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Abstract. This paper addresses the problem of generating symbolic test
cases for testing the conformance of a black-box implementation with re-
spect to a specification, in the context of reactive systems. The challenge
we consider is the selection of test cases according to a test purpose, which
is here a set of scenarios of interest that one wants to observe during test
execution. Because of the interactions that occur between the test case
and the implementation, test execution can be seen as a game involving
two players, in which the test case attempts to satisfy the test purpose.

Efficient solutions to this problem have been proposed in the context
of finite-state models, based on the use of fixpoint computations. We
extend them in the context of infinite-state symbolic models, by showing
how approximate fixpoint computations can be used in a conservative
way. The second contribution we provide is the formalization of a quality
criterium for test cases, and a result relating the quality of a generated
test case to the approximations used in the selection algorithm.

1 Introduction

In this paper we address the generation of test cases in the framework of con-
formance testing of reactive systems [1]. In this context, a Test Case (TC ) is
a program run in parallel with a black-box Implementation Under Test (IUT ),
that stimulates the IUT by repeatedly sending inputs and checking that the
observed outputs of the IUT are in conformance with a given specification S. In
case the IUT exhibits a conformance error, the execution is immediately inter-
rupted. However, in addition to checking the conformance of the IUT , the goal
of the test case is to guide the parallel execution towards the satisfaction of a test
purpose, typically a set of scenarios of interest. Because of this second feature,
test execution can be seen as a game between two programs, the test case and
the IUT . The test case wins if it succeeds to make the parallel execution realize
one of the interesting scenarios specified by the test purpose; the IUT wins if
the execution cannot be extended any more to one that realizes an interesting
scenario. If a conformance error is detected, the game terminates with a tie.

The test selection problem consists in finding a strategy that minimizes the
likehood for the test case to lose the game. Indeed, it is generally not possible
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to ensure that the test case wins, because IUT is unknown: it is a black-box
program that may behave in a non-controllable way. This problem has been
previously addressed in a context where the specifications, the test cases and the
test purposes are modeled with finite Labelled Transition Systems (LTS) [9].

Finding a suitable strategy for the test case is decomposed in two steps:

1. One first performs an off-line selection of a Test Case that detects when the
game is lost by the tester and stops the execution in this case. This is done
by static analysis of the specification S and the test purpose TP .

2. Then, during the execution of the obtained test case in parallel with the
IUT , one performs an on-line selection of the inputs that the test case sends
to the IUT . This on-line selection is based on the history of the current
execution.

A previous paper [14] extends these principles and algorithmic methods to
the case where specifications, test purposes and test cases are modeled with
Input-Output Symbolic Transition Systems (ioSTS), which are automata that
operate on variables (integers, booleans, aggregate types, ...) and communicate
with the environment by means of input and output actions carrying parameters.
For undecidability reason, the static analysis used for the off-line selection (Step
1) is approximated. [14] considers only a specific analysis (moreover restricted
to the control structure) and does not study the effect of the approximations on
the generated test cases.

The contributions of this paper are twofold. First we describe a general test
selection method parameterized by an approximate analysis, in the context of
Input-Output Symbolic Transition Systems. Compared to [14], we allow for the
use of more precise analyses that perform both control and data based selection.
We show that the test cases obtained by this method are sound. Second, we
investigate the effect of the approximations of the analysis from the point of
view of test execution as a game: in which way do they degrade the winning
capabilities of the obtained test case? This leads us to define an accuracy ordering
between test cases, to formalize the notion of optimal test case, and to compare
the test cases generated by our method using these notions.

Context and Related Work

Conformance testing: Testing is the most used validation technique to assess the
quality of software systems. Among the aspects of software that can be tested,
e.g., functionality, performance, timing, robustness, etc, we focus here on confor-
mance testing and specialize it to reactive systems. In this approach, the software
is specified in a behavioral model which serves both as a basis for test generation
and for verdicts assignment. Testing theories based on models such as automata
associated to fault models (see e.g. the survey [13]), or labelled transition sys-
tems with conformance relations (see e.g. [16]) are now well understood. Test
generation algorithms have been designed based on these theories, and tools like
TorX [2], TGV [9] have been developed and used on industrial-size systems.
Test selection: The test selection problem consits of choosing some test cases
among many possible, according to a given criterion. Most approaches are based

.
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on variants of classical control and data-flow coverage criteria [8, 3], while oth-
ers focus on specific functionalities using test purposes [6]. Although this is not
always made explicit, test generation typically relies on reachability and core-
achability analyses [9] based on pre- and post- predicate transformers.
Symbolic models: Many of the existing test generation algorithms and tools op-
erate on variants of labeled transition systems (LTS). High-level specifications
(written in languages such as SDL, Lotos, or UML) can be treated as well, via a
translation (by state-space exploration) to the more basic labeled transition sys-
tems. More recently, attempts have been made in the direction of symbolic test
generation [14] which works directly on the higher-level specifications without
enumerating their state-space, thus avoiding the state-space explosion problem.

