
HAL Id: inria-00564311
https://hal.inria.fr/inria-00564311

Submitted on 4 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Runtime Selection of Parallel Schedules in the
Polytope Model

Benoit Pradelle, Philippe Clauss, Vincent Loechner

To cite this version:
Benoit Pradelle, Philippe Clauss, Vincent Loechner. Adaptive Runtime Selection of Parallel Schedules
in the Polytope Model. 19th High Performance Computing Symposium - HPC 2011, Apr 2011, Boston,
United States. �inria-00564311�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50014985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00564311
https://hal.archives-ouvertes.fr


Adaptive Runtime Selection of Parallel Schedules in the Polytope Model

Benoı̂t Pradelle, Philippe Clauss and Vincent Loechner
CAMUS, INRIA Nancy-Grand Est and LSIIT, Universit é de Strasbourg, CNRS, France.

{benoit.pradelle, philippe.clauss, vincent.loechner}@inria.fr

Abstract

There is often no unique version of a program that pro-
vides the best performance in all circumstances. Compilers
should rely on an adaptive runtime decision to choose which
optimizing and parallelizing transformations will lead tothe
best performance in any execution context. We present a new
adaptive framework solving two drawbacks of existing meth-
ods: it is effective since the very first execution, and it handles
slight variations of input data shape and size.

In our proposal, different code versions of parallel loop
nests are statically generated by the compiler. At install time,
each version is profiled in different execution contexts. At
runtime, the execution time of each code version is predicted
using the profiling results, the current input data shape and
the number of available processor cores. The predicted best
version is then run.

Our framework handles several versions of possibly tiled
parallel loops, using the polytope model for both the profil-
ing and the dynamic selection phases. We show on several
benchmark programs that our runtime system selects one of
the most efficient version with a very low runtime overhead.
This quick and efficient selection leads to speedups compared
to the usage of a unique version in every execution context.
Keywords: Adaptive code selection, runtime performance
evaluation, parallel loop nest, polytope model

1. INTRODUCTION
Program performance is very difficult to ensure in general

with the ever extending and changing variety of processor
architectures and execution contexts that an application can
meet. This is particularly true with the proliferation of mul-
ticore architectures, where parallel execution of applications
introduces an even higher level of performance uncertainty.
Hence static compilers are unable to decide which optimiz-
ing code transformations have to be applied to take advantage
of the underlying platform resources and reach good perfor-
mance [13]. Even worse, there is no unique optimized version
providing the best performance in all situations [1, 11]. Hence
the best performance relies on multiple versions of codes hav-
ing the same functional feature.

For instance, we observed ongemm, a matrix multiplica-
tion code using simple control and data structures, that de-
pending on the input data, distinct parallel versions provide

the best performance, while running on a single machine. Fur-
ther, we observed that the version providing the best perfor-
mance is also varying depending on the computer, even with
the same input data. As a consequence, performing adaptive
version selection is particularly important in a library includ-
ing such a function, and even more important if the library is
distributed as a binary on several platforms.

From several optimizing and parallelizing code transfor-
mation alternatives, a usual approach is to do iterative compi-
lation: compiling and profiling the execution of different ver-
sions in order to select the most efficient one [13, 14]. How-
ever, results obtained from such a strategy are closely related
to the execution context when profiling on the compilation
platform. The execution context includes the target architec-
ture, the input data size and shape, and the processor load.

Another solution is dynamic work distribution, as the dy-
namic schedule implemented in OpenMP [12] or work steal-
ing methods such as Cilk [5]. Those methods are adapted to
task parallelism, and when applied to data parallelism theyof-
ten lead to a high and unpredictable overhead: the task granu-
larity is much smaller in this latter case, increasing the relative
cost of work distribution control.

Other studies [1, 11, 16, 19] have proposed adaptive run-
time selection between several algorithms, code extracts,or
versions of a function. Those tools can handle any kind of
codes however their granularity of adaptiveness is limitedto
many complete executions of the versions. We will discuss
them further in the related work section.

The contributions of this work are: (1) a static/dynamic col-
laborative framework providing a fast selection process be-
tween nested loops characterized by distinct parallel versions,
where the selection process is launched each time a loop nest
is executed, thus providing very high adaptiveness; (2) the
construction of a ranking table for each considered version
and target multicore processor, obtained through an install
time profiling run; (3) an implementation of the framework
and an evaluation of its effectiveness with several benchmark
programs and execution contexts.

