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Abstract the best performance, while running on a single machine. Fur
ther, we observed that the version providing the best perfor
There is often no unique version of a program that pro-mance is also varying depending on the computer, even with
vides the best performance in all circumstances. Compilerthe same input data. As a consequence, performing adaptive
should rely on an adaptive runtime decision to choose whiclversion selection is particularly important in a librarglind-
optimizing and parallelizing transformations will leadttee  ing such a function, and even more important if the library is
best performance in any execution context. We present a nedistributed as a binary on several platforms.
adaptive framework solving two drawbacks of existing meth- From several optimizing and parallelizing code transfor-
ods: itis effective since the very first execution, and itdles ~ mation alternatives, a usual approach is to do iterativepiom
slight variations of input data shape and size. lation: compiling and profiling the execution of differerer
In our proposal, different code versions of parallel loopsions in order to select the most efficient one [13, 14]. How-
nests are statically generated by the compiler. At instaktf  ever, results obtained from such a strategy are closeltectla
each version is profiled in different execution contexts. Atto the execution context when profiling on the compilation
runtime, the execution time of each code version is predicteplatform. The execution context includes the target aechit
using the profiling results, the current input data shape anclre, the input data size and shape, and the processor load.
the r_lurr!ber of available processor cores. The predicted best another solution is dynamic work distribution, as the dy-
version is then run. namic schedule implemented in OpenMP [12] or work steal-
Our framework handles several versions of possibly tileqng methods such as Cilk [5]. Those methods are adapted to
parallel loops, using the polytope model for both the profil-task parallelism, and when applied to data parallelism ttiey
ing and the dynamic selection phases. We show on severgdn |ead to a high and unpredictable overhead: the task granu
benchmark programs that our runtime system selects one @rity is much smaller in this latter case, increasing thatiee
the most efficient version with a very low runtime overhead.cost of work distribution control.
This quick and efficignt select_ion !eadsto speedqps condpare giher studies [1, 11, 16, 19] have proposed adaptive run-
to the usage of a unique version in every execution context. ime selection between several algorithms, code extracts,
Keywords: Adaptive code selection, runtime performanceyersions of a function. Those tools can handle any kind of
evaluation, parallel loop nest, polytope model codes however their granularity of adaptiveness is limited
many complete executions of the versions. We will discuss
them further in the related work section.
1. INTRODUCTION The contributions of this work are: (1) a static/dynamic col
Program performance is very difficult to ensure in generalaborative framework providing a fast selection process be
with the ever extending and changing variety of processofween nested loops characterized by distinct parallelwess
architectures and execution contexts that an application ¢ where the selection process is launched each time a loop nest
meet. This is particularly true with the proliferation of lu is executed, thus providing very high adaptiveness; (2) the
ticore architectures, where parallel execution of apfibeess ~ construction of a ranking table for each considered version
introduces an even higher level of performance uncertaintyand target multicore processor, obtained through an Instal
Hence static compilers are unable to decide which optimiztime profiling run; (3) an implementation of the framework
ing code transformations have to be applied to take advantagnd an evaluation of its effectiveness with several benckma
of the underlying platform resources and reach good perforPrograms and execution contexts.
mance [13]. Even worse, there is no unique optimized version We use the polytope model [3] to generate multiple
providing the best performance in all situations [1, 11]neke  versions of a loop nest. This model provides many loop
the best performance relies on multiple versions of codes ha transformation techniques, implemented, for instancé)én
ing the same functional feature. automatic loop parallelization tools PLuTo [6] and LeT-
For instance, we observed genm a matrix multiplica- SeE/PoCC [13, 14]. The main differences between the ver-
tion code using simple control and data structures, that desions are the parallel schedules, the tile sizes and thagli
pending on the input data, distinct parallel versions pevi sion, and the loop unroll factors.



