random walk on spheres was introduced by E.M. Muller in 1956 [25] and is a very efficient
method to solve the Dirichlet problem (see for example [14,21,22,27,29] for analysis, applications
and extensions). However, it is more difficult to deal with the exit time. With the random walk on
squares and rectangles, the joint distribution of the first exit time and exit position is exactly
simulated. By an appropriate choice of squares and rectangles, one may also get the exact exit
time and position from a domain with polygonal boundary. This could be important when the exit

RT n° 0402
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time is required with a good accuracy as for the Monte Carlo computation of the first eigenvalue
of the Laplace operator [17, 18]. The random walk on squares was introduced by O. Faure in
his Ph.D. thesis [13] and by G.N. Milstein and M.V. Tretyakov [23, 24] (see [20] for variants and
extensions). The random walk on rectangles was introduced in [9,10].

The key of these approaches is to use conditioning to simulate random variables in dimension
one. The library may then also be used for simulating diffusion processes with discontinuous
coefficients [19] or other simulation problems related to the one-dimensional Brownian motion or
for diffusion simulation on a graph [15].

This library has been split in several parts:

◦ exitbm One-dimensional distributions for exit time, positions, ...
◦ exitbm_fz One-dimensional distributions for exit time, positions, ... when the starting point is

in the middle of the interval (relies on tabulated values).
◦ exitbm_fhor Exit time and position from an interval.
◦ exitbm_square Exit time and position from a square.
◦ exitbm_rectangle Exit time and position from a rectangle.
◦ exitbm_test For testing the functions.
◦ exitbm_benchmark For testing the speed of the implementation.

The dependencies between the headers (except for exitbm_test and exitbm_benchmark which
depend on all the headers files) in shown in Figure 1.

Dependencies: This library is written in standard C and requires the Gnu Scientific Library
(GSL, [2]). However, it may be easily interfaced with other scientific library providing both random
number generators and some common functions such as the error function erf, ...

This library also comes with files used to generate the benchmarks and the figures in the docu-
mentations. They rely on Ruby [4] and related tools and libraries, namely rake [6].

The figures of this documentation are plotted with R [5]. This document presents mainly the
mathematical part of the library. The code is documented using Doxygen [3], which contains a
description of the arguments of the functions. Again, none of these softwares are mandatory to
get the library working.

Licence: This library is distributed under the Free Software license CeCILL [1].

Web site: This library is hosted at 〈http://exitbm.gforge.inria.fr〉.
Version: This document describes the version 2.0 of the library released in January 2011.

Acknowledgement. This work has been motivated from collaborations with Fabien Campillo, Madalina
Deaconu, Miguel Martinez, Sylvain Maire and Samih Zein and the author wishes to thank them for inter-
esting discussions about simulation issues. Some of the motivations for the development of this library
also come from my participation to the Groupement MOMAS (funded by Andra, BRGM, CEA, CNRS and
IRSN) which granted some financial support.
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Figure 1: Dependencies between the header files.

2. Exit time and position for the one-dimensional Brownian motion

Let B be a one-dimensional Brownian motion. Its first exit time from [−1, 1] is defined by

τ = inf{t ≥ 0 |Bt 6∈ [−1, 1]}.

The computations presented in this Section may be applied to any intervals: See Appendix A.1.

Almost all of the expressions presented here implies infinite series. Yet a few term are sufficient
to get an accurate approximation in almost all the cases.
Remark 1. The code uses formula that may differ from the one presented here (transformation
of the error function erf to the complementary error function, trigonometric transforms, ...).

2.1. Probability that the Brownian motion reaches the right endpoint before the left end-
point

Let us denote by Px the distribution of the Brownian motion with B0 = x . The probability that B
reaches 1 before −1 is given by

Px [Bτ = 1] = S(x) =
x + 1

2
.

The function S(x) is called the scale function.

Numerical aspects: Due to its simplicity, there is no function for computing the scale function.

RT n° 0402
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2.2. Density of the killed Brownian motion

The density of the killed Brownian motion is the fundamental solution of the parabolic PDE
∂p(t, x , y)

∂t
+ 1

2
4p(t, x , y) = 0 on R+ × (−1, 1),

p(t, x , y) −−→
t→0

δy (x),

p(t, x ,−1) = p(t, x , 1) = 0, t > 0, x ∈ (−1, 1).