We use the polytope model [3] to generate multiple
versions of a loop nest. This model provides many loop
transformation techniques, implemented, for instance, inthe
automatic loop parallelization tools PLuTo [6] and LeT-
SeE/PoCC [13, 14]. The main differences between the ver-
sions are the parallel schedules, the tile sizes and their dimen-
sion, and the loop unroll factors.



Typically, loops that fit the polytope model can be found
in intensive scientific applications: exit conditions and array
access functions are affine functions of iterators and parame-
ters, and there is no test on data values. The polytope model
provides an accurate frame allowing us to envisage automatic
generation of the parallel code versions and to extract high
level information from the source code.

Some previous related proposals have chosen to character-
ize more general applications using empirical measurements
such as the observed behavior of previous executions [11] or
machine learning techniques [17]. They have to assume that
the empirical measurements used are representative of all the
execution contexts in the general case. In the polytope model,
the behavior of the loop nests is fully deterministic and stat-
ically analyzable. We use this property to select very effi-
ciently a code version without making such strong assump-
tions on the similarity between the current execution context
and the previous ones.

Using a collection of benchmarks (from SPECOMP [2],
BLAS [4], and PLuTo [6]), we show that our runtime sys-
tem almost always selects the most efficient out of three to
seven distinct versions, and selects another good performing
version in the other cases. The time overhead is in order of
a millisecond on our test platforms, thus being quite negligi-
ble in most cases and allowing speedups compared to the best
static version.

The rest of the paper is organized as follows. In the next
section, some background on the polytope model is recalled.
Section 3 describes our framework in detail. Experiments are
presented in Section 4, and related work in Section 5. Finally,
Section 6 gives our conclusions and some perspectives.

2. POLYTOPE MODEL
We consider loop-intensive codes that can be handled by

the polytope model: all loop bounds are affine expressions of
the outer loop iterators and parameters. Thus, we exclude for
examplewhile loops, orfor loops with additional control
in the body of the loops such asbreak or goto statements.

2.1 State of the art
The polytope model allows us to represent a nest ofd loops

as ad-dimensional polytope called aniteration domain. Each
loop bound is an affine inequality on the variables, that de-
fines a geometric half space. All of these half spaces, corre-
sponding to all loop bounds, intersect as a convex polytope.

Each statement of a loop-intensive code is associated to
an iteration domain, computed from the loops that surround
this statement. If the loop bounds depend linearly on integer
parameters, then the loop nest is parametric and the corre-
sponding polytope is also parametric (which is often the case
in intensive computation loop codes, taking as input anM×N
matrix for example).

Using the polytope model, one can transform the iteration
domains in order to generate a new scanning loop nest, chang-
ing the schedule of the statements [9, 10] and leading in the
end to a new, possibly parallel, loop nest. Those transforma-
tions are expressed bytransformation matrices.

In order to be valid, that is to say to respect the program
semantics, the transformations must respect the dependencies
of the program. The dependence analysis computes which it-
eration depends on which other. A set of affine constraints
automatically built from the access functions of the data al-
lows us to compute the dependence vectors [8] and to ensure
the correctness of the transformations.

Tiling can be done by increasing the dimension of the iter-
ation domains by the number of outer iterators to scan tiles,
and are easily coupled to the original iterators with additional
constraints [6]. Unrolling can also be done, after polyhedral
transformation.

We use CLooG [3] to generate the resulting code, from the
statements iteration domains and the transformation matrices.

2.2 Generating different versions
Many performance issues result from the choice of the

transformation matrices: degree of parallelism, load balanc-
ing, communications volume, cache locality, and vectoriza-
tion capability depend on this choice. Our framework is based
on the capability of generating many different valid versions
in order to choose the most performing one at runtime.

For our benchmarks, we generated different schedules by
hand. In order to automatically generate many versions, cur-
rent automatic parallelizers such as PLuTo [6] and LeT-
SeE/PoCC [13, 14] could be slightly modified: instead of
searching for the unique best optimization using heuristics,
apply all the possibly efficient optimizations. It could also
be interesting to generate code versions considered as less
efficient due to some hardware hypothesis. For example a
code version expected to be inefficient due to its cache misuse
could be the best one on a hardware accelerator without any
cache (FPGA, GPU, ...).