Typically, loops that fit the polytope model can be found Using the polytope model, one can transform the iteration
in intensive scientific applications: exit conditions amchg ~ domains in order to generate a new scanning loop nest, chang-
access functions are affine functions of iterators and param ing the schedule of the statements [9, 10] and leading in the
ters, and there is no test on data values. The polytope modehd to a new, possibly parallel, loop nest. Those transforma
provides an accurate frame allowing us to envisage automattions are expressed Itgansformation matrices.
generation of the parallel code versions and to extract high In order to be valid, that is to say to respect the program
level information from the source code. semantics, the transformations must respect the depeiedenc

Some previous related proposals have chosen to charact@fthe program. The dependence analysis computes which it-
ize more general applications using empirical measuresnentration depends on which other. A set of affine constraints
such as the observed behavior of previous executions [11] ciutomatically built from the access functions of the data al
machine learning techniques [17]. They have to assume th#bws us to compute the dependence vectors [8] and to ensure
the empirical measurements used are representative ball tthe correctness of the transformations.
execution contexts in the general case. In the polytope mode  Tiling can be done by increasing the dimension of the iter-
the behavior of the loop nests is fully deterministic and-sta ation domains by the number of outer iterators to scan tiles,
ically analyzable. We use this property to select very effi-and are easily coupled to the original iterators with addii
ciently a code version without making such strong assumpeonstraints [6]. Unrolling can also be done, after polylaédr
tions on the similarity between the current execution cante transformation.
and the previous ones. We use CLooG [3] to generate the resulting code, from the

Using a collection of benchmarks (from SPECOMP [2], statements iteration domains and the transformation cestri
BLAS [4], and PLuTo [6]), we show that our runtime sys-

tem almost always selects the most efficient out of three to . ) )
seven distinct versions, and selects another good perigrmi 2-2 Generating different versions
version in the other cases. The time overhead is in order of Many performance issues result from the choice of the
a millisecond on our test platforms, thus being quite neglig transformation matrices: degree of parallelism, load tala
ble in most cases and allowing speedups compared to the bésg, communications volume, cache locality, and vecteriza
static version. tion capability depend on this choice. Our framework is base
The rest of the paper is organized as follows. In the nexpn the capability of generating many different valid vensio
section, some background on the polytope model is recalledn order to choose the most performing one at runtime.
Section 3 describes our framework in detail. Experimergs ar  For our benchmarks, we generated different schedules by
presented in Section 4, and related work in Section 5. Binall hand. In order to automatically generate many versions, cur
Section 6 gives our conclusions and some perspectives.  rent automatic parallelizers such as PLuTo [6] and LeT-
SeE/PoCC [13, 14] could be slightly modified: instead of
2. POLYTOPE MODEL searching for the unique best optimization using heusstic

We consider loop-intensive codes that can be handled bgpply all the possibly efficient optimizations. It could ls

the polytope model: all loop bounds are affine expressions o ¢ interesting to generate code versions _considered as less
the outer loop iterators and parameters. Thus, we exclude foefﬂment d_ue to some hardvyare.h.ypothe3|s._ For example a
examplewhi | e loops, orf or loops with additional control code version expected to be inefficient due to its cache misus

in the body of the |OO[Z’)S such & eak or got o statements could be the best one on a hardware accelerator without any

cache (FPGA, GPU, ...).

2.1 State of the art _

The polytope model allows us to represent a negtiobps 2.3  Ehrhart polynomials
as ad-dimensional polytope called ateration domain. Each The runtime selector presented in Section 3 uses polytope
loop bound is an affine inequality on the variables, that deinteger points counting, in order to compute the number of
fines a geometric half space. All of these half spaces, corrgterations that a statement will perform: it is the number of
sponding to all loop bounds, intersect as a convex polytope.integer points contained in the iteration domain.

Each statement of a loop-intensive code is associated to This counting is achieved using Ehrhart polynomials [7]:
an iteration domain, computed from the loops that surrounén Ehrhart polynomial associated to a parametric polytspe i
this statement. If the loop bounds depend linearly on integea piecewise pseudo-polynomial in the parameters of the it-
parameters, then the loop nest is parametric and the correration domains, that expresses the number of integergpoint
sponding polytope is also parametric (which is often thecascontained in the polytope. It is generated at compile time us
in intensive computation loop codes, taking as inputax N ing the Barvinok library [18], and evaluated at runtime, whe
matrix for example). the parameters values are known.
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Figure 1. Framework overview

