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Abstrat: The ontrol of a wheeled vehile with front and rear steering wheels

is addressed. With respet to more lassial ar-like vehiles, an advantage of

this type of mehanism is its enhaned maneuverability. The Transverse Fun-

tion approah is used to derive feedbak laws whih ensure pratial stabilization

of arbitrary referene trajetories in the artesian spae, and asymptoti stabi-

lization when the trajetory is feasible by the nonholonomi vehile. Conerning

this latter issue, previous results are extended to the ase of transverse funtions

de�ned on the Speial Orthogonal Group SO(3).

Key-words: two-steering-wheels vehile, nonholonomi vehile, transverse

funtion, stabilization



Exemple de doument

utilisant le style

rapport de reherhe

Inria

Résumé : Ce rapport onerne la ommande de véhiules dont les deux trains,

avant et arrière, sont direteurs. L'avantage de e type de méanisme par rap-

port à des systèmes plus lassiques, de type voiture par exemple, réside dans

sa meilleure maneuvrabilité. L'approhe de ommande par fontions trans-

verses est ii utilisée pour synthétiser des ommandes par retour d'état qui

assurent d'une part la stabilité pratique de trajetoires de référene arbitraires

dans l'espae artésien, et d'autre part la stabilité asymptotique lorsque es tra-

jetoires sont réalisables par le véhiule non-holonome. En e qui onerne e

dernier aspet, des résultats antérieurs sont ii étendus à une lasse de omman-

des dé�nies sur le groupe spéial orthogonal SO(3).

Mots-lés : véhiule à deux trains direteurs, véhiule non-holonome, fontion

transverse, stabilisation
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1 Introdution

This study is about the ontrol of ground vehiles with front and rear indepen-

dent steering wheels. At the kinemati level, this system has three independent

ontrol inputs, namely the translational veloity along the diretion joining the

steering wheels' axles, and the steering-wheels' angular veloities. With respet

to lassial ar-like vehiles with a single steering train, this type of vehile

provides superior maneuvering apabilities and the possibility of orienting the

main vehile's body independently of its translational motion (see, e.g., [14℄

and referenes therein). This an be used, for instane, to transport large pay-

loads without hanging the payload's orientation, thus minimizing energy on-

sumption. From the ontrol viewpoint, assuming that lassial rolling-without-

slipping nonholonomi onstraints are satis�ed at the wheel/ground ontat

level, the kinemati equations of this type of vehile yield a loally ontrol-

lable �ve-dimensional nonholonomi driftless system with SE(2)×S
1 ×S

1 as its

on�guration spae. A omplementary onstraint is that singular kinemati on-

�gurations, when either the front steering wheel angle or the rear steering wheel

angle is equal to ±π/2, must be avoided whatever the desired gross displae-

ment of the vehile in the plane. This implies that some referene trajetories in

SE(2), orresponding to the motion of a referene frame in the plane, an only

be stabilized �pratially� via maneuvers, alike the ase of a ar aomplishing

sideways lateral displaements. The Transverse Funtion approah [7℄ applies

to this nonholonomi system the struture of whih (unsurprisingly) presents

similarities with the one of a ar with two ontrol inputs. In partiular, it is

also loally equivalent to a homogeneous (nilpotent) system whih is invariant

on a Lie group [8℄ [9℄. However, its Lie Algebra is generated di�erently due to

the third ontrol input. In partiular, only �rst-order Lie brakets of the on-

trol vetor �elds are needed to satisfy the Lie Algebra Rank Condition (LARC)

�the loal ontrollability ondition� at any point, whereas a seond-order Lie

braket is needed in the ar ase. This property, whih re�ets the symmetri

steering ation of the front and rear wheels, is of pratial importane. In or-

der to respet this symmetry at the ontrol design level, one is led to onsider

transverse funtions de�ned on the three-dimensional speial orthogonal group

SO(3), rather than on the two-dimensional torus �a solution used in the ar

ase, for instane. Therefore, after the trident snake studied in [2℄, and the

serial snake studied in [11℄, this is another example of a mehanial system for

whih the use of transverse funtions de�ned on SO(3) is natural. Moreover,

this example presents the omplementary interest, and ompliation, of involv-

ing transverse funtions de�ned on a manifold whose dimension (equal to three)

is not minimal. The orresponding extra degree of freedom thus has to be taken

into aount at the ontrol design level and, if possible, used e�etively. For

instane, a desirable feature is to ensure the asymptoti stabilization of admis-

sible (or feasible) trajetories for whih more lassial ontrol solutions, suh

as the Lyapunov-based nonlinear feedbaks proposed in [5℄, or linear feedbaks

derived from linearized traking error equations, apply. In the end one obtains

a unique feedbak ontrol law whih ensures the avoidane of kinemati singu-

larities, the pratial global stabilization of any (i.e. feasible or non-feasible)

referene trajetory in SE(2), inluding �xed points, and the asymptoti stabi-

lization of feasible referene trajetories for whih this objetive is ahievable by

RR n° 7528



Control of two-steering-wheels vehiles 4

using lassial feedbak ontrol tehniques �typially when adequate onditions

of persistent exitation upon the referene translational veloity are satis�ed.

The paper is organized as follows. The robot's kinemati model and assoi-

ated ontrollability properties are presented in Setion 2. Transverse funtions

de�ned either on S
1 × S

1, or on SO(3), are derived in Setion 3. The ontrol

design is arried out in Setion 4, and simulation results are given in Setion

5. Finally, the onluding Setion 6 points out a few researh diretions whih

ould prolong the present study.

2 Modeling and ontrol problem statement

Figure 1 shows a shematized view from above of the system under onsidera-

tion.

φ1

P (x, y)

θ

φ2

Pr(xr, yr)

θr

Figure 1: Two-steering-wheels vehile. View from above

The point P on the vehile is loated at mid-distane of the steering wheels'

axles, and at the distane l of eah axle. Consider an arbitrary �xed frame

in the plane on whih the vehile moves. A mobile frame with origin P and

orientation θ with respet to (w.r.t.) this �xed frame is attahed to the vehile's

main body. By denoting the oordinates of P in the �xed frame as x and y, the
vetor g := (x, y, θ)′, with the prime sign used for transpose, an be seen as an

element of SE(2). Therefore any motion of this vehile an be assoiated with a

trajetory in SE(2). The desired motion of this mobile frame is spei�ed by the

motion of the referene frame with origin Pr whose position and orientation is

given by gr := (xr, yr, θr)
′. The ontrol objetive is to stabilize any trajetory of

the referene frame, either pratially (i.e. by ensuring small ultimate traking

errors) or asymptotially when this is possible, while avoiding the singular values

±π/2 for the steering wheel angles φ1,2.