Outline: In Section 2, we recall ioLTS model, the corresponding testing the-
ory and the principles of test generation using test purposes. In Section 3, we
define the syntax of the symbolic model of ioSTS and its ioLTS semantics. In
Section 4, we propose an off-line test selection algorithm for ioSTS based on syn-
tactical transformations and parameterized by an approximate fixpoint analysis.
Section 5 describes the on-line test selection that occurs during test execution.
Section 6 defines qualitative properties on tests cases concerning their ability to
satisfy the test purpose, and shows how the approximations used in the off-line
test generation step influence those qualities.

2 Testing with Input/Output Labeled Transition
Systems

Specification languages for reactive systems can often be given a semantics in
terms of labelled transition systems. For test generation, we use the following
version where actions are explictly partitioned into inputs, which are controlled
by the environment, and outputs, which the environment may only observe. This
model also serves as a semantic model for our symbolic automata (cf. Section 3).

Definition 1 (ioLTS). An Input/Output Labelled Transition System is a tuple
(Q,Q0, Λ,→) where Q is a set of states, Q0 the set of initial states, Λ = Λ?∪Λ! is
a set of actions partitioned into inputs (Λ?) and outputs (Λ!) and →⊆ Q×Λ×Q
is the transition relation.

We write q
α→ q′ in place of (q, α, q′) ∈→ and note q

α→ when ∃q′ : q
α→ q′.

For the sake of simplicity, we consider only deterministic ioLTS: the alphabet
does not contain internal actions and ∀q ∈ Q, q

α→ q′ ∧ q
α→ q′′ ⇒ q′ = q′′.

A run is a finite sequence ρ = q0
α0→ q1

α1→ . . .
αn−1→ qn such that q0 ∈

Q0 and ∀i < n, (qi, αi, qi+1) ∈→. Its projection onto actions is the trace σ =
trace(ρ) = α0 . . . αn−1. We denote by Runs(M) ⊆ Q0 · (Λ · Q)∗ the set of runs
of M and by Traces(M) ⊆ Λ∗ the set of traces of M . An ioLTS M can be
seen as an automaton if it is equipped with a set of marked states X ⊆ Q.
A run ρ = q0

α0→ q1
α1→ . . .

αn−1→ qn is accepted in X iff qn ∈ X. We denote
RunsX(M) ⊆ Runs(M) the set of runs accepted by X. Similarly, the set of
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accepted traces TracesX(M) ⊆ Traces(M) is obtained by projecting RunsX(M)
on Λ∗. An ioLTS M is complete in a state q if ∀α ∈ Λ : q

α→; it is complete if
it is complete in all states. Similarly, the notion of input-completeness is defined
by replacing Λ with Λ?.

The synchronous product of two ioLTS M = (Q,Q0, Λ,→M ) and M ′ =
(Q′, Q′

0, Λ,→M ′
) with same alphabet is the ioLTS M × M ′ = (Q × Q′, Q0 ×

Q′
0, Λ,→M×M ′

) where →M×M ′
is defined by the inference rule:

q1
α→M

q2 q′1
α→M ′

q′2

(q1, q′1)
α→M×M ′

(q2, q′2)
(Sync)

As usual, we get Traces(M × M ′) = Traces(M) ∩ Traces(M ′) and
TracesX×X′(M ×M ′) = TracesX(M)∩TracesX′(M ′) for X ⊂ Q and X ′ ⊂ Q′.

For a set of traces W ⊆ Λ∗, we denote respectively by pref ≤(W ) and
pref <(W ) the set of prefixes (resp. strict prefixes) of W . For X ⊆ Q, we denote by
post(X) = {q′ | ∃q ∈ X,∃α ∈ Λ : q

α→ q′} and pre(X) = {q | ∃q′ ∈ X,∃α ∈ Λ :
q

α→ q′} the pre- and post-condition operators. The set of states reachable from
a subset Q′ of Q in M may then be defined by reach(Q′) = lfp(λX.Q′∪post(X))
where lfp is the least fixpoint operator. Similarly, the set of states coreachable
from a set of states Q′ may be defined as coreach(Q′) = lfp(λX.Q′ ∪ pre(X)).

2.1 Testing Theory

The testing theory we consider is based on the notions of specification, imple-
mentation, and conformance relation between them [16]. The specification is an
ioLTS S = (QS , QS

0 , Λ,→S). The Implementation Under Test (IUT ) is also as-
sumed to be an ioLTS IUT = (QIUT , QIUT

0 , Λ,→IUT ) which is unknown except
for its alphabet, which is assumed to be the same as that of the specification.
Moreover, it is assumed that the IUT is input-complete, which reflects the hy-
pothesis that the implementation cannot refuse an input from its environment.