3. SELECTION FRAMEWORK factors have to be taken into account in order to measure exe-
While other proposals select the best available code wersiocution times in contexts that can safely be considered as rep
after many executions, our framework aims to select it lefor resentative. We distinguish two main kinds of factastic
any loop nest execution. To achieve this goal, we predidt eacanddynamic factors.
code version execution time and run the version predicted to The impact of static factors is constant during the execu-
be the best one. This prediction is not necessarily exattit bu tion and are naturally taken into account when measuring the
is accurate enough to rank the different code versions. execution time of any run. They are thus considered by our
To predict those execution times, our framework first pro-profiling step.
files each code version in various execution contexts artd wit  The second category consistsynamic factors whose im-
different number of active threads. The profiled executionpact is not constant. We define thgnamic extern factors as
times are gathered inarametric ranking table, see for in-  factors depending on events provoked outside of the consid-
stance Table 1. A runtime prediction step, executed beforgred execution, usually other applications. Such factoes a
each execution of a loop nest, adapts those results acgordigonsidered as out of the scope of the profiling step.
to the current context in order to predict an execution time  pynamic intern factors depend on the considered code ex-
for each code version. It is embedded in the application bincytion. Among all the potential factors, we identified two
nary and is run through a simple function call replacing allmain dynamic intern factors relevant to current architessu
the target loop nest exeputions. Asin every.version_seilect_i that might have a major impact on execution time.
fram.ework., all the Versions are empedded_ n the b!ngry file, First, the overall memory performance of the application is
!eadmg toincrease th? appllca_tlon SIZ€. Th_|s_|ncrease_eai a dynamic intern factor. To handle it, the domain size is dou-
in the numbe_r of _ver3|_ons_but is often _negllglble relatively )04 hetween two consecutive measurements until havisg les
the tqtal application size: in our experiments we measured g an one percent of difference in the consecutively measure
few kilo-bytes for a loop nest version. execution times. The profiling result is then the last measur

_Figure 1 shows a global overview of the framework. The ot 1t ajlows us to measure the performance of each version
different phases are represented vertically from the @eneran the data cannot fit in the first cache levels without need-
tion of the different code versions at compile time to the-exe ing any architecture-dependent information.

cution of the loop nest. Automatic generation of the version We observed that this first factor has a small impact com-

is described in _Subsectlon 2.2. The profiling and Selecuorbared t0 the load balance. When paralielizing a loop nest,
phases are detailed below.

a parallel loop iteration is a task mapped to a thread. Thus

there is a strong link between the parallel loop bounds and

3.1 Initial profiling the maximal number of simultaneously active threads. The
3.1.1 Accuracy loop bounds depend on which code transformation has been
The profiling phase, run once on the target computer, typapplied and often on the input data size. Thus, this factor is

ically at install time, is in charge of measuring the exemuiti Very variable and can lead to large performance loss.

time of each code version in some representative contexts. To characterize the load balance impact, each version exe-

However many factors can impact the execution time. Thoseution time is measured with a number of parallel iterations



r (i T=0; iT<=M 64; i T++)
forall (jT=0; jT<=N 64; jT++)
for (i=64*iT; i<=mn(64*i T+63, M; i ++)
for (j=64xjT; j<=m n(64xjT+63, N); j++)
SLil+=Ali1[i];

increasing from 1 to the number of processor cores duriné]0
consecutive measurements. The profiling result is thezefor
parametrized by the maximum number of simultaneously ac-
tive threads.

_ Figure 2. Sample code
3.1.2 Equity

The other key point is to ensure that the comparison baseg}, {
on the predicted execution times is as fair as possible. It ol d result = copy_array(result);
means that, despite their differences, all the code vession others_sz = others_sz * 2;
have to be profiled in a controlled and comparable execution fo;t gf?r :Stzri‘?a(g’ér _sz<=NB_CORES; par_sz++){
context. ’

for (iT=0; iT<others_sz; iT++)
As explained before, the domain size is increased dur- forall (jT=0; jT<par_sz; jT++)
ing consecutive profiling runs. Then different versions can for (i=64xiT, i<=64+iT+63; i++)
reach different domain sizes depending on their charaeteri fors[j(i jii’f’l ]T[J J] <764+ THE3; | +4)
tics. Thus the ranking table actually contains executiowe resul t[par_sz] = (ti m'a() - start) /

per loop nest iteration instead of absolute execution times
To be efficient, codes parallelized with polyhedral transfo

mations are usually tiled [15]. Significant performancei-var

ations can be observed between codes where tiles are fully

executed and where only incomplete tile executions ocaur. TFigure 3. Sample profiling code

handle this variation, we have chosen to build the profiling

domains exclusively with full tiles.