Denote the veloity omponents of the point P , expressed in the mobile

frame, as ux and uy, i.e. suh that:

(

ẋ
ẏ

)

= R(θ)

(

ux

uy

)

(1)

RR n° 7528



Control of two-steering-wheels vehiles 5

with R(θ) denoting the rotation matrix in the plane of angle θ. De�ne now

η =

(

η1

η2

)

:=

(

tan(φ1)−tan(φ2)
2

tan(φ1)+tan(φ2)
2l

)

One easily veri�es that:
{

uy = η1ux

θ̇ = η2ux
(2)

With ux, the angular veloities φ̇1 and φ̇2 are the other two kinemati ontrol

inputs. Away from the steering wheels singular values ±π/2, one an de�ne the

following hange of ontrol inputs:

v =

(

v1

v2

)

:=

(

1
cos2(φ1)

− 1
cos2(φ2)

1
l cos2(φ1)

1
l cos2(φ2)

)

(

φ̇1

φ̇2

)

so that

η̇ = v (3)

Let

R̄(θ) :=

(

R(θ) 02×1

01×2 1

)

with 0m×n denoting the m×n zero matrix, and note that the olumn vetors of

R̄(.) form a basis of the Lie algebra of SE(2). By regrouping the equations (1)-

(3) one obtains the following �ve-dimensional ontrol system with three inputs:

{

ġ = R̄(θ)C(η)ux

η̇ = v
(4)

with

C(η) :=

(

1
η

)

One an remark that this system may also be written as:

{

ġ = X(g)Cg(η)w
η̇ = Cηw

(5)

with:

X(g) = R̄(θ), w :=

(

ux

v

)

, Cg(η) :=
(

C(η) 03×2

)

, Cη :=

(

0 1 0
0 0 1

)

This is a partiular ase of the lass of systems desribed by the relation (13)

in [8℄. The ontrol design proposed in this paper (f. Propositions 3 and 4)

thus applies to the present system, one a suitable transverse funtion has been

determined. Conerning this latter issue, [8℄ fouses on the ase of a motorized

vehile with trailers, eah trailer having its hith-point loated on the axle of

the preeding vehile, and the proposed transverse funtion is derived from the

one alulated for a loally equivalent hained systems with two ontrol inputs.

The existene of a third ontrol input modi�es this situation, sine the system

an no longer be equivalent to a hained system. In fat, it would be possible

(and simple) to reover the ar ase by just maintaining one of the steering

RR n° 7528



Control of two-steering-wheels vehiles 6

angles equal to a onstant value, zero for instane. However, in doing so one

looses the spei� interest of the double steering train, namely the possibility of

ontrolling the vehile's orientation independently of the vehile's translational

motion. Moreover, the third input allows for the satisfation of the Lie Algebra

Rank Condition (LARC) at every regular point �this implies that the system

is loally ontrollable at these points� by alulating �rst-order Lie brakets of

the system's vetor �elds (v.f.) only. Indeed, in view of (4) the system's ontrol

v.f. are:

X1(g, η) =













cos(θ) − sin(θ)η1

sin(θ) + cos(θ)η1

η2

0
0













, X2 =













0
0
0
1
0













, X3 =













0
0
0
0
1













and, by forming the �rst-order Lie brakets

X4(g) := [X1,X2](g) =













sin(θ)
− cos(θ)

0
0
0













, X5 := [X1,X3] =













0
0
−1
0
0













one easily veri�es that, for every point (g, η), the matrix

C = (X1 | X2 | X3 | X4 | X5) (g, η)

is invertible. This property is to be ompared with the ar ase for whih

one has to go to the order two to satisfy this ontrollability ondition. It is also

related to the physial intuition that an extra atuated degree of freedom should

failitate the ontrol of the system, just as in the ase of ontrollable linear

systems. It turns out that this di�erene in the generation of the orresponding

Lie algebras has also onsequenes at the transverse funtion design level. This

issue is addressed in the next setion.

3 Design of transverse funtions

Let f : (α, t) 7→ f(α, t) denote a smooth funtion from K×R to SE(2)×S
1×S

1,

with K a ompat manifold of dimension m (≥ 2). Along any smooth urve

α(.)
ḟ(α, t) = dαf(α, t)α̇ + ∂tf(α, t)

with dα (resp. ∂t) the operator of di�erentiation w.r.t. α (resp. t). The

time-derivative α̇ an itself be deomposed as

α̇ =

m
∑

i=1

Yi(α)ωα,i

with {Yi=1...m} a set of v.f. spanning the tangent spae of K at α and ωα,i=1...m

the oe�ients assoiated with this deomposition. From now on, we will assume

that the set of v.f. Yi has been hosen one for all and we will use the notation

∂αf(α, t) := dαf(α, t)Y (α)

RR n° 7528



Control of two-steering-wheels vehiles 7

to simplify the writing of the derivative of f whih, with this notation, is given

by

ḟ(α, t) = ∂αf(α, t)ωα + ∂tf(α, t)

with ωα the m-dimensional vetor of omponents ωα,i=1,...,m.

We reall that the funtion f is said to be transverse to the ontrol v.f. X1,

X2, and X3 of System 4 if the matrix

H(α, t) :=
(

X1(fg, fη) | X2 | X3 | − ∂αf
)

(α, t)

with fg and fη denoting the omponents of f in SE(2) and S
1 ×S

1 respetively,

has full rank (equal to �ve) ∀(α, t) ∈ K×R. The loal ontrollability of the sys-

tem (4) ensures �and is in fat equivalent to� the existene of suh a funtion [7℄.

In previous papers, the authors showed that there are multiple systemati ways

of synthesizing transverse funtions. The approah here retained for this task

borrows the method from [8℄ whih onsists in working with a loally feedbak-

equivalent homogeneous system invariant on a Lie group for whih the expliit

alulation of transverse funtions is simple.