Analytical expressions hold for this density [7, 23] (see also for example [30] for some explana-
tions). The first one comes from the method of images:

p(t, x , y) =
1√
2πt

+∞∑
n=−∞

(
exp

(
−(x − y − 4n)2

2t

)
− exp

(
−(x + y − 2− 4n)2

2t

)
. (1)

The second comes from the spectral decomposition of the Laplace operator and

p(t, x , y) =
+∞∑
n=1

exp

(
−n2π2

8
t

)
sin
(nπ

2
(x + 1)

)
sin
(nπ

2
(y + 1)

)
. (2)

The density of the killed Brownian motion has the following probabilistic representation∫ 1

−1

p(t, x , y)g(y) dy = Ex [f (Bt); t < τ ] (3)

for any bounded, measurable function g on [−1, 1].

The integral

P(t, x , y) = Px [Bt < y |t < τ ] =

∫ y

−1

p(t, x , z) dz

is then given by

P(t, x , y) =
1

2
√

t

+∞∑
n=−∞

(
erf

(
x + 1− 4n√

2t

)
− erf

(
x − y − 4n√

2t

)

+ erf

(
x − 3− 4n√

2t

)
− erf

(
x + y − 2− 4n√

2t

))

where erf stands for the following function

erf(y) =
2√
π

∫ y

0

exp
(
−z2

)
dz .

RT n° 0402



exitbm documentation 7

With the spectral decomposition,

P(t, x , y) =
+∞∑
n=1

2

nπ
exp

(
−πn2

8t

)
sin

(
n

(x + 1)π

2

)(
1− cos

(
n

(y + 1)π

2

))
. (4)

Since Px [Bτ < y |t < τ ] = (1− F (t, x))P(t, x , y), a realization of Bτ given {t < τ} may then be
obtained by solving (1 − F (t, x))P(t, x , Z ) = U for a realization U of a uniform random variable
on [0, 1].

It is also possible to simulate Bτ given {t < T < τ}, since

Ex [g(Bt), t < T < τ ] = Ex [g(Bt)Px [τ > T |Ft ], t < τ ] = Ex [g(Bt)PBT
[τ > T − t], t < τ ],

where (Ft)t≥0 is the filtration generated by the Brownian motion. Then the density of Bt given
{t < T < τ} is

p?(t, x , y , T ) = p(t, x , y)
1− F (T − t, y)

1− F (T , x)
=

p(t, x , y)

1− F (t, y)

1− F (t, y)

1− F (T , x)
(1− F (T − t, y)). (5)

Numerical aspects: Formula (2) is suitable for “large” values of t while (1) is suitable for “small”
values of t. The density is computed by d_pos which uses one of the two formula according to
the value of t. The function id_pos computes P(t, x , y). The function idd_pos computes both
p(t, x , y) and P(t, x , y).

The method q_pos_gne finds y solution to (1− F (t, x))P(t, x , y) = u, u ∈ (0, 1).

The method r_pos_gne gives a realization of Bt given {τ < t}. The method r_pos_getg gives a
realization of Bt given {τ > T} with T > t. This method relies on Formula (5) and the rejection
algorithm given in [11, § 3.3, p. 47].

In exitbm_fz, the method r_pos_gne_fz returns a realization of Bt given {τ < t} under P0. For
efficiency, simulations rely on the rejection method proposed by O. Faure in [13] for t ∈ [0.25, 2]
and on the inversion technique proposed by N.G. Milstein and M.V. Tretyakov in [23] otherwise.

2.3. Distribution function and density of the first exit time

From (3), one may deduce the distribution function F (t, x) = Px [τ < t] of τ , by taking g ≡ 1.
Then

F (t, x) = 1−
∫ 1

−1

p(t, x , y) dy

With (1), one gets

F (t, x) = 1−
+∞∑

n=−∞

(
erf

(
x − 3− 4n√

2t

)
− erf

(
x + 1− 4n√

2t

))
. (6)

RT n° 0402
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With (2), one gets

F (t, x) = 1− 4

π

+∞∑
n=0

(−1)n

2n + 1
exp

(
−π

2(2n + 1)2t

8

)
cos

(
xπ

(
n +

1

2

))
. (7)