2.3 Ehrhart polynomials
The runtime selector presented in Section 3 uses polytope

integer points counting, in order to compute the number of
iterations that a statement will perform: it is the number of
integer points contained in the iteration domain.

This counting is achieved using Ehrhart polynomials [7]:
an Ehrhart polynomial associated to a parametric polytope is
a piecewise pseudo-polynomial in the parameters of the it-
eration domains, that expresses the number of integer points
contained in the polytope. It is generated at compile time us-
ing the Barvinok library [18], and evaluated at runtime, when
the parameters values are known.



Source code Compiler Code versions

Ranking table

Executable binary code

Execution context

Selector

Version 1 Version N...

Original application

binary code

...

Profiler

Selected

version

Compile time

Profiling time

Execution time

Figure 1. Framework overview

3. SELECTION FRAMEWORK
While other proposals select the best available code version

after many executions, our framework aims to select it before
any loop nest execution. To achieve this goal, we predict each
code version execution time and run the version predicted to
be the best one. This prediction is not necessarily exact, but it
is accurate enough to rank the different code versions.

To predict those execution times, our framework first pro-
files each code version in various execution contexts and with
different number of active threads. The profiled execution
times are gathered in aparametric ranking table, see for in-
stance Table 1. A runtime prediction step, executed before
each execution of a loop nest, adapts those results according
to the current context in order to predict an execution time
for each code version. It is embedded in the application bi-
nary and is run through a simple function call replacing all
the target loop nest executions. As in every version selection
framework, all the versions are embedded in the binary file,
leading to increase the application size. This increase is linear
in the number of versions but is often negligible relativelyto
the total application size: in our experiments we measured a
few kilo-bytes for a loop nest version.

Figure 1 shows a global overview of the framework. The
different phases are represented vertically from the genera-
tion of the different code versions at compile time to the exe-
cution of the loop nest. Automatic generation of the versions
is described in Subsection 2.2. The profiling and selection
phases are detailed below.

3.1 Initial profiling
3.1.1 Accuracy
The profiling phase, run once on the target computer, typ-

ically at install time, is in charge of measuring the execution
time of each code version in some representative contexts.
However many factors can impact the execution time. Those

factors have to be taken into account in order to measure exe-
cution times in contexts that can safely be considered as rep-
resentative. We distinguish two main kinds of factors:static
anddynamic factors.

The impact of static factors is constant during the execu-
tion and are naturally taken into account when measuring the
execution time of any run. They are thus considered by our
profiling step.

The second category consists indynamic factors whose im-
pact is not constant. We define thedynamic extern factors as
factors depending on events provoked outside of the consid-
ered execution, usually other applications. Such factors are
considered as out of the scope of the profiling step.

Dynamic intern factors depend on the considered code ex-
ecution. Among all the potential factors, we identified two
main dynamic intern factors relevant to current architectures
that might have a major impact on execution time.

First, the overall memory performance of the application is
a dynamic intern factor. To handle it, the domain size is dou-
bled between two consecutive measurements until having less
than one percent of difference in the consecutively measured
execution times. The profiling result is then the last measure-
ment. It allows us to measure the performance of each version
when the data cannot fit in the first cache levels without need-
ing any architecture-dependent information.

We observed that this first factor has a small impact com-
pared to the load balance. When parallelizing a loop nest,
a parallel loop iteration is a task mapped to a thread. Thus
there is a strong link between the parallel loop bounds and
the maximal number of simultaneously active threads. The
loop bounds depend on which code transformation has been
applied and often on the input data size. Thus, this factor is
very variable and can lead to large performance loss.

To characterize the load balance impact, each version exe-
cution time is measured with a number of parallel iterations



increasing from 1 to the number of processor cores during
consecutive measurements. The profiling result is therefore
parametrized by the maximum number of simultaneously ac-
tive threads.

3.1.2 Equity
The other key point is to ensure that the comparison based

on the predicted execution times is as fair as possible. It
means that, despite their differences, all the code versions
have to be profiled in a controlled and comparable execution
context.