3.1 Loally feedbak-equivalent homogeneous system

Consider the ontrol system























ξ̇1 = u1

ξ̇2 = ξ4u1

ξ̇3 = ξ5u1

ξ̇4 = u2

ξ̇5 = u3

(6)

One easily veri�es that, in the neighborhood of (g, η) = (0, 0), this system is

feedbak-equivalent to (4) via the hanges of oordinates and inputs de�ned by

Φ : (g, η) 7→ ξ := Φ(g, η) =













x
y
θ

cos(θ)η1+sin(θ)
d(θ,η1)

η2

d(θ,η1)













(7)

and

Ψ : (g, η, ux, v) 7→ u :=







d(θ, η1)ux

v1

d(θ,η1)2
+

1+η2

1

d(θ,η1)2
η2ux

v2

d(θ,η1)
+

η2

2
(cos(θ)η1+sin(θ))ux+η2 sin(θ)v1

d(θ,η1)2






(8)

with u = (u1, u2, u3)
′ and d(θ, η1) := cos(θ) − sin(θ)η1. In view of (6), the

ontrol v.f. of this system are

Z1(ξ) =













1
ξ4

ξ5

0
0













, Z2 =













0
0
0
1
0













, Z3 =













0
0
0
0
1
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and the only non-zero Lie brakets generated by these v.f. are

Z4 := [Z1, Z2] =













0
−1
0
0
0













, Z5 := [Z1, Z3] =













0
0
−1
0
0













This system is thus nilpotent and, sine the Lie algebra generated by its ontrol

v.f. is �ve-dimensional, i.e. of the same dimension as the system itself, it is

left-invariant on R
5 w.r.t. some group produt whih, as one an easily verify,

is de�ned by

xy =













x1 + y1

x2 + y2 + y1x4

x3 + y3 + y1x5

x4 + y4

x5 + y5













(9)

The next step onsists in determining transverse funtions for this system. A

possibility, pointed out in early papers on the transverse funtion approah [6℄,

[7℄, onsists in forming the ordered group produt of elementary exponential

funtions, eah de�ned on S
1 and involving a v.f. derived from the way the

system's Lie Algebra is generated. This possibility yields transverse funtions

depending on a minimal number of variables. In the present ase, the elementary

exponential funtions are de�ned by

g(β1) = exp(ε11 cos(β1)Z1 + ε12 sin(β1)Z2)

=













ε11 cos(β1)
ε11ε12 cos(β1) sin(β1)/2

0
ε12 sin β1

0













and
h(β2) = exp(ε21 cos(β2)Z1 + ε22 sin(β2)Z3)

=













ε21 cos(β2)
0

ε21ε22 cos(β2) sin(β2)/2
0

ε22 sinβ2













with exp(X) the solution at time t = 1 of the system ẋ = X(x), starting from

the neutral element e of the group produt (here equal to the �ve-dimensional

null vetor). In the above expressions of g and h, the εij 's are non-zero real

parameters the hoie of whih allows one to modify the �size� of the assoiated

transverse funtion. Now, sine Z2 and Z3 play a similar role in the generation

of the system's Lie Algebra, there is a priori no preferred order in the way

of forming the produt of g and h. This means that two possible transverse

funtions are given by

f̄(β) = g(β1)h(β2) (10)

RR n° 7528



Control of two-steering-wheels vehiles 9

and

f̄(β) = h(β2)g(β1) (11)

Sine the group produt is not abelian these two funtions are �slightly� di�erent

from eah other. It is not di�ult to verify that the funtion (10) is transverse

to the system's v.f. Z1, Z2, and Z3, provided that |ε21| < 0.5|ε11|, whereas the
funtion (11) is transverse to these v.f. provided that |ε11| < 0.5|ε21|.

The di�erene between the produts of g by h, and of h by g, points out

the fat that this way of designing a transverse funtion does not respet the

symmetri role played by the generating v.f. Z2 and Z3. It is then legitimate

to wonder whether one funtion is better than the other in pratie. However,

the issue is not only pratial. Is is also oneptual beause it involves the ge-

ometrial properties of the method used to design transverse funtions. When

addressing the ontrol of the trident snake in [2℄, a similar situation was enoun-

tered where the produt of elementary exponential funtions de�ned on S
1 ould

not respet the strutural symmetry assoiated with the system's Lie Algebra

generation. This led to propose another family of transverse funtions de�ned

on SO(3), rather than on S
1 × S

1 × S
1, whih did not present the same theoret-

ial shortoming. Moreover, the superior performane, observed in simulation,

of the feedbak ontrol laws derived with this new family was a omplementary

pratial asset whih strengthened our preferene. Sine the system's Lie Alge-

bra an be generated by �rst-order Lie brakets only, it is known from [10℄ that

tranverse funtions de�ned on SO(m) �with m the number of ontrol inputs�

exist. In the present ase m = 3 and, using the fat that the Lie braket of Z2

and Z3 is null, a possible transverse funtion is given by

f̄(R) = exp

(

ε

3
∑

i=1

ai(R)Zi +
ε2

2
(b3(R)Z4 − b2(R)Z5)

)

=













εa1(R)
ε2

2 (a1(R)a2(R) − b3(R))
ε2

2 (a1(R)a3(R) + b2(R))
εa2(R)
εa3(R)













, R ∈ SO(3)

(12)

with
a = DRe1, D = diag{d1, d2, d3}
b = D̄Re3, D̄ = diag{d2d3, d1d3, d1d2}

, d1,2,3 ∈ R \ {0}

ei (i = 1, 2, 3) the anonial basis of R
3, and a1,2,3 (resp. b1,2,3) the ompo-

nents of the vetor a (resp. b). The design parameters ε and d1,2,3 play the

same role as the parameters εij for the previous funtions, i.e. they allow one

to modify the size of the transverse funtion. By ontrast with the funtions

de�ned on S
1 × S

1, the property of transversality is ensured as soon as none

of these parameters is equal to zero. The absene of other onstraints on the

hoie of these parameters is one of the assets of (12), when omparing this

funtion to (10) or (11). However, a ompliation arises from the fat that this

funtion is de�ned on a manifold, namely SO(3), whose dimension (equal to

three) is larger than the dimension two of S
1 ×S

1 on whih the other transverse

funtions are de�ned. This di�erene in the dimensions of the sets on whih

symmetri and non-symmetri transverse funtions are de�ned does not our

RR n° 7528



Control of two-steering-wheels vehiles 10

in the trident-snake ase beause the minimal dimension of the sets on whih

transverse funtions are de�ned is equal to three in this ase. We will see further

how this extra dimension gives rise to an extra ontrol variable whih has to be

dealt with at the ontrol design level.