Derivating (6) and (7), one gets that f (t, x) = Px [τ ∈ dt] is equal to

f (t, x) =
1√

2πt3

∞∑
n=−∞

(
(x + 4n + 1) exp

(
−(x + 4n + 1)2

2t

)

− (x + 4n − 1) exp

(
−(x + 4n − 1)2

2t

))
(8)

and

f (t, x) =
2

π

∞∑
n=1

1

2n + 1
exp

(
−(2n + 1)2π2

8
t

)
sin

(
n

(x + 1)π

2

)
. (9)

One may simulate a realization of τ by inverting t 7→ F (t, x) and computing the value τ such that
F (τ , x) = U for a realization U of a uniform random variable on [0, 1].

In addition, for t < T ,

Px [τ < t|τ < T ] =
Px [τ < t]

Px [τ < T ]
.

This way, it is easy to simulate a realization of τ given {t < T} by solving F (τ , x) = F (T , x)U for
a realization U of a uniform random variable on [0, 1].

Numerical aspects: The functions F (t, x) and f (t, x) are computed by the methods

◦ d_exit_time (density).
◦ p_exit_time (distribution function).
◦ pd_exit_time (simultaneous computation of F (t, x) and f (t, x)).

In addition, p_exit_time_fz (in exitbm_fz) returns the values of F (t, 0) using tabulated values
(faster).

In addition, the function q_exit_time returns the value t such that F (t, x) = v for v ∈ (−1, 1).
The computation relies on the Newton method, and by dichotomy if the Newton method fails to
converge.

In addition, q_exit_time_fz (in exitbm_fz) returns the solution to F−1(t, 0) = v using tabulated
values (faster).

A realization of τ underPx is returned by r_exit_time. This method relies on calling q_exit_time.

In addition, r_exit_time_fz in (exitbm_fz) returns a realization of τ under P0.

A realization of τ given {τ < T} under Px is returned by r_exit_time_gets.

RT n° 0402
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Figure 2: Distribution function F (t, x) (left) and density f (t, x) (right) of the first exit time for three
values of the starting point x . Note that F (t,−x) = F (t, x) and f (t,−x) = f (t, x) for x ∈ (−1, 1).

2.4. Position of the Brownian motion before exit

The distribution function Q(t, x) of Bt given {t < τ} is

Q(t, x , y) = Px [Bt < y |t < τ ] = Px [Bt < y , t < τ ]Px [t < τ ]

=

∫ y

−1
p(t, x , z) dz

1− F (t, x)
=

P(t, x , y)

1− F (t, x)
.

The density q(t, x , y) of Bt given {t < τ} is

q(t, x , y) =
P(t, x , y)

1− F (t, x)
.

2.5. Position of the Brownian motion given its exit time

The distribution function q(t, x) of Bt given {τ = T} may be computed using a Doob’s transform
(also called a h-transform, see Appendix A.2). From the strong Markov property applied to time τ ,

Ex [g(Bt)|τ = T ] = lim
ε→0

Px [g(Bt), τ ∈ [T − ε, T + ε]]

Px [τ ∈ [T ε, T + ε]]

=

∫ 1

−1
p(t, x , y)g(y)

∫ T+ε

T−ε f (s − t, y) ds dy∫ T+ε

T−ε f (s − t, y) dy
−−→
ε→0

∫ 1

−1

r(t, x , y)g(y) dy

RT n° 0402
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Figure 3: Distribution function Q(t, x) (left) and density q(t, x) (right) of the position of the Brow-
nian motion Bt given {t < τ} for different values of the time and different values of the starting
point x .
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with

r(t, x , y) = p(t, x , y)
f (T − t, y)

f (T , x)
.

This function r(t, x , y) gives the density of Bt given {τ = T} around y under Px . Similarly, we
may define the density of Bt given {τ = T , Bτ = 1} around y under Px by

r †(t, x , y) = p†(t, x , y)
f †(T − t, y)

f †(T , x)
.