As explained before, the domain size is increased dur-
ing consecutive profiling runs. Then different versions can
reach different domain sizes depending on their characteris-
tics. Thus the ranking table actually contains execution times
per loop nest iteration instead of absolute execution times.

To be efficient, codes parallelized with polyhedral transfor-
mations are usually tiled [15]. Significant performance vari-
ations can be observed between codes where tiles are fully
executed and where only incomplete tile executions occur. To
handle this variation, we have chosen to build the profiling
domains exclusively with full tiles.

3.1.3 Building a profiling domain
The profiling code of each version is built such that those

accuracy and equity requirements are met. The profiling do-
main has to be made of full tiles and its shape has to be pre-
cisely controlled. Iteration domains in the polytope modelare
defined by a set of linear constraints. To achieve our objec-
tives, the framework removes all the iteration domain bound-
ary constraints from the set of constraints. Then it bounds
the parallel loop with a new parameterpar sz and the
other dimensions at the first tiling level with a new param-
eterothers sz. The par sz parameter will be instanti-
ated with the successive number of threads to repeat the mea-
surements for all the possible number of active threads. The
others sz parameter is increased during the profiling to
control the domain size until reaching stable measurements.
Only the first tiling level is constrained by this new parame-
ter in order to execute full tiles when there are more than one
tiling levels. If the domain is not tiled, all the dimensionsare
constrained.

Figures 2 and 3 illustrate the profiling code generation. In
Figure 2, we present a code summing the columns of array
A in arrayS. The code is fully tiled and parallelized. Fig-
ure 3 shows the corresponding profiling code. The domain
boundaries are eliminated and the domain is now controlled
by the two new parameterspar sz andothers sz. While
others sz is doubled until reaching a stable measurement,
par sz is incremented from 1 to the number of available
processor cores. The result is made of the last execution times
per iteration for each considered parallel loop trip count.

for (iT=0; iT<=M/64; iT++)
forall (jT=0; jT<=N/64; jT++)
for (i=64*iT; i<=min(64*iT+63,M); i++)

for (j=64*jT; j<=min(64*jT+63,N); j++)
S[j]+=A[i][j];

Figure 2. Sample code

do {
old_result = copy_array(result);
others_sz = others_sz * 2;
for (par_sz=1; par_sz<=NB_CORES; par_sz++){
start = time();
for (iT=0; iT<others_sz; iT++)

forall (jT=0; jT<par_sz; jT++)
for (i=64*iT; i<=64*iT+63; i++)

for (j=64*jT; j<=64*jT+63; j++)
S[j]+=A[i][j];

result[par_sz] = (time() - start) /
(others_sz * par_sz * 64 * 64);

}
}while (difference(result, old_result) > 0.01

&& enough_memory(other_sz));

Figure 3. Sample profiling code

For each value of both parameters, the execution time is
measured using the regular operating system timing func-
tion. The expression used to compute the number of iterations
(others sz*par sz*64*64) is the Ehrhart polyno-
mial representing the iteration domain size.

The full ranking table, built during the profiling step, is two
dimensional. One dimension is made of the different versions
while the second dimension represents the number of avail-
able processors. For a given version, and a given number of
processorsP available to the application, the ranking table
gives the average execution time per iteration of this version
when usingP processor cores. A sample ranking table is pre-
sented in Table 1.

3.2 Runtime selection
The runtime selector is in charge of instantiating the para-

metric ranking tables resulting from the profiling step, to pre-
dict each version execution time.

# of cores version 1 version 2 version 3
1 30 ms 28 ms 32 ms
2 10 ms 14 ms 15 ms
3 7 ms 9 ms 8 ms
4 5 ms 8 ms 6 ms

Table 1. Sample parametric ranking table built on a 4-cores
processor for 3 versions. The table content is made of execu-
tion times per iteration.



3.2.1 Iteration count measurement

The profiling phase considers most of the code versions
performance factors, however the load balance has to be
evaluated at runtime: the data size and the number of avail-
able processor cores impact the maximum number of active
threads. To evaluate this load balance, the runtime selector ex-
ecutes a very simplified copy of each loop nest version called
prediction nest. The prediction nest counts how many itera-
tions each thread executes in this code version. The number
of iterations executed by each possible quantity of threadsis
then deduced and used to select the entries in the ranking ta-
bles.