(others_sz * par_sz * 64 * 64);

}while (difference(result, old_result) > 0.01
&& enough_nenory(other_sz));

For each value of both parameters, the execution time is

3.1.3 Building a profiling domain measured using the regular operating system timing func-

The profiling code of each version is built such that thosetion. The expression used to compute the number of iteration
accuracy and equity requirements are met. The profiling dot 0t her s_sz » par sz 64 64) is the Ehrhart polyno-
main has to be made of full tiles and its shape has to be prénial representing the iteration domain size.
cisely controlled. Iteration domains in the polytope maatel The full ranking table, built during the profiling step, isdw
defined by a set of linear constraints. To achieve our objecdimensional. One dimension is made of the different vession
tives, the framework removes all the iteration domain beundwhile the second dimension represents the number of avail-
ary constraints from the set of constraints. Then it boundsible processors. For a given version, and a given number of
the parallel loop with a new parametpar sz and the processors® available to the application, the ranking table
other dimensions at the first tiling level with a new param-gives the average execution time per iteration of this versi
eterot hers_sz. Thepar sz parameter will be instanti- when usingP processor cores. A sample ranking table is pre-
ated with the successive number of threads to repeat the megented in Table 1.
surements for all the possible number of active threads. The
ot her s_sz parameter is increased during the profiling to
control the domain size until reaching stable measurement . .
Only the first tiling level is constrainegc]i by this new parame—é'2 Runtime selection
ter in order to execute full tiles when there are more than one The runtime selector is in charge of instantiating the para-
tiling levels. If the domain is not tiled, all the dimensicare ~ Metric ranking tables resulting from the profiling step, te-p
constrained. dict each version execution time.

Figures 2 and 3 illustrate the profiling code generation. In
Figure 2, we present a code summing the columns of array

Ain array S. The code is fully tiled and parallelized. Fig- #of cores| version 1| version 2| version 3

ure 3 shows the corresponding profiling code. The domain 1 30ms 28ms 32ms

boundaries are eliminated and the domain is now controlled 2 10ms 14 ms 15ms

by the two new parametepsr _sz andot her s_sz. While 3 7ms 9ms 8ms

ot her s_sz is doubled until reaching a stable measurement, 4 Sms 8ms 6ms

par _sz is incremented from 1 to the number of available Table 1. Sample parametric ranking table built on a 4-cores

processor cores. The resultis made of the last executi@stim Processor for 3 versions. The table content is made of execu-
per iteration for each considered parallel loop trip count.  tlon times per iteration.



; for (i=0; i<M i++)
3.2.1 lteration count measurement forall (j=0: j<N. j++)

The profiling phase considers most of the code versions  for (k=i; k<j; k++)
performance factors, however the load balance has to be  Alil[kl = Bli] * 2
evaluated at runtime: the data size and the number of avait-or (i=0; i<M i++)
able processor cores impact the maximum number of active forall (j=0; j<N j++)
threads. To evaluate this load balance, the runtime selexto cnt[thread_id] += (j>)?-i:0;
ecutes a very simplified copy of each loop nest version called . , ,
prediction nest. The prediction nest counts how many itera- F19ure 4. Sample loop nest (top) and its corresponding pre-
tions each thread executes in this code version. The numbgiction nest (bottom)
of iterations executed by each possible quantity of thrésads
then deduced and used to select the entries in the ranking ta,; - {1000, 800, 200, 200}.We can deduce that

bles. o _ ~ one thread has executed (1000 - 800) iterations while the oth
To build the prediction nest, we consider a code versiorers were idle, two threads have executed (800 - 200) iterstio
loop nest. All the loops and statements enclosed in the pajn parallel and four threads have simultaneously execu@éd 2

allel loop define the computation achieved in a parallet iter jterations. There are never exactly three active threattsisn
ation. The workload of this computation is evaluated as thggse.