Numerical aspects: The random variable Y with density r †(t, x , ·), we use the rejection method
described in [11, § 3.3, p. 47] by writing

r †(t, x , y) = c
p†(t, x , y)

1− F †(t, x)
ϕ(t, T , x , y)

with ϕ(t, T , x , y) = (1 − r †(t, x))f †(T − t, y)/(cf †(T , x)) and c a real number such that c ≥
max{1, supy∈(−1,1) ϕ(t, T , x , y)}. The idea of the algorithm is to simulate a realization X of a
random variable with density p†(t, x , ·)/(1− F †(t, x)) until ϕ(t, T , x , X )/c becomes greater than
the realization of a uniform random variable on [0, 1]. As soon as this condition is satisfied, X is
a realization of a random variable with density r †(t, x , ·).

The method r_pos_right_gete gives a realization of Bt given {τ = T , Bτ = 1}. However, when
possible, one should avoid using this method which is slow.

2.6. Exit position of the Brownian motion given it exits from the right endpoint

Again using a h-transform,

Ex [g(Bt), t < τ |Bτ = 1] =
Ex [g(Bt), t < τ , Bτ = 1]

Px [Bτ = 1]
.

As S(B) is a martingale with S(Bτ ) = 1, τ is a stopping time, then

Ex [g(Bt), t < τ , Bτ = 1] = Ex [g(Bt)S(Bt), t < τ ]

while Px [Bτ = 1] = S(x). Thus

Ex [g(Bt), t < τ |Bτ = 1] =

∫ 1

−1

p†(t, x , y)g(y) dy

with

p†(t, x , y) = p(t, x , y)
S(y)

S(x)
= p(t, x , y)

1 + y

1 + x
.

RT n° 0402
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2.7. Distribution function and density of the first exit time when the Brownian motion exits
first from the right

The distribution function F †(t, x) = Px [τ < t|Bτ = 1] of τ is given by

F †(t, x) = 1−
∫ 1

−1

p†(t, x , y) dy .

With (1),

F †(t, x) =
2

1 + x

(
2− erfc

(
x − 1√

2t

)
−

+∞∑
n=1

(
erfc

(
x − 1− 4n√

2t

)
+ erfc

(
x − 1 + 4n√

2t

)
− 2

))
. (10)

With (2),

F †(t, x) = 1− 4

π(1 + x)

+∞∑
n=1

(−1)n+1

n
exp

(
−n2π2t

8

)
sin

(
n
π(x + 1)

2

)
. (11)

Derivating (10) and (11), one gets that f †(t, x) = Px [τ ∈ dt|Bτ = 1] is equal to

f †(t, x) =
−2

(1 + x)
√

2πt3/2

+∞∑
n=−∞

(x − 1− 4n) exp

(
−(x − 1− 4n)2

2t

)
(12)

and

f †(t, x) =
π

2(1 + x)

+∞∑
n=1

(−1)n+1n exp

(
−n2π2t

8

)
sin

(
n
π(x + 1)

2

)
. (13)

One may simulate a realization of τ by inverting t 7→ F †(t, x) and computing the value τ such
that F †(τ , x) = U for a realization U of a uniform random variable on [0, 1].

In addition, for t < T ,

Px [τ < t|τ < T , Bτ = 1] =
Px [τ < t]

Px [τ < T , Bτ = 1]
.

This way, it is easy to simulate a realization of τ given {t < T} by solving F †(τ , x) = UF †(T , x)
for a realization of a uniform random variable U on [0, 1].

Numerical aspects: The functions F †(t, x) and f †(t, x) are computed by the methods

◦ d_exit_time_right (density).

RT n° 0402
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Figure 4: Distribution function F †(t, x) (left) and density f †(t, x) (right) of the first exit time for six
values of the starting point x .

◦ p_exit_time_right (distribution function).
◦ pd_exit_time_right (simultaneous computation of F †(t, x) and f †(t, x)).

In addition, the function q_exit_time_right returns the value t such that F †(t, x) = v for v ∈
(−1, 1). The computation relies on the Newton algorithm and the dichotomy when the Newton
algorithm fails to converge.

A realization of τ under Px is returned by r_exit_time_right. This method relies on calling
q_exit_time_right.

A realization of τ given {τ < θ} under Px is returned by r_exit_time_right_gets.

3. Exit time and position from an interval with finite time horizon

We consider a one-dimensional Brownian motion W as well as a fixed time T > 0. We are
interested in generating random variates (τ ∧ T , Wτ∧T ) where τ is the first exit time from [−1, 1]
with W0 = x . Again, the case of an arbitrary interval may be considered using the scaling
and spatial homogeneity properties of the Brownian motion (See § A.1). The code relies on
Algorithm 1 presented in [15].