To build the prediction nest, we consider a code version
loop nest. All the loops and statements enclosed in the par-
allel loop define the computation achieved in a parallel iter-
ation. The workload of this computation is evaluated as the
Ehrhart polynomial counting the number of iterations of the
loops enclosed in this parallel loop. Thus, at compile time,
we syntactically replace the content of the parallel loop by
a computation of this Ehrhart polynomial. The value defined
by the polynomial is added to a counter specific to the thread
which executes the current parallel iteration. At the end ofthe
prediction nest execution, each counter will then contain the
number of iterations that one thread has executed.

Figure 4 presents a sample code and its associated predic-
tion nest. Observe that the innermost loop and the statement
are replaced by a counting code. This counting code incre-
ments the thread-specific counter with the trip count of the
removed loop.

It is assumed here that the mapping of the parallel iterations
to the threads is the same in the prediction nest and in the cor-
responding code version, thus excluding dynamic mapping
from the scope of our framework. To evaluate the impact of
this drawback, we measured the performance of the most effi-
cient version of each benchmark presented in Section 4 using
the OpenMP dynamic mapping. We observed that, in average,
this dynamic mapping leads to a slowdown compared to static
mapping. This slowdown reaches more than 20 % on some ar-
chitectures. The same experiment has been performed using
Cilk [5]: the parallel loop is transformed into thecilk for
control structure. We observed slowdowns of 45 % in aver-
age, reaching more than 100 % in some cases. This illustrates
that those dynamic scheduling or work-stealing systems can
suffer from high overheads and are not suited to deal with
regular loop nests.

To deduce the number of parallel iterations executed by
each thread quantity, the counters arraycnt is sorted in de-
scending order. For each position1 ≤ i < nb threads,
we can state thatcnt[i-1] - cnt[i] iterations have
been executed in parallel by exactlyi threads. For exam-
ple, consider a 4-cores computer where the following num-
bers of iterations have been measured by the prediction nest:

for (i=0; i<M; i++)
forall (j=0; j<N; j++)
for (k=i; k<j; k++)

A[j][k] = B[i] * 2;

for (i=0; i<M; i++)
forall (j=0; j<N; j++)
cnt[thread_id] += (j>i)?j-i:0;

Figure 4. Sample loop nest (top) and its corresponding pre-
diction nest (bottom)

cnt = {1000, 800, 200, 200}. We can deduce that
one thread has executed (1000 - 800) iterations while the oth-
ers were idle, two threads have executed (800 - 200) iterations
in parallel and four threads have simultaneously executed 200
iterations. There are never exactly three active threads inthis
case.

3.2.2 Predicting the execution time
Once the iteration counts are known, the execution time

can easily be deduced using the parametric ranking table. For
example, consider the previous example where 200 iterations
are executed by one thread, 600 by two threads and 200 by
four threads. For this example, we consider the profiled exe-
cution times of the first version in Table 1. The execution time
is then computed as 200×4×5ms for the part of the iteration
domain executed by four threads, 600×2×10ms for the it-
erations executed by two threads plus 200×1×30ms for the
sequential iterations. The sum predicts an execution time of
22 seconds.

The prediction time computation is executed with every
version of the loop nest in the current execution context, be-
fore running the best one.

4. EXPERIMENTS
We run our experiments on three computers with different

multicore processors: an AMD Opteron 2431 processor with
six cores , an AMD Phenom II 965 processor with four cores
and an Intel Core i7 920 processor with four cores and hyper-
threading activated. The experiments are run on Linux 2.6.35
systems.

The benchmark codes are 12 common polyhedral loop
nests. The code2mm is made of two matrix multiply (D =

A×B×C), adi is the ADI kernel provided for example with
PLuTo,covariance is a covariance matrix computation,
gemm andgemver are taken from BLAS [4],jacobi-1D
andjacobi-2D are the 1D and 2D versions of the Jacobi
kernel,lu is a LU decomposition kernel,matmul is a simple
matrix multiply,matmul-init is a matrix multiply com-
bined with the initialization of the result matrix,mgrid is a
kernel extracted from themgrid code in SPECOMP [2] and
seidel is a Gauss-Seidel kernel as provided with PLuTo.



Those kernels are typically put in libraries and called many
times by applications cumulating the benefits of our system.