At this point, let us reall that if f̄(.) is transverse to a set of v.f. whih are

left-invariant on a Lie group, then the left-translation of this funtion by any

onstant element, or by any smooth time-dependent funtion, is also transverse

to this set. In partiular, given β⋆ a �referene� value for the variable β, and R⋆

a referene rotation matrix, then the funtions de�ned by

¯̄f(β) := f̄(β⋆)−1f̄(β) (13)

and
¯̄f(R) := f̄(R⋆)−1f̄(R) (14)

are transverse to the v.f. Z1,2,3 provided that the orresponding funtions f̄(.),
as given by (10-11) and (12) for instane, are themselves transverse funtions.

The reason for suh modi�ed transverse funtions is to allow for the asymptoti

traking of feasible referene trajetories. More preisely, de�ne the traking

error ξ̃ := ξr(t)
−1ξ with ξr(t) a prede�ned referene trajetory, then it su�es

to have β(t) (resp. R(t)) onverge to β⋆ (resp. R⋆) while the �error� ξ̃ ¯̄f(.)−1

onverges to the group's neutral element e = 0 to ensure that ξ(t) onverges to

ξr(t). The seond ondition, i.e. the onvergene of ξ̃ ¯̄f(.)−1 to e is satis�ed by

a proper design of the ontrol law. This is the ore of the transverse funtion

ontrol approah and of the assoiated objetive of pratial stabilization of any

referene trajetory. As for the onvergene of β(t) (resp. R(t)) to β⋆ (resp.

R⋆), it depends on the i) �admissibility� of the referene trajetory, ii) a proper

hoie of β⋆ (resp. R⋆, and iii) lassial �persistent exitation� properties of the

referene trajetory that ensures the ontrollability of the linear approximation

of the traking error system.

3.2 Conditions for asymptoti stabilization of admissible

referene trajetories

Let us omment some more on the points ii) and iii) by onsidering the two

ases when the transverse funtion is de�ned either on S
1 × S

1 or on SO(3).

Case 1: When ¯̄f is de�ned on S
1 × S

1 the results of [9℄ an be used to show

that a proper hoie for β⋆ and the signs of the parameters εij entering the

expression of f̄(β) is as follows:

{

β⋆ = (0, 0)′

sign(ε11) = sign(ε21) = −sign(ur,1)
(15)

with sign(.) denoting the lassial sign funtion and ur the referene input

assoiated with the admissible referene trajetory ξr. Note that the above

spei�ations apply only when the referene trajetory is admissible and the

�rst omponent of the referene input is di�erent from zero, this latter ondi-

tion being also neessary to the ontrollability of the linear approximation of

the traking error system. When these onditions are not met, the hoie of

β⋆ and of the signs of ε11 and ε21 beome essentially irrelevant, and of lesser

importane for the pratial stabilization of the referene trajetory.

RR n° 7528
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Case 2: The issue is more omplex when ¯̄f is de�ned on SO(3) beause the

hoie of the referene matrix R⋆ has to be made in ombination with the mon-

itoring of an extra ontrol variable. De�ne the modi�ed error vetor z := ξ̃ ¯̄f−1

and the extended ontrol vetor ū =

(

u
ω

)

, with ω denoting the angular veloity

vetor assoiated with the variation of R, i.e. the 3-dimensional vetor suh

that Ṙ = RS(ω) with S(.) denoting the skew-symmetri matrix-valued funtion

assoiated with the ross-produt operation in R
3, i.e. suh that S(a)b = a× b.

De�ne also

G :=

(

I3

02×3

)

, Ḡ(R) := (G| − A(R))

with In denoting the n × n identity matrix and A(.) the 5 × 3 matrix-valued

funtion suh that
˙̄̄
f(R) = Z( ¯̄f(R))A(R)ω

with Z = (Z1, . . . , Z5). Let Ad
Z denote the expression of the Ad operator in the

basis Z, i.e. the matrix-valued funtion de�ned by Ad(ξ)Z(e)v := Z(e)AdZ(ξ)v.
By using lassial di�erential alulus on Lie groups, the time-derivative of z is

given by (see also [9℄)

ż = Z(z)AdZ( ¯̄f(R))(Ḡ(R)ū −AdZ(ξ̃−1)vr) (16)

with vr the 5-dimensional vetor suh that ξ̇r = Z(ξr)vr. Let A1(R) and A2(R)
denote the sub-matries of A(R), of respetive dimensions 3× 3 and 2× 3, suh

that A =

(

A1

A2

)

. The transversality property of ¯̄f implies that the 5× 6 matrix

Ḡ(R) =

(

I3 −A1(R)
02×3 −A2(R)

)

is of full rank ∀R ∈ SO(3). Therefore the rank of A2(R) is equal to two.

Let µ(R, t) denote a smooth 3-dimensional vetor-valued funtion suh that

µ(R, t) ∈ Ker(A2(R)), ∀(R, t). Take, for instane,

µ(R, t) = (I3 − A2(R)†A2(R))ρ(R, t) (17)

with A2(R)† a right inverse of A2(R), and ρ denoting a �free� vetor-valued

funtion whih will be spei�ed further in order to obtain the desired stability

result. De�ne

µ̄(R, t) =

(

A1(R)
I3

)

µ(R, t) ∈ Ker(Ḡ(R)) (18)

Then, in view of (16), any feedbak ontrol in the form

ū = Ḡ(R)†(AdZ(ξ̃−1)vr + (Z(z)AdZ( ¯̄f))−1Kz) + µ̄(R, t) (19)

with

Ḡ(R)† =

(

I3 −A1(R)A2(R)†

03×3 −A2(R)†

)

(20)

a right inverse of Ḡ(R), yields the losed-loop equation ż = Kz. It thus su�es

to hoose K equal to a onstant Hurwitz matrix to obtain the exponential

stabilization of z = 0. Note that the last term µ̄ in the ontrol expression
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only arises when the dimension of the extended ontrol vetor is larger than

the system's dimension. A ontribution of the present study is to show how to

ombine this term with an adequately hosen rotation matrix R⋆ in order to

ensure the loal asymptoti stability of this matrix on the zero dynamis z = 0,
when the referene trajetory ξr is admissible, i.e. when vr = Gur.