Numerical aspects: The value of Px [Bτ = 1|τ < T ] is given by the Bayes formula

Px [Bτ = 1|τ < T ] =
Px [τ < T |Bτ = 1]Px [Bτ = 1]

Px [τ < T ]
.
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Data: A starting point W0 and a time T > 0.
Result: A realization of (τ ∧ T , Wτ∧T ).
Use a Bernoulli random variate of parameter Px [τ < T ] to decide whether τ < T or τ > T ;
if τ < T then

Use a Bernoulli random variate of parameter Px [Wτ = 1|τ < T ] to decide whether
Wτ = 1 or Wτ = −1;
if Wτ = 1 then

Generate τ given {Wτ = 1, τ < T};
else

Generate τ given {Wτ = −1, τ < T};
end

else
Generate WT given {T < τ}

end
Algorithm 1: Exit time and position from [−1, 1] with a finite horizon.

To generate τ given {Bτ = 1, τ < T}, use r_exit_time_right_gets with y as a starting point.
To generate τ given {Bτ = −1, τ < T}, use r_exit_time_right_gets with −y as a starting
point.

The following functions are defined in the sub-library exitbm_fhor.

◦ r_exit_time_position_before_horizon returns a realization of (τ ∧ T , Wτ∧T ) from [−1, 1]
for an arbitrary starting point.
◦ r_exit_time_position_before_horizon_fz returns a realization of (τ∧T , Wτ∧T ) from [−1, 1]

when W0 = 0 (faster).
◦ r_exit_time_position_before_horizon_from_interval returns a realization of (τ∧T , Wτ∧T )

from an arbitrary interval.

4. Exit time and position from an interval with finite time horizon for the Skew Brownian
motion

The Skew Brownian motion (SBM) is a generalization of the Brownian motion and may be con-
structed by several ways (See the survey article [16] for an introduction to this object and its
properties). Among them, one may consider the excursions of the reflected Brownian motion.
The excursions are part of the path between two successive, distant zeroes. A Skew Brownian
motion is then construct by choosing randomly and independently using a Bernoulli random vari-
able of parameter α. If α = 1 (resp. α = −1), then this process is a positively (resp. negatively)
reflected Brownian motion. If α = 1/2, this is a Brownian motion.
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It can be shown that the SBM is the unique strong solution of the Stochastic Differential Equation
with Local Time

Xt = x + Bt + (2α− 1)L0
t (X ), (14)

where (L0
t (X ))t≥0 is the symmetric local time at 0 of the process X :

L0
t (X ) = lim

ε→0
(2ε)−1 meas{0 ≤ s ≤ t|Xs ∈ [−ε, ε]}.

Remark 2. Here, we choose the parameter α ∈ (0, 1). It is sometimes convenient to use a
parameter θ = 2α− 1 in (−1, 1), mainly when one works with (14).

As shown in [12, 19, 26] for example, the SBM is the fundamental process to understand the
behavior of a diffusion when it crosses some interface.

Using the symmetry properties of the Brownian motion and the above construction, if τ = inf{t ≥
0|Xt 6∈ [−1, 1]}, then (τ ∧ T , Xτ∧T ) is easily simulated when X0 = 0. The scaling property still
applied to the SBM.

Algorithm 2 may then be used as one of the basic brick for implementing the algorithm proposed
in [19].

Data: The skewness parameter α ∈ (0, 1) and a finite horizon T > 0.
Result: A realization of (τ ∧ T , Xτ∧T ) for the SBM of parameter α.
Use a Bernoulli random variate of parameter P0[τ < T ] to decide whether {τ < T} of
{T > τ};
if τ < T then

Generate a realization τ of τ given τ < T ;
Use a Bernoulli random variate of parameter α to decide whether z = Xτ = 1 or
z = Xτ = −1;
Return (τ , z);

else
Generate the position y of a Brownian motion at time T given {τ > T};
Generate a Bernoulli random variate ε in {1,−1} with P[ε = 1] = α;
Return (T , |y |ε);

end
Algorithm 2: First exit time and position from [−1, 1] for the Skew Brownian motion starting
from 0 with a finite horizon.