For each code, many versions are generated. One of those
version is automatically generated by the PLuTo paralleliz-
ing compiler. Other versions have been designed by an ex-
pert, changing the number of tiling levels and the tile sizes,
and making polyhedral loop transformations. As explained in
Subsection 2.2, those versions could have been generated by
automatic tools. The details about those versions are avail-
able on request. From each version, the profiling and predic-
tion codes are generated by a set of fully automatic scripts in
our implementation. The result of the prediction codes deter-
mines the framework choice in each execution context.

The runtime system is evaluated on each of the three com-
puters, for each code with five different problem sizes leading
to execution times near to a couple of minutes. Each measure-
ment is repeated with a number of threads varying from one
to the number of logical cores simulating different resource
availability. The presented statistics enclose more than one
thousand runs, each one being the median value out of five
executions.

4.1 Performance variation
During our experiments, we have observed many perfor-

mance variations. First, there are performance variationsfor
a given code version among different computers for a fixed
problem size and number of cores. For example withadi,
when considering a problem size of 2448 and 5 available pro-
cessor cores, version 2 is the best one with the Opteron pro-
cessor but the worst one with the Core i7 processor.

We have also observed performance variations when the
number of available cores on a given computer varies for a
fixed problem size. For example, with the Core i7 processor
for a problem size of 9996, the first version ofgemver is
the best one when only one processor core is available but the
worst one when all the cores can be used.

Finally, when the problem size changes there are perfor-
mance variations for a fixed computer and a fixed number
of available cores. For example, with all the processor cores
of the Phenom processor, the fourth version ofmgrid is in-
efficient for a problem size of 400 but is the best one for a
problem size of 496.

The best version is therefore not necessarily the same in
all the execution contexts and our runtime system succeeds in
selecting the best one in those presented cases.

We have observed that the transformations making a ver-
sion perform better than another are the tile size, the number
of tiling levels and the parallel schedules. All those transfor-
mations interact and have a complex impact on performance,
changing with the execution context. This emphases the need
of a dynamic system, such as our framework, able to consider
all of those transformations together.

4.2 Evaluation results
We present in Table 2 a quantitative study of our runtime

system efficiency. All the presented speedups are averages of
all the execution contexts where the number of active pro-
cessors and the data size vary. They take the dynamic system
overhead into account. We measured this overhead, induced
when predicting the execution times, to be less than a tenth of
milliseconds per code version.

Processor Program
Framework Max static

speedup speedup

Phenom

2mm 100.0 % 100.0 %
adi 101.5 % 97.5 %

covariance 100.0 % 99.9 %
gemm 102.8 % 96.9 %

gemver 100.0 % 99.8 %
jacobi-1d 99.7 % 100.0 %
jacobi-2d 99.5 % 100.0 %

lu 100.0 % 100.0 %
matmul 100.0 % 100.0 %

matmul-init 100.0 % 100.0 %
mgrid 98.0 % 98.1 %
seidel 100.1 % 99.0 %

Opteron

2mm 100.0 % 100.0 %
adi 102.2 % 97.3 %

covariance 100.0 % 99.8 %
gemm 101.4 % 96.7 %

gemver 99.9 % 99.8 %
jacobi-1d 99.6 % 100.0 %
jacobi-2d 100.0 % 100.0 %

lu 100.0 % 100.0 %
matmul 100.0 % 100.0 %

matmul-init 100.0 % 100.0 %
mgrid 97.8 % 98.5 %
seidel 100.6 % 98.3 %

Core i7

2mm 100.0 % 100.0 %
adi 102.4 % 97.5 %

covariance 96.9 % 99.7 %
gemm 100.0 % 93.5 %

gemver 89.5 % 91.6 %
jacobi-1d 99.6 % 99.9 %
jacobi-2d 90.6 % 99.6 %

lu 93.1 % 98.3 %
matmul 100.0 % 98.5 %

matmul-init 100.0 % 100.0 %
mgrid 100.5 % 97.0 %
seidel 99.9 % 99.6 %

Table 2. Speedup of our framework compared to the best
static version and speedup of the best static version compared
to the best version in each context.