Proposition 1 Let q denote a quaternion assoiated with the rotation matrix

R, and Im(q) denote its imaginary part. Apply the ontrol law (19) to the

system (6) with A2(R)† hosen as the Moore-Penrose pseudo-inverse of A2(R),
i.e. A2(R)† = A2(R)′(A2(R)A2(R)′)−1. Then, on the exponentially stabilized

zero dynamis z = 0 the following hoies for R⋆, ρ, and the sign of ε:







R⋆ := I3

ρ(R, t) := −kρ|ur,1(t)|Im(q) , kρ > 0
sign(ε) = −sign(ur,1)sign(d1)

(21)

make ¯̄f(R) = 0, and subsequently ξ̃ = 0, loally exponentially stable provided

that i) ur is bounded and ii) there exist onstants T, δ > 0 suh that

∀t ∈ R+,

∫ t+T

t

|ur,1(s)| ds ≥ δ (22)

The proof of this proposition is given in the Appendix.

Relation (22) is a persistent exitation ondition whose satisfation ensures

the ontrollability of the linear approximation of the error system assoiated

with the traking error ξ̃. It is a lassial ondition when addressing the asymp-

toti stabilization of feasible referene trajetories for nonholonomi systems

[4, 13℄.

3.3 Transverse funtions for the original system

The general ontrol problem addressed in the present paper may be formulated

as the pratial stabilization of any referene trajetory gr(t) = (xr, yr, θr)
′(t)

for the system (4). Let wr ∈ R
3 denote the assoiated referene veloity, i.e.

the vetor suh that ġr = R̄(θr)wr. The referene trajetory is admissible (or

feasible) if there exist funtions ηr and ux,r suh that wr(t) = C(ηr(t))ux,r(t),
∀t. These funtions are given by ux,r = wr,1 and ηr = (

wr,2

wr,1

,
wr,3

wr,1

)′ respetively.

They are well de�ned and unique as long as wr,1 6= 0. A �xed point, for whih

wr = 0, is also an admissible trajetory, but the funtion ηr is not unique in

this ase. When the �rst omponent of wr is equal to zero at some time instant,

with one of the other two omponents di�erent from zero, the trajetory is

not admissible (feasible). For the ontrol design we propose to use a smooth

funtion η̄r with the properties of being i) always well de�ned, ii) a �good�

approximation of ηr when wr,1 is not small, iii) equal to the null vetor when

wr,1 = 0, and iv) bounded by prede�ned arbitrary values. The idea for the

�rst three properties is to make η̄r(t) a �reasonable� referene trajetory for

the �shape� vetor η, independently of the admissibility of gr(t). As for the

fourth property, i.e. the uniform boundedness of the omponents of |η̄r| by pre-

spei�ed valued, its usefulness will be explained shortly thereafter in relation to
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the property of transversality. An example of suh a funtion is

η̄r,i = η̄i,max tanh

(

wr,1wr,1+i

η̄i,max(w2
r,1 + ν)

)

, i = 1, 2 (23)

with η̄i,max > 0 the upperbound of |η̄r,i| and ν a small positive number. De�ne

ξr(t) :=

(

03×1

η̄r(t)

)

(24)

and note that, in view of (7), Φ(ξr(t)) = ξr(t). De�ne also

f̂(α, t) := ξr(t)
¯̄f(α) (25)

with either α = β ∈ S
1 × S

1 or α = R ∈ SO(3). Setting β⋆ = (0, 0)′, and
using either (10) or (11) for the funtion f̄ involved in the de�nition (13) of the

funtion ¯̄f , one obtains respetively

f̂(β, t) =













ε11(cβ1 − 1) + ε21(cβ2 − 1)
ε11ε12

2 cβ1sβ1 + ε12ε21sβ1cβ2 + f̂1η̄r,1
ε21ε22

2 cβ2sβ2 + f̂1η̄r,2

ε12sβ1 + η̄r,1

ε22sβ2 + η̄r,2













(26)

and

f̂(β, t) =













ε11(cβ1 − 1) + ε21(cβ2 − 1)
ε11ε12

2 cβ1sβ1 + f̂1η̄r,1
ε21ε22

2 cβ2sβ2 + ε11ε22cβ1sβ2 + f̂1η̄r,2

ε12sβ1 + η̄r,1

ε22sβ2 + η̄r,2













(27)

Setting R⋆ = I3, and using (12) for the funtion f̄ involved in the de�nition

(14) of the funtion ¯̄f , gives

f̂(R, t) =













εd1(r11 − 1)
ε2

2 d1d2(1 − r33 + r11r21) + f̂1η̄r,1
ε2

2 d1d3(r11r31 + r23) + f̂1η̄r,2

εd2r21 + η̄r,1

εd3r31 + η̄r,2













(28)

In the above relations, sβ (resp. cβ) stand for sin(β) (resp. cos(β)), and rij is

the element of R at the rossing of the i−th row and j−th olumn.

By appliation of Proposition 2 in [10℄, if ¯̄f is a transverse funtion for the

homogeneous system (6), then

f(α, t) := Φ−1(f̂(α, t)) (29)

is a transverse funtion for the (feedbak-equivalent) original system (4), pro-

vided that f̂(α, t) remains inside the domain where Φ−1 is a di�eomorphism, i.e.

provided that d̄(α, t) := (cos(f̂3) + sin(f̂3)f̂4)(α, t) never rosses zero. It thus

su�es that |f̂3(α, t)| < π
2 and | tan(f̂3)(α, t)||f̂4(α, t)| < 1, ∀(α, t). Clearly, the
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satisfation of these onditions set bounds upon i) the parameters εij of the

funtions (26) and (27), ii) the parameters ε and d1,2,3 of the funtion (28), and

iii) the omponents of η̄r. For instane, in the ase of the funtion (26), the in-

equality |f̂3||f̂4| < 1 is basially satis�ed when |ε21| ≪ 1 and 2|ε11||η̄r,2|(|ε12| +

|η̄r,1|) < 1. In the ase of the funtion (27), it is satis�ed when |ε11| = |ε21|
4

�whih ensures the property of transversality for the homogeneous system� and
|ε21|

2 (|ε22|+5|η̄r,2|)(|ε12|+ |η̄r,1|) < 1. As for the funtion (28), this inequality is

satis�ed when |εd1|[
|εd2|

2 ( |εd3|(4+
√

2)
8 +3|η̄r,2|)+ ( |εd3|

4 +2|η̄r,2|)|η̄r,1|] < 1. Given

arbitrary bounds on the omponents of η̄r, all above inequalities an be satis�ed

by reduing the sizes of the parameters εij and ε as muh as needed. However,

in pratie, it may be interesting to use parameters whih are not too small,

in order to limit the ontrol amplitude and the frequeny of maneuvers when

traking non-admissible trajetories. Beside these general remarks, developing a

methodology for the hoie of the transverse funtions' parameters in relation to

the determination of the bounds on the omponents of η̄r would be of interest.