Numerical aspects: The realizations of τ are obtained using the one for the Brownian motion.

The sub-library exitbm_fhor provides the following functions:

◦ r_exit_time_position_before_horizon_sbm for the exit time and position from [−1, 1] with
a finite horizon.
◦ r_exit_time_position_before_horizon_from_interval_sbm for the exit time and position

from an arbitrary interval with a finite horizon.
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5. Exit time and position from the square

Now, let us consider a d -dimensional Brownian motion W and set

θ = inf{t > 0 |Wt 6∈ [−1, 1]d}.

By using the one-dimensional distribution, as shown in [13, 23, 24], it is possible to simulate the
joint distribution (θ, Wθ) under P0, that is when the Brownian motion start from the center. For
another starting point, one may use the variant of the random walk on squares called the random
walk of rectangles: see Section 6 below.

Let (W 1, ... , W d) be the coordinates of W , which are independent Brownian motion. Note first
that

θ = min
i=1,...,d

τ i for τ i = inf{t > 0 |W i
t 6∈ [−1, 1]}.

IF Fd(t) is the distribution function of θ, then a simple computation shows that

Fd(t) = 1− (1− F (t, 0))d

where F (x , t) = Px [τ i < t].

For a realization U of a uniform random variable on [0, 1], the solution θ to F (θ, 0) = 1 − U
1/d

is
then a realization of θ.

Then a realization of (θ, Wθ) is simulated using Algorithm 3.

Result: A realization of (θ, W θ).
Draw a realization θ of θ;
Draw with a probability 1/d an index k and with probability 1/2 a sign ε ∈ {−1, 1};
Set W

k

θ ← ε;
for i = 1, ... , d , i 6= k do

Simulate a realization W
i

θ of W i
θ

given {τ i > θ} using the distribution function P(θ, 0, ·);
end

Algorithm 3: Simulation of the first exit time and position from a hyper-cube for a Brownian
motion starting from 0.

It is also possible to simulate (θ ∧ T , Wθ∧T ) by the Algorithm 4.

Numerical aspects: In exitbm_square, the functions p_exit_time_square and
p_exit_time_hypercube returns the distribution function of θ for d = 2 and any d ≥ 2.

The functions r_exit_time_square and r_exit_time_hypercube returns a realization of θ. The
function r_exit_time_square_gets returns a realization of θ given {θ < T} for d = 2.

The function r_exit_time_position_space_time_square returns a realization of (θ∧T , Wθ∧T ),
while r_exit_time_position_square returns a realization of (θ, Wθ).
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Data: A finite horizon T > 0.
Result: A realization (θ, W ) of (θ ∧ T , Wθ∧T ).
Use a Bernoulli random variate of parameter P0[θ < T ] to decide whether θ < T or T ≥ θ;
if θ < T then

Generate a random variate θ of θ given {θ < T} by solving F (θ, 0) = α(1− U
1/d

, x))
for a random variate U uniform on [0, 1);
Draw with a probability 1/d an indice k and with probability 1/2 a sign ε ∈ {−1, 1};
Set W

k

θ ← ε;
for i = 1, ... , d , i 6= k do

Generate a random variate W
i

θ of W i
θ

given {τ i > θ} using the distribution function
P(θ, 0, ·);

end
else

for i = 1, ... , d , i 6= k do
Simulate a realization W

i

T of W i
T given {τ i > T} using the distribution function

P(T , 0, ·);
end

end
Algorithm 4: Simulation of the first exit time and position from a hyper-cube for a Brownian
motion starting from 0.
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Figure 5: Distribution function Fd(t) (left) and density fd(t) (right) of the first exit time of an
hyper-cube for dimensions from 1 to 4. The density fd(t) is estimated from random samples.

6. Exit time and position from a rectangle

In [9], we have introduced the random walk on rectangles as a way to simulate (θ, Wθ) where

θ = inf{t > 0 |Wt 6∈ R = [−L1, L1]× · · · × [−Ld , Ld ]}

under Px for any starting in the (hyper-)rectangle R .

The algorithm in [9] is presented in dimension d = 2 yet it may be generalized to any dimension d .
Although the current version of exitbm provides only interfaces to exit time from rectangles, we
present the general algorithm in Algorithm 5.