Ehrhart polynomial counting the number of iterations of the

loops enclosed in this parallel loop. Thus, at compile time, - L

we syntactically replace the content of the parallel loop by 3.2.2  Predicting the execution time

a computation of this Ehrhart polynomial. The value defined Once the iteration counts are known, the execution time
by the polynomial is added to a counter specific to the threa§an easily be deduced using the parametric ranking tabte. Fo
which executes the current parallel iteration. At the enthef ~ €xample, consider the previous example where 200 iteation

prediction nest execution, each counter will then contain t areé executed by one thread, 600 by two threads and 200 by
number of iterations that one thread has executed. four threads. For this example, we consider the profiled exe-

Figure 4 presents a sample code and its associated predf‘cl-’tion times of the first version in Table 1. The executioretim
tion nest. Observe that the innermost loop and the statemeg‘tther_1 computte((:ij abs 2f004 :<h5rrsdfor ég;paitoof tr:ce |t§1rat_|ton
are replaced by a counting code. This counting code incre?0Main executed by four threads, < Lomsfor the it-

ments the thread-specific counter with the trip count of theerations executed by two threads plus 2aDx 30msfor the

removed loop. sequential iterations. The sum predicts an execution time o
. . . .22 seconds.
Itis assumed here that the mapping of the parallel iteration . . S .
) . 2 : The prediction time computation is executed with every
to the threads is the same in the prediction nest and in the cor . : .
: : . : - ~version of the loop nest in the current execution context, be
responding code version, thus excluding dynamic mappin .
. ?ore running the best one.
from the scope of our framework. To evaluate the impact o
this drawback, we measured the performance of the most effi-
cient version of each benchmark presented in Section 4 usid. EXPERIMENTS
the OpenMP dynamic mapping. We observed that, in average, We run our experiments on three computers with different
this dynamic mapping leads to a slowdown compared to statimulticore processors: an AMD Opteron 2431 processor with
mapping. This slowdown reaches more than 20 % on some asix cores , an AMD Phenom I 965 processor with four cores
chltectures. The same e>.<per|ment has peen pgrformed usiggd an Intel Core i7 920 processor with four cores and hyper-
Cilk [S]: the parallel loop is transformed into theé | k_for  threading activated. The experiments are run on Linux 8.6.3
control structure. We observed slowdowns of 45 % in aversystems.
age, reaching more than 100 % in some cases. This illustrates The benchmark codes are 12 common polyhedral loop
that those dynamic scheduling or work-stealing systems cafests. The cod@mmis made of two matrix multiply =
suffer from high overheads and are not suited to deal witha x Bx C), adi is the ADI kernel provided for example with
regular loop nests. PLuTo,covari ance is a covariance matrix computation,
To deduce the number of parallel iterations executed bygemmandgenver are taken from BLAS [4]j acobi - 1D
each thread quantity, the counters arcayt is sorted in de- andj acobi - 2D are the 1D and 2D versions of the Jacobi
scending order. For each positidn< i < nb_t hr eads, kernel|l uis a LU decomposition kernetgt mul is a simple
we can state thatnt[i-1] - cnt[i] iterations have matrix multiply, mat mul - i ni t is a matrix multiply com-
been executed in parallel by exactlythreads. For exam- bined with the initialization of the result matrirgri d is a
ple, consider a 4-cores computer where the following numkernel extracted from thegr i d code in SPECOMP [2] and
bers of iterations have been measured by the prediction nestei del is a Gauss-Seidel kernel as provided with PLuTo.



Those kernels are typically put in libraries and called many4.2 Evaluation results

times by applications cumulating the benefits of our system. We present in Table 2 a quantitative study of our runtime
For each code, many versions are generated. One of thosgstem efficiency. All the presented speedups are averdges o

version is automatically generated by the PLuTo paraleliz all the execution contexts where the number of active pro-

ing compiler. Other versions have been designed by an exeessors and the data size vary. They take the dynamic system

pert, changing the number of tiling levels and the tile sizesoverhead into account. We measured this overhead, induced

and making polyhedral loop transformations. As explaimed i when predicting the execution times, to be less than a tefinth o

Subsection 2.2, those versions could have been generated hyilliseconds per code version.