This di�ult issue is beyond the sope of the present paper.

4 Control design

Consider a transverse funtion f(α, t) for the system (4), with α equal to either

β ∈ S
1 × S

1 or R ∈ SO(3), depending on the user's hoie and as de�ned by

(29). The issue now is to synthesize ontrol inputs ux and v whih pratially

stabilize any referene trajetory gr(t) = (xr, yr, θr)
′(t). As pointed out before,

a possibility onsists in applying the ontrol design proposed in [8℄ whih exploits

the spei� struture of the system and the possibility of ontrolling the shape

vetor η diretly.

Let fg and fη denote the omponents of f suh that f =

(

fg

fη

)

, with dim(fg) =

dim(g) and dim(fη) = dim(η). Set zη := η − fη, then

żη = v − ∂αfη(α, t)ωα − ∂tfη(α, t)

with ∂tfη(α, t) =
∂fη

∂η̄r

(α, t) ˙̄ηr(t), and ωα equal to β̇ (resp. ω) when α is equal

to β (resp. R). In order to exponentially stabilize zη = 0 one an onsider the

ontrol de�ned by

v = ∂αfη(α, t)ωα + ∂tfη(α, t) − kηzη , kη > 0 (30)

whih yields the losed-loop equation żη = −kηzη. This ontrol an be omputed

one ωα has been determined. De�ne the traking error g̃ := g−1
r • g, with •

denoting the usual group produt in SE(2), i.e.

g1 • g2 =





(

x1

y1

)

+ R(θ1)

(

x2

y2

)

θ1 + θ2





and g−1 the inverse of g, i.e. the element of SE(2) suh that g−1 • g = 0. One

easily veri�es that
˙̃g = R̄(θ̃)C(η)ux + p(g̃, t)
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with

p(g̃, t) := −R̄(−θr)ġr +





g̃2

−g̃1

0



 θ̇r

and θ̃ = θ − θr. De�ne also zg := g̃ • f−1
g (α, t), whih may be viewed as the

traking error in SE(2) �modi�ed� by the transverse funtion. One shows that

żg = D(zg, fg)R̄(θ̃)
(

C(η)ux − R̄(−fg,3)ḟg + R̄(−θ̃)p
)

= D(zg, fg)R̄(θ̃)

(

H(α, t)

(

ux

ωα

)

+ ∆ux + p̄

)

with

D(zg, fg) =





I2 −R(zg,3)

(

−fg,2

fg,1

)

01×2 1





H(α, t) =
(

C(fη(α, t)) −E(α, t)
)

E(α, t) = R̄(−fg,3(α, t))∂αfg(α, t)

p̄(zg, α, t) = R̄(−θ̃)p(g̃, t) − R̄(−fg,3(α, t))
∂fg

∂η̄r

(α, t) ˙̄ηr

∆(zη) = C(η) − C(fη) =

(

0
zη

)

ωα = β̇ if α = β, ωα = ω if α = R.

It is simple to verify that the property of transversality of f implies that the

matrix H(α, t) �the dimension of whih is (3 × 3) (resp. (3 × 4)) when α is

equal to β (resp. R)� is of full rank ∀(α, t). Therefore, using the fat that ∆
exponentially onverges to zero when v is given by (30), any ontrol in the form

(

ux

ωα

)

= H†(α, t)
(

−p̄ + R̄(−θ̃)D−1(zg, fg)Kgzg

)

+ µ̄(α, t) (31)

with

� H† a right inverse of H,

� Kg a 3 × 3 Hurwitz matrix

� µ̄ a vetor-valued funtion belonging to the kernel of H, i.e. suh that

H(α, t)µ̄(α, t) = 0, ∀(α, t),

yields the exponential onvergene of zg to zero. It follows that the feedbak

ontrol law de�ned by (30) and (31) globally exponentially stabilizes (zg, zη) =
(0, 0). Sine fg is a bounded funtion the size of whih an be rendered arbitrar-

ily small via the hoie of its parameters, |g̃| is itself ultimately bounded by an

arbitrarily small value. It is in this sense that the traking error is �pratially�

stabilized.

Let us now fous on the omplementary ontrol term µ̄. This term arises

only when the matrix H is retangular, i.e. when α = R, sine in the ase where

α = β this matrix is square invertible so that µ̄ is neessarily the null funtion.

As pointed out in Setion 3.2, the role of this term is to ensure the asymptoti
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stabilization of admissible trajetories, given an adequate value of the matrix

R⋆ involved in the transverse funtion. In view of the expression of H, i.e.

H(R, t) =

(

1 −E1(R, t)
fη(R, t) −E2(R, t)

)

one easily veri�es that

H† :=

(

1 E1

O3×1 I3

)(

1 0

Ē†
2fη −Ē†

2

)

with Ē2 := E2−fηE1 and Ē†
2 = Ē′

2(Ē2Ē
′
2)

−1 �the Moore-Penrose right pseudo-

inverse of E2�, is a right pseudo-inverse of H, and that any funtion de�ned by

µ̄ :=

(

E1

I3

)

(I3 − Ē†
2Ē2)ρ (32)

with ρ any 3-dimensional vetor-valued funtion, belongs to the kernel of H. By

analogy with the problem treated in Setion 3.2, suitable hoies for R⋆, ρ, and
the sign of the parameter ε involved in the transverse funtion expression, are

provided by Proposition 1 with wr,1 �the �rst omponent of R̄(−θr)ġr� playing

the role of ur,1.

5 Simulation results

Apart the argument of respeting the symmetry of the system at the Lie al-

gebra generation level, we do not know, at this time other �objetive� riteria

for the omparison of the respetive qualities and shortomings of the trans-

verse funtions proposed in Setion 3. Nevertheless, other fatual properties,

supported by simulations that we have arried out so far, in the trident-snake

ase �as reported in [2℄� and also in the ase of two-steering wheels vehiles

addressed here, tend to indiate that funtions whih respet the above men-

tioned symmetry also o�er pratial advantages. For instane, the onditions

upon the set of parameters for whih the property of transversality is granted

are less onstraining. This fat was illustrated in Setion 3 when determining

transverse funtions for the feedbak-equivalent system. Indeed, the onditions

|ε11| < 0.5|ε12| and |ε12| < 0.5|ε11| ame up for the funtions de�ned on S
1×S

1,

whereas no ondition upon the parameters of the funtion de�ned on SO(3)
(exept from being di�erent from zero) was neessary. In the trident-snake

ase, more stringent onditions ontributed to further establish the superiority

of symmetrial funtions de�ned on SO(3). In pratie, these onditions also

tend to signi�antly omplexify the determination of �good� parameter values

for whih, beyond the property of transversality, the ontrolled system maneu-

vers in a �natural� manner when traking non-admissible referene trajetories.