Remark 3. The permutation σ is used only to reduce the number of potential calls to the evalua-
tion of Bt given {τ = t} (function r_pos_gete).

Remark 4. The probability that Bτ = 1 given that {τ < t} may be evaluated through the Bayes’
rule

Px [Bτ = 1|τ < t] =
Px [τ < t|Bτ = 1]

Px [τ < t]
Px [Bτ = 1] =

F †(t, x)

F (t, x)

1 + x

2
.

Numerical aspects: The library exitbm_rectangle provides

◦ r_exit_time_position_rectangle: returns a realization of the first exit time and position
(τ , Wτ ) from a rectangle.
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Data: A rectangle R = [−L1, L1]× · · · × [−Ld , Ld ] and an initial position x = (x1, ... , xd).
Compute the distance di = Li − |xi |, i = 1, ... , d ;
Find a permutation σ such that dσ(1) ≤ · · · ≤ dσ(d);
/* To simplify the notations, we assume that σ(i) = i, See Remark 3. */
Simulate a realization (τ 1, z1) of (τ1, W 1

τ ) where τ1 is the first exit time from [−L1, L1]
for W 1;
Set θ ← τ , imin ← 1, J ← ∅;
for i = 2, ... , d do

Evaluate αi ← Pxi
[τi < θ], where τi is the first exit time from [−Li , Li ] for W i , and use a

Bernoulli random variate of parameter αi to decide whether or not {τi < τ};
if {τi < θ} then

Draw a realization z i of W i
τ i

given {τi < θ} ;
/* See Remark 4. */
Draw a realization τ i of τi given {τi < θ, B i

τi
= z i} and set θ ← τi , imin ← i ;

else
J ← J ∪ {i};
Ci ← imin;

end
end
for i = 1, ... , d do

if i 6∈ J and i 6= imin then
Draw a realization z i of B i

θ given {τi = τ i};
else

Draw a realization of B i
θ given {τi > Ci};

end
end
Return the exit time θ and the exit position (z1, ... , zd);

Algorithm 5: First exit time and position from a rectangle for an arbitrary starting point.
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◦ r_exit_time_position_space_time_rectangle: returns a realization of (T ∧ τ , WT∧τ ) from
a rectangle for a fixed T (the algorithm is an easy modification of the previous one).

Numerical tests show that this algorithm is slow with respect to the random walk on squares
(See Table 1). This is due to the fact that for the random walk on squares, tabulated values may
be used for the exit time. Here, any random variables depends on 1 or 2 parameters, so that
tabulating values requires a lot of memory.

This is why we provide the alternative functions

◦ r_exit_time_position_rectangle_rws
 r_exit_time_position_rectangles
◦ r_exit_time_position_space_time_rectangle_rws
 r_exit_time_position_space_time_rectangles

which relies in the walk on square algorithm in each rectangles, and which are respectively 4 and
6.5 time faster in average (see Table 1 below).

Note that this does not completely supersede the interest of of the random walk on rectangles.
First because thie method may be used in combination with Neumann boundary conditions, which
is not the case for the random walk on squares. Second because the rectangles may be chosen
prior to any simulation, so that one may find a covering (here, the rectangles should overlap) of
the domain with rectangles and perform a random walk on squares in each rectangles. On the
other hand, with the random walk on squares/spheres, the size of the square/sphere shall be
chosen at each step in function of the distance to the boundary. Because of the simple geometry
of the squares and rectangles, the condition to know wether or not the particle has reached the
boundary is pretty simple. This avoid the cumbersome algorithm proposed in [8] to construct a
square in the domain with a boundary which is possibly on one of the boundary.

7. Tests and benchmarks

The library exitbm_test contains a series of tests to evaluate and compare the code (simulation
of random variable, numerical integration of the density, ...).

Using the exitbm_benchmark library and the Rake task compile_benchmark, one may define a
C file benchmark.c that may be used to test the time consumption of a simulation (with the Unix
command time for example).