automatic tools. The details about those versions are-avail

able on request. From each version, the profiling and predic- Framework | Max static
. . . . Processor| Program

tion codes are generated by a set of fully automatic scmpts i speedup | speedup
our implementation. The result of the prediction codesrdete 2mm 100.0% | 100.0 %

mines the framework choice in each execution context. adi 101.5% | 97.5%

. . i 0, 0,
The runtime system is evaluated on each of the three com- covariance | 100.0% | 99.9%

e . . . gemm 102.8 % 96.9 %
puters, fo_r eaph code with five different problem sizes legdi gemver 100.0 % 99.8 %
to executiontimes near to a couple of minutes. Egch measure- j acobi - 1d 99.7 % 100.0 %
ment is repeated Wlth a number_of thre_ads varying from one | Phenom j acobi - 2d 99.5 % 100.0 %
to the number of logical cores simulating different reseurc I u 100.0 % 100.0 %
availability. The presented statistics enclose more thaa o mat nmul 100.0 % 100.0 %
thousand runs, each one being the median value out of five mat nul - i nit 100.0 % 100.0 %
executions. ngrid 98.0 % 98.1 %

sei del 100.1 % 99.0 %

.. 2mm 100.0 % 100.0 %

4.1 Performance variation adi 1022% | 97.3%
During our experiments, we have observed many perfor- covari ance 100.0 % 99.8 %
mance variations. First, there are performance variafions genm 101.4 % 96.7 %
a given code version among different computers for a fixed genver 99.9% 99.8 %
problem size and number of cores. For example it , Opteron | 1 2cobi-1d 99.6% | 100.0%
when considering a problem size of 2448 and 5 available pro- j acobi - 2d 100.0% | 100.0 %
cessor cores, version 2 is the best one with the Opteron pro- lu 100.0 % 100.0 %
mat nul 100.0 % 100.0 %

cessor but the worst one with the Core i7 processor. mat mul - ni t 100.0 % 100.0 %

We have als_o observed perforr_nance variations vyhen the mgri d 97.8 % 98.5 %
number of available cores on a given computer varies for a sei del 100.6 % 98.3 %
fixed problem size. For example, with the Core i7 processor 2mm 100.0 % 100.0 %
for a problem size of 9996, the first version @énver is adi 102.4 % 97.5 %
the best one when only one processor core is available but the covari ance 96.9 % 99.7 %
worst one when all the cores can be used. gemm 100.0 % 93.5%

Finally, when the problem size changes there are perfor- genver 89.5% 91.6 %
mance variations for a fixed computer and a fixed number | corej7 | 1 2@coPi-1d 99.6 % 99.9 %
of available cores. For example, with all the processorsore l acc|>bu| -2d ggigﬁ ggggz‘:
of the Phenom processor, the fourth versiomgf i d is in- et mul 100.0 % 98.5 %

efficient fqr a problem size of 400 but is the best one for a mat mul - i ni t 1000% | 100.0%
problem size of 496. mori d 100.5 % 97.0 %
The best version is therefore not necessarily the same in sei del 99.9 % 99.6 %
all the execution contexts and our runtime system succeeds Table 2. Speedup of our framework compared to the best
selecting the best one in those presented cases. static version and speedup of the best static version cadpar
We have observed that the transformations making a veto the best version in each context.
sion perform better than another are the tile size, the numbe
of tiling levels and the parallel schedules. All those tfans We define thebest static version as the version that per-
mations interact and have a complex impact on performancéorms best in average in all the considered execution con-
changing with the execution context. This emphases the nedédxts on an architecture. Such version could be the one stati
of a dynamic system, such as our framework, able to considerally chosen by a perfect offline system. If a best static ver-
all of those transformations together. sion would be the fastest one in every execution context, no