We define thebest static version as the version that per-
forms best in average in all the considered execution con-
texts on an architecture. Such version could be the one stati-
cally chosen by a perfect offline system. If a best static ver-
sion would be the fastest one in every execution context, no



speedup can be expected from any runtime system.
First we show the speedup of our framework compared to

the best static version. We can see that our system sometimes
leads to a slowdown compared to this version. Those slow-
downs are mostly due to incorrect choices in some execution
contexts. Such incorrect choices are made when the approx-
imations of the profiling step lead to mispredict the execu-
tion time of some versions in some of the execution contexts.
Two typical examples aregemver andjacobi-2d on the
Core i7 platform. We can see however that our framework
usually selects another well performing version in those cases
as the slowdown remains very limited. It is important to note
that this slowdown is related to a perfect static system which
is extremely complex to build as it would require to statically
select the best parallel version for each architecture. Such a
system does not exist currently.

Our framework reaches some speedups in some cases (e.g.
adi or gemm), meaning that the execution time is, in aver-
age, shorter than the execution time of the version that would
have been selected by a perfect static system. This speedup
is impossible to reach with only one version, illustrating the
importance of using a dynamic selection system.

In the second column, we show the speedup of the best
static version compared to the best version in each execution
context. No speedup higher than 100 % can be expected here:
it is impossible to have any version faster than the fastest ver-
sion in a specific context. A speedup of 100 % here means
that a unique version is the best one in all the tested execu-
tion contexts. Those speedups illustrate that even a perfect
static system cannot reach the maximum performance in all
the cases.

Considering those statistics, we can say that our framework
is able to select a very well performing version in all the pre-
sented cases. In some cases, it is even able to outperform any
hypothetical perfect offline system.

5. RELATED WORK
Iterative compilation and dynamic work distribution

(work-stealing or dynamic scheduling) have been discussed
in the introduction and in Subsection 3.2.1. This section fo-
cuses on adaptive runtime selection methods.

In the ATLAS project [20], empirical timings are used in
order to choose the best method for a given architecture “in a
matter of hours”. Further it does not handle parallel programs.

With the ADAPT system [19], a specific language allows
the user to describe optimizations and heuristics for apply-
ing these optimizations dynamically. However, the resulting
optimizer is run on a free processor or on a remote machine
across the network.

PetaBricks [1] provides a language and a compiler where
having multiple implementations of multiple algorithms to
solve a problem is the natural way of programming. The as-

sociated runtime system uses a choice dependency graph to
select one or another algorithm and implementation at dif-
ferent steps of the whole computation, thus resulting to an
optimized hybrid algorithm. Such an approach is suitable for
programs where it is obviously possible to switch from one
algorithm to another while still making progress in the whole
computation. Further, such a changing behavior must not in-
duce overheads due to a compulsory cache flush for instance.

Mars and Hundt’s static/dynamic SBO framework [11]
consists in generating at compile-time several versions of
a function that are related to different dynamic scenarios.
These scenarios are identified at runtime thanks to the micro-
processor event registers. Execution is dynamically rerouted
to the code relevant to the current identified scenario. How-
ever, execution is not rerouted during a function call, but for
the next calls. Further, it seems difficult to use this approach
with parallel program since it is actually challenging with
multicore processors to deduce accurate global multithreaded
program behaviors from registers disseminated on the cores.

The STAPL adaptive selection framework [16] runs a pro-
filing execution at install time to extract architectural depen-
dent information. This information is used at runtime com-
bined with previous runs and training runs performance mea-
surements through machine learning to select the best ver-
sion. Their system requires many training runs before being
able to take good decisions.

More recently Tianet al. [17] propose an input-centric pro-
gram behavior analysis for general programs, a statisticalap-
proach where program inputs have to be characterized differ-
ently depending on the target application – input size, data
distribution, etc. –, and program behavior is represented by
relations between some programs parameters, as for instance
loop trip-counts. This modeling is used to achieve some dy-
namic version selection. Such relevant statistical relations
seem difficult to be determined for any kind of programs. The
approach necessarily suffers from approximations, hardware
characteristics are not handled and overall, this work doesnot
consider parallel and multicore programs.

6. CONCLUSION AND PERSPECTIVES
In this paper, we present a new framework for adaptive

code selection of parallel loop nests at runtime. It handles
varying input data and varying execution contexts, such as the
number of cores or the cache architecture. We showed on a
set of benchmarks that our framework is efficient: depending
on the input data shape, on the target architecture and cores
availability, the version performing best is not the same, and
our method mostly selects the best performing one with a low
runtime overhead. Further, it provides speedups that couldnot
have been reached with one statically selected version when
considering several calls with different input data shapes.