The execution times for the random variables generators are summarized in Table 1 for 1,000,000
samples (on a MacBook 12”, 2.4GHz Intel Core 2 duo, the code being compiled with gcc), using
the Mersennes Twister random number generator of the GSL library. Regarding the parameters,
the starting point is chosen uniformly in (−1, 1). For r_pos_gne the time t is chosen using an
exponential random variable of parameter 1. For r_pos_getg (resp. r_pos_gete), the minimal
time time (resp. the exit time) θ is chosen using an exponential of parameter 1 and the time t is
chosen uniformly on [0, θ].
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r_exit_time_fz 0 min 00 sec 05′′

r_exit_time_gets_fz 0 min 00 sec 14′′

r_pos_gne_fz 0 min 19 sec
r_pos_gne 0 min 57 sec
r_exit_time_right 0 min 58 sec
r_exit_time 1 min 57 sec
r_exit_time_right_gets 2 min 13 sec
r_pos_getg 4 min 14 sec
r_exit_time_gets 4 min 57 sec
r_pos_gete 24 min 09 sec
r_exit_time_position_square 00 min 10 sec
r_exit_time_position_space_time_square 00 min 36 sec
r_exit_time_position_space_time_rectangle_rws 0 min 21 sec
r_exit_time_position_rectangle_rws 0 min 38 sec
r_exit_time_position_rectangle 1 min 21 sec
r_exit_time_position_space_time_rectangle 4 min 20 sec
r_exit_time_position_before_horizon_fz 0 min 16 sec
r_exit_time_position_before_horizon 1 min 03 sec
r_exit_time_position_before_horizon_sbm 0 min 15 sec

Table 1: Execution times for the random variables generators with 1,000,000 samples.

For r_exit_time_position_space_time_square, the final time is drawn using an exponential
random variable of parameter 1.

For r_exit_time_position_rectangle and r_exit_time_position_rectangle_rws, the half-
width and the half-height of the rectangle are chosen using exponential random variables of pa-
rameter 1, while the initial position is chosen uniformly in the rectangle.

For r_exit_time_position_space_time_rectangle, the parameters are chosen as for
r_exit_time_position_rectangle, and the final time is also drawn using an exponential ran-
dom variable of parameter 1.

For r_exit_time_position_before_horizon, the starting point is chosen using uniformly on
(−1, 1) and the horizon is draw from an exponential distribution of parameter 1. We also use an
exponential distribution of parameter 1 for r_exit_time_position_before_horizon_fz as for
r_exit_time_position_before_horizon_sbm with a skewness parameter uniformly drawn in
(0, 1).
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A. Appendix

A.1. Scaling and shifting

All the functions relies on the Brownian motion living in [−1, 1]. Of course, using scaling and
shifting, there is no problem to consider the problem of the first exit time and position for any
interval.

The first exit time τ from [a, b] under Px is obtained by setting L = (b − a)/2 (half-length of the
interval) and y = (x − a)/2(b− a)− 1 (starting point). Any time parameter shall be divided by L2.
Then the distribution Py should be used and any position shall be multiplied by L before being
shifted by (a + b)/2, and random times shall be multiplied by L2.

If we are interested in quantities such as the exit time before a given time T , then this time has to
be divided by L2. The position z ∈ [−1, 1] at a given time T is then transformed to (a + b)/2 + zL.

Using symmetry, one may also transform any condition {Bτ = 1} to {Bτ = −1} by changing
first x to −x , and then by changing the sign of any random position.

A.2. Doob’s transform

Let h(t, x) be a function in C1,2([0, T )× R;R) ∩ C([0, T ]× R;R) which is solution to
∂h(t, x)

∂t
+ 1

2
4h(t, x) = 0, on [0, T )× R,

h(T , x) = g(x) on R.

Then (h(t, Bt))t∈[0,T ] is a martingale provided for example that E
[∫ T

0
|∇xh(t, Bt)|2 dt

]
is finite.

In this case, if Φ is a function defined on C([0, t];R) for some t ≤ T ,

E[Φ((Bs)s∈[0,t])g(BT )] = E[Φ((Bs)s∈[0,t])h(t, Bt)].

In particular, if g(x) = 1[a,b](x), then

Ex

[
Φ((Bs)s∈[0,t]) |BT ∈ [a, b]

]
=
Ex

[
Φ((Bs)s∈[0,t])h(t, Bt)

]
h(0, x)

.

This is a Doob’s transform, or a h-transform.

Future works

Future works shall include

◦ Treatement of other boundary conditions (Neumann/Neumann, and Dirichlet/Neumann).
◦ Presence of a drift term.
◦ Random walk on spheres.
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