speedup can be expected from any runtime system. sociated runtime system uses a choice dependency graph to
First we show the speedup of our framework compared tselect one or another algorithm and implementation at dif-
the best static version. We can see that our system sometimégrent steps of the whole computation, thus resulting to an
leads to a slowdown compared to this version. Those sloweptimized hybrid algorithm. Such an approach is suitabte fo
downs are mostly due to incorrect choices in some executioprograms where it is obviously possible to switch from one
contexts. Such incorrect choices are made when the approgigorithm to another while still making progress in the wéhol
imations of the profiling step lead to mispredict the execu-computation. Further, such a changing behavior must not in-
tion time of some versions in some of the execution contextsduce overheads due to a compulsory cache flush for instance.
Two typical examples argemver andj acobi - 2d on the Mars and Hundt’s static/dynamic SBO framework [11]
Core i7 platform. We can see however that our frameworlkconsists in generating at compile-time several versions of
usually selects another well performing version inthosesa a function that are related to different dynamic scenarios.
as the slowdown remains very limited. It is important to noteThese scenarios are identified at runtime thanks to the micro
that this slowdown is related to a perfect static system whic processor event registers. Execution is dynamically rtecbu
is extremely complex to build as it would require to stafical to the code relevant to the current identified scenario. How-
select the best parallel version for each architectureh uc ever, execution is not rerouted during a function call, lout f
system does not exist currently. the next calls. Further, it seems difficult to use this appioa
Our framework reaches some speedups in some cages ( with parallel program since it is actually challenging with
adi or genm), meaning that the execution time is, in aver- multicore processors to deduce accurate global multiteea
age, shorter than the execution time of the version thatdvoulprogram behaviors from registers disseminated on the cores
have been selected by a perfect static system. This speedupThe STAPL adaptive selection framework [16] runs a pro-
is impossible to reach with only one version, illustratingt filing execution at install time to extract architecturapde-
importance of using a dynamic selection system. dent information. This information is used at runtime com-
In the second column, we show the speedup of the bediined with previous runs and training runs performance mea-
static version compared to the best version in each executicsurements through machine learning to select the best ver-
context. No speedup higher than 100 % can be expected hergion. Their system requires many training runs before being
it is impossible to have any version faster than the fastst v able to take good decisions.
sion in a specific context. A speedup of 100 % here means More recently Tiaret al. [17] propose an input-centric pro-
that a unique version is the best one in all the tested execigram behavior analysis for general programs, a statistjzal
tion contexts. Those speedups illustrate that even a ferfeproach where program inputs have to be characterized-differ
static system cannot reach the maximum performance in aéintly depending on the target application — input size, data
the cases. distribution, etc. —, and program behavior is represented b
Considering those statistics, we can say that our frameworkelations between some programs parameters, as for iestanc
is able to select a very well performing version in all the-pre loop trip-counts. This modeling is used to achieve some dy-
sented cases. In some cases, it is even able to outperform angmic version selection. Such relevant statistical retesti

hypothetical perfect offline system. seem difficult to be determined for any kind of programs. The
approach necessarily suffers from approximations, harelwa
5 RELATED WORK characteristics are not handled and overall, this work doés

] . ) ... consider parallel and multicore programs.
Iterative compilation and dynamic work distribution P prog

(work-stealing or dynamic scheduling) have been discussed
in the introduction and in Subsection 3.2.1. This section fo 6. CONCLUSION AND PERSPECTIVES
cuses on adaptive runtime selection methods. In this paper, we present a new framework for adaptive
In the ATLAS project [20], empirical timings are used in code selection of parallel loop nests at runtime. It handles
order to choose the best method for a given architecture “in &arying input data and varying execution contexts, suchas t
matter of hours”. Further it does not handle parallel progga number of cores or the cache architecture. We showed on a
With the ADAPT system [19], a specific language allows set of benchmarks that our framework is efficient: depending
the user to describe optimizations and heuristics for applyon the input data shape, on the target architecture and cores
ing these optimizations dynamically. However, the resglti availability, the version performing best is not the sanme] a
optimizer is run on a free processor or on a remote machineur method mostly selects the best performing one with a low
across the network. runtime overhead. Further, it provides speedups that cuatld
PetaBricks [1] provides a language and a compiler wherdiave been reached with one statically selected version when
having multiple implementations of multiple algorithms to considering several calls with different input data shapes
solve a problem is the natural way of programming. The as- We are able to consider very different versions where a



wide range of optimizations can be applied, from common10] P. Feautrier. Some efficient solutions to the affine

compiling optimizations to complex polyhedral transforma scheduling problem, part 2 : multidimensional tinhet.

tions. Further, our initial profiling phase is also very fdast- J. of Parallel Programming, 21(6), 1992.

ing less than a couple of minutes in our experiments. ) o
As a perspective, we plan to improve our parametric profill11] J- Mars and R. Hundt. Scenario based optimization: A

ing phase by enriching the structure of the simplified nest in framework for statically enabling online optimizations.

order to better consider more complex iteration domains. An In CGO 09, pages 169-179, 2009.

other interestin_g extension woult_j be to consider Ioop nest&z] The OpenMP API specification for parallel program-

that are not strictly polyhedral. Finally, a complete dymam ming. http://www.openmp.org.

systemj.e. without any initial profiling phase, could be built

either by alleviating some mechanisms or by using actua run[13] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos.

to build the parametric ranking table. Iterative optimization in the polyhedral model: Part I,
multidimensional time. InPLDI’08, pages 90-100.
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