We are able to consider very different versions where a



wide range of optimizations can be applied, from common
compiling optimizations to complex polyhedral transforma-
tions. Further, our initial profiling phase is also very fast, last-
ing less than a couple of minutes in our experiments.

As a perspective, we plan to improve our parametric profil-
ing phase by enriching the structure of the simplified nest in
order to better consider more complex iteration domains. An-
other interesting extension would be to consider loop nests
that are not strictly polyhedral. Finally, a complete dynamic
system,i.e. without any initial profiling phase, could be built
either by alleviating some mechanisms or by using actual runs
to build the parametric ranking table.

REFERENCES
[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,

A. Edelman, and S. Amarasinghe. Petabricks: a lan-
guage and compiler for algorithmic choice. InPLDI
’09, pages 38–49. ACM, 2009.

[2] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaert-
ner, W. B. Jones, and B. Parady. SPEComp: A new
benchmark suite for measuring parallel computer per-
formance. InWOMPAT ’01. Springer-Verlag, 2001.

[3] C. Bastoul. Code generation in the polyhedral model is
easier than you think. InPACT’13, pages 7–16, 2004.

[4] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff,
S. Hammarling, G. Henry, M. Heroux, L. Kaufman,
A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and
R. C. Whaley. An updated set of basic linear algebra
subprograms (BLAS). ACM Transactions on Mathe-
matical Software, 28:135–151, 2001.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing.J. ACM, 46(5),
1999.

[6] U. Bondhugula, A. Hartono, J. Ramanujam,
and P. Sadayappan. A practical automatic
polyhedral parallelizer and locality optimizer.
In PLDI ’08, pages 101–113. ACM, 2008.
pluto-compiler.sourceforge.net/.

[7] P. Clauss and V. Loechner. Parametric analysis of poly-
hedral iteration spaces.Journal of VLSI Signal Process-
ing, 19(2):179–194, 1998. Kluwer Academic Pub.

[8] P. Feautrier. Dataflow analysis of scalar and array ref-
erences.Int. J. of Parallel Programming, 20(1):23–53,
1991.

[9] P. Feautrier. Some efficient solutions to the affine
scheduling problem, part 1 : one dimensional time.Int.
J. of Parallel Programming, 21(5):313–348, 1992.

[10] P. Feautrier. Some efficient solutions to the affine
scheduling problem, part 2 : multidimensional time.Int.
J. of Parallel Programming, 21(6), 1992.

[11] J. Mars and R. Hundt. Scenario based optimization: A
framework for statically enabling online optimizations.
In CGO ’09, pages 169–179, 2009.

[12] The OpenMP API specification for parallel program-
ming. http://www.openmp.org.

[13] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos.
Iterative optimization in the polyhedral model: Part II,
multidimensional time. InPLDI’08, pages 90–100.
ACM Press, June 2008.

[14] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache.
Iterative optimization in the polyhedral model: Part I,
one-dimensional time. InCGO’07, pages 144–156.
IEEE Computer Society press, March 2007.

[15] J. Ramanujam and P. Sadayappan. Tiling multidimen-
sional iteration spaces for multicomputers.J. of Parallel
and Distributed Computing, 16(2):108–120, 1992.

[16] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M.
Amato, and L. Rauchwerger. A framework for adaptive
algorithm selection in STAPL. InPPoPP ’05, pages
277–288. ACM, 2005.

[17] K. Tian, Y. Jiang, E. Z. Zhang, and X. Shen. An input-
centric paradigm for program dynamic optimizations. In
OOPSLA ’10, pages 125–139. ACM, 2010.

[18] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Counting integer points in parametric
polytopes using Barvinok’s rational functions.Algorith-
mica, 48(1):37–66, June 2007.

[19] M. J. Voss and R. Eigemann. High-level adaptive pro-
gram optimization with ADAPT. InPPoPP ’01, pages
93–102. ACM, 2001.

[20] R. C. Whaley, A. Petitet, and J. Dongarra. Automated
empirical optimizations of software and the ATLAS
project.Parallel Computing, 27(1-2):3–35, 2001.