Due to the lak of omplementary tangible results, this di�ult issue will not

be pursued further here. Nevertheless, the reader will have understood that,

despite ompliations at the ontrol level whih may arise from extra degrees of

freedom assoiated with symmetrial transverse funtions, our preferene goes

so far towards suh funtions.

The simulation results reported next have been obtained with a transverse

funtion (29) de�ned on SO(3) and the feedbak ontrol (30), (31), (32), with
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gains Kg = −kgI3 (kg = 1), kη = 2, and kρ = 3. The sign of ε, R⋆, and ρ are

spei�ed in Proposition 1. The following transverse funtion parameters have

been used: |ε| = 0.2, d1 = 0.5, d2 = d3 = 10, with η̄r as spei�ed in (23),

η̄1,max = 1, η̄2,max = 1.5, and ν = 0.01.
The following table indiates the time history of the referene frame veloity

vetor ġr(t) during the 60-seonds simulation period. Disontinuities at sev-

eral time instants have been introdued purposefully in order to periodially

re-initialize the traking errors in the shape variables η and test the ontrol

performane during transient onvergene phases.

t ∈ (s) ġr = (m/s, m/s, rad/s)′

[0, 10) (0, 0, 0)′

[10, 15) (1, 0, 0)′

[15, 20) (0, 0,− π
10 )′

[20, 30) (0, 0.5, 0.5π cos(π(t − 20)))′

[30, 35) (0, 0, π
10 )′

[35, 40) (− cos(π
5 (t − 35), sin(π

5 (t − 35)), 0)′

[40, 45) (2, 0,−2 sin(π
3 (t − 40)))′

[45, 50) (0,−1,− π
10 )′

[50, 55) (1.3, 1, sin(3(t − 50)))′

[55, 60) (0, 0, 0)′

The traking of the referene frame starts after the �rst �ve seonds during

whih all veloities are kept equal to zero. The referene trajetory has been

hosen so as to illustrate various ontrol modes:

� �xed-point stabilization, when t ∈ [5, 10) ∪ [55, 60),

� asymptoti traking of admissible trajetories, when t ∈ [10, 15)∪[20, 30)∪
[35, 37.5 − ε) ∪ [37.5 + ε, 40) ∪ [40, 45), with a singularity avoidane at

t = 37.5 when perfet traking requires both steering wheel angles to be

equal to ±π
2 ,

� pratial stabilization of non-admissible trajetories, when t ∈ [15, 20) ∪
[30, 35) ∪ [45, 50).

Fig. 2 shows the (x, y) trajetories of the origin of the referene frame (dotted

line) and of the origin of the frame attahed to the vehile (dashed line). It

also shows superposed snapshots, taken at various time instants, of the wheeled

vehile and of the referene frame that it is traking. The priniple of pratial

traking is well illustrated by this �gure. However, only a video of the simulation

an qualitatively report of the �natural� harater of the maneuvers performed

by the ontrolled vehile.

Fig. 3 shows the exponential stabilization of |z| = (|zg|
2 + |zη|

2)0.5 with

respet to time, with re-initialization time instants orresponding to referene

veloity disontinuities.

Finally, Fig. 4 shows the time evolution of the three omponents of the

imaginary part of the quarternion assoiated with the matrix R on whih the

task funtion depends. Perfet traking ours when all omponents are equal

to zero. Imperfet traking during phases when the referene trajetory is ad-

missible is a onsequene of the non-equality between the vetor η̄r(t) de�ned by

(23), whih is used in the transverse funtion, and the referene steering angle

vetor ηr(t).
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Figure 2: Traking of a referene frame
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Figure 3: (z2
g + z2

η)0.5 vs. time (s)

6 Researh diretions

Extensions to the present work are multiple. For instane, several issues re-

lated to the hoie and properties of adequate transverse funtions have been

pointed out in the ore of the paper. Studying these issues will partiipate in the

development of a methodology for the generation of transverse funtions best

adapted to ontrol purposes. An extension, related to the use of �symmetrial�

transverse funtions de�ned on SO(n) and to our reent work [11℄ on snake-

like wheeled mehanism, onerns the ontrol of snake-like wheeled mehanisms

with orientable wheels whih failitate the maneuvering of the system. Another
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Figure 4: Im(q) vs. time (s)

extension of partiular interest from both theoretial and pratial standpoints

onerns the ontrol of the snakeboard [12℄, whih may be viewed as an under-

atuated dynamial version of a two-steering-wheels vehile.

Referenes

[1℄ S. Helgason. Di�erential geometry, Lie groups, and symmetri spaes. Aa-

demi Press, 1978.

[2℄ M. Ishikawa, P. Morin, and C. Samson. Traking ontrol of the trident snake

robot with the transverse funtion approah. In IEEE Conf. on Deision

and Control, pages 4137�4143, 2009.

[3℄ H.K. Khalil. Nonlinear systems. Prentie Hall, third edition, 2002.

[4℄ E. Lefeber, A. Robertson, and H. Nijmeijer. Output feedbak traking of

nonholonomi systems in hained form. In European Control Conferene,

1999. Paper 772.

[5℄ A. Miaelli and C. Samson. Trajetory traking for two-steering-wheels

mobile robots. In Pro. Symp. Robot Control'94, Capri, Italy, 1994.

[6℄ P. Morin and C. Samson. A haraterization of the Lie algebra rank on-

dition by transverse periodi funtions. SIAM Journal on Control and

Optimization, 40(4):1227�1249, 2001.

[7℄ P. Morin and C. Samson. Pratial stabilization of driftless systems on

Lie groups: the transverse funtion approah. IEEE Trans. on Automati

Control, 48:1496�1508, 2003.

[8℄ P. Morin and C. Samson. Transverse funtion ontrol of a lass of non-

invariant driftless systems. Appliation to vehiles with trailers. In IEEE

Conf. on Deision and Control, pages 4312�4319, 2008.

RR n° 7528



Control of two-steering-wheels vehiles 20

[9℄ P. Morin and C. Samson. Control of nonholonomi mobile robots based on

the transverse funtion approah. IEEE Trans. on Robotis, 25:1058�1073,

2009.

[10℄ P. Morin and C. Samson. Transverse funtion on speial orthogonal groups

for vetor �elds satisfying the LARC at the order one. In IEEE Conf. on

Deision and Control, pages 7472�7477, 2009.

[11℄ P. Morin and C. Samson. Feedbak ontrol of a wheeled snake mehanism

with the transverse funtion ontrol approah. In IEEE Conf. on Deision

and Control, pages 1991�1998, 2010.

[12℄ J. Ostrowski, A. Lewis, R. Murray, and J. Burdik. Nonholonomi mehan-

is and loomotion: the snakeboard example. In IEEE Conf. on Robotis

and Automation, pages 2391�2397, 1994.

[13℄ E. Panteley, A. Loría, and A. Teel. Relaxed persisteny of exitation

for uniform asymptoti stability. IEEE Trans. on Automati Control,

46(12):1874�1886, 2001.

[14℄ X. Yun and N. Sarkar. Dynami feedbak ontrol of vehiles with two

steerable wheels. In IEEE Conf. on Robotis and Automation, pages 3105�

3110, 1996.

Appendix: proof of Proposition 1

When z ≡ 0, the relation (19) beomes

ū = Ḡ(R)†AdZ( ¯̄f(R)−1)vr + µ̄(R, t)

so that, in view of (20),

ω = −A2(R)†AdZ
2 ( ¯̄f(R)−1)vr + µ(R, t) (33)

with AdZ
2 ( ¯̄f(R)−1) denoting the sub-matrix of AdZ( ¯̄f(R)−1) omposed of its

last two lines. Let us now further speify the terms involved in the previous

relation. Let γ denote a system of oordinates suh that, near R⋆,

¯̄f(R) = exp

(

i=5
∑

i=1

Ziγi

)

(= exp(Zγ))

Sine adk(Zi)Zj = 0 for k > 1, ∀(i, j) ∈ {1, . . . , 5}, one has

ZAdZ( ¯̄f(R)−1)vr = Ad( ¯̄f(R)−1)Zvr

= Ad(exp(−Zγ))Zvr

= exp(ad(−Zγ))Zvr

= Zvr + [Zvr, Zγ]
= Zvr + Z4(γ2vr,1 − γ1vr,2) + Z5(γ3vr,1 − γ1vr,3)

Therefore, sine vr,i = ur,i for i = 1, 2, 3, and vr,4,5,6 = 0,

AdZ( ¯̄f(R)−1)vr =

(

ur

P (ur × γ1,2,3)

)
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with

P =

(

0 0 1
0 −1 0

)

so that

AdZ
2 ( ¯̄f(R)−1)vr = P (ur × γ1,2,3)

From the de�nitions of f̄ and ¯̄f

¯̄f = exp

(

−Z

(

εa(R⋆)
ε2

2 Pb(R⋆)

))

exp

(

Z

(

εa(R)
ε2

2 Pb(R)

))

and, by appliation of the Campbell-Baker-Hausdor� formula (see, e.g., [1℄),

aording to whih exp(X) exp(Y ) = exp(X + Y + 1
2 [X,Y ] + . . .), one shows

that

¯̄f = exp

(

Z

(

ε(a(R) − a(R⋆))
ε2

2 P (b(R) − b(R⋆) + a(R) × a(R⋆))

))

Therefore

γ1,2,3 = ε(a(R) − a(R⋆)) = εD(R − R⋆)e1

and

AdZ
2 ( ¯̄f(R)−1)vr = εPS(ur)D(R − R⋆)e1 (34)

Now, using the de�nition (12) of f̄(R), the fat that adk(Zi)Zj = 0 for k > 1,
∀(i, j) ∈ {1, . . . , 5}, and the expression for the derivative of the exp funtion

(see, e.g., [1, Pg. 105℄), one obtains

˙̄f(R) = d
dt

exp

(

Z

(

εa(R)
ε2

2 Pb(R)

))

= Z(f̄(R))

(

εȧ(R)
ε2

2 P (ḃ(R) − a(R) × ȧ(R))

)

From the de�nition of a(R) and b(R)

ȧ(R) = −DRS(e1)ω

ḃ(R) = −D̄RS(e3)ω

so that, using the fat that DRe1 × DRS(e1) = D̄RS(e1)
2,

˙̄f(R) = Z(f̄(R))

(

−εDRS(e1)
ε2

2 PD̄R(S(e1)
2 − S(e3))

)

ω

The left-invariane of the Zi's also implies that the matrix A(R) involved in the

time-derivative of ¯̄f(R) is the same as the one involved in the time-derivative of

f̄(R), i.e.
˙̄f(R) = Z(f̄(R))A(R)ω

Therefore, by identifying the right members of the previous two equalities

A(R) =

(

−εDRS(e1)
ε2

2 PD̄R(S(e1)
2 − S(e3))

)

(35)
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Using (17) and (34) in (33) yields

ω = −εA2(R)†PS(ur)D(R − R⋆)e1 + (I3 − A2(R)†A2(R))ρ(R, t) (36)

Let θ̄ = 2Im(q) and note that θ̄ is a parametrization of R near R⋆ = I3 suh

that

R ≈ I3 + S(θ̄)

Therefore, ˙̄θ ≈ ω in the neighborhood of θ̄ = 0. From (21), ρ(R⋆, .) = 0 so that

the linearized dynamis of θ̄ in the neighborhood of θ̄ = 0 is given, in view of

(21) and (36), by

˙̄θ = εA2(R
⋆)†PS(ur)DS(e1)θ̄ −

1

2
kρ|ur,1|(I3 − A2(R

⋆)†A2(R
⋆))θ̄ (37)

Choosing A2(R)† equal to the Moore-Penrose pseudo-inverse of A2(R), and

using the expressions of ε in (21) and A2(R) in (35), it omes after simple

alulations that (37) is the same as

˙̄θ = |ur,1|Bθ̄ (38)

with

B =
1

4







−kρ kρ − 4
|ε||d1| 0

kρ −kρ − 4
|ε||d1| 0

0 0 − 8
|ε||d1|







a Hurwitz matrix. With the ondition (22) imposed on ur,1, this learly implies

that θ̄ = 0 is a (uniformly) exponentially stable equilibrium of the linearized

system (38). Loal exponential stability of θ̄ = 0 for the original nonlinear

dynamis then follows from the assumption that |ur| is bounded and the appli-

ation of lassial stability theorems [3, Th. 4.13℄.
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