Definition 2 (Conformance relation). A trace σ is conformant to S, denoted
by σ conf S, iff pref ≤(σ)∩ (Traces(S)·Λ!) ⊆ Traces(S). IUT is conformant to S,
denoted by IUT conf S, iff Traces(IUT ) ∩ Traces(S)·Λ! ⊆ Traces(S).

?b
e!

?a
!f

d!
?b

� � �

� � �

� � �

� � �

� � �

?a

?a

?a

!e

?a

!f

?b

!e

S σ0 σ1 σ2

Intuitively, IUT conf S if after each trace of S,
IUT may emit only outputs that S can emit
as well while its inputs are unconstrained. For
readers familiar with ioco [16], note that conf
can be interpreted as ioco if S makes qui-
escence (absence of output) explicit. For in-
stance on the figure ¬(σ1 conf S), σ2 conf S,
and σ0 conf S as σ0 diverges from S by an input.

2.2 Test Cases and Test Purposes

A test case is an ioLTS able to interact with an implementation and to emit ver-
dicts about the implementation’s conformance with respect to the specification.

.
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Table 1. Properties of Test Cases

Property Explanations
(1) TC is output-complete, verdict states are sink always, def 3
(2) Traces(TC ) ⊆ Traces(S)·({ε} ∪ Λ!) always, def 3
(3) TracesFail(TC ) = Traces(TC ) ∩ ((Traces(S)·Λ!) \ Traces(S)) soundness, def 5
(4) TracesPass(TC ) = Traces(TC ) ∩ ATraces(S,TP) soundness, def 5
(5) Traces Inconc(TC ) ⊆ RTraces(S,TP) soundness, def 5
(6) Traces Inconc(TC ) = Traces(TC ) ∩ RTraces(S,TP)

∩pref <(ATraces(S,TP))·Λ!

optimality, def 10

(7) Traces(TC ) ∩ Λ∗ ·Λ? ⊆ pref ≤(ATraces(S,TP)) optimality, def 10

In our approach, a test case is an ioLTS implementing a strategy for satisfying
a given test purpose (typically, staying within a (finite or infinite) set of traces).
The test case takes into account output choices of the specification (observable
non-determinism) and anticipates incorrect outputs of the implementation.

Definition 3 (Test Case). A test case for a specification S is an ioLTS
TC = (QTC , QTC

0 , ΛTC ,→TC ) equipped with 3 disjoint subsets of sink states
Pass,Fail, Inconc ⊆ QTC (corresponding to the verdicts it may emit) such that

– its alphabet is the mirror of that of S (ΛTC
? = ΛS

! and ΛTC
! = ΛS

? ) and it is
input-complete (outputs of IUT are not refused) except in verdict states;

– Traces(TC ) ⊆ Traces(S)·({ε} ∪ Λ!): as soon as a conformance error cannot
occur any more the test case stops (cf. Definition 2).

The specification S contains all the information relevant to conformance, and
its mirror followed by input-completion constitutes a test case by itself. However,
such a test case is typically too large and is not focused on any part of the
system. It is more interesting in practice to test what happens in the course of
a given scenario (or set thereof), and if no error has been detected, to end the
test successfully when the scenario is completed. This is precisely the reason for
introducing test purposes.

Definition 4 (Test Purpose). A test purpose TP for a specification S is an
ioLTS TP = (QTP , QTP

0 , Λ,→TP ) equipped with a subset Accept ⊆ QTP of ac-
cepting states, which are sink. TP is complete except in Accept states. TP defines
a set ATraces(S,TP) of accepted traces of S which induces a set RTraces(S,TP)
of refused traces (traces of S that cannot be extended to accepted traces):

ATraces(S,TP) = TracesQS×Accept(S × TP) (1)
RTraces(S,TP) = Traces(S) \ pref ≤(ATraces(S,TP)) (2)

Observe that both accepted and refused traces are conformant. More elaborate
test purposes can be defined which may choose traces based on internal actions
and states. We do not describe them here for simplicity.

A test case TC should emit the appropriate verdicts in the appropriate situa-
tions. Fail verdicts should be emitted if and only if a non conformance is observed.
This requirement depends only on S. Additionally, since a test purpose TP is
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used for selection, TC and IUT can be viewed as players in a game. In this
context, Pass verdicts should reflect success of the game for the test case, while
Inconc verdicts should reflect defeat for the test case. These requirements are
made explicit in the following definition:

Definition 5 (Soundness of test case verdicts). The verdicts of TC are
sound w.r.t. S and TP whenever the following properties of Table 1 are satisfied:

– (3): Fail is emitted iff TC observes an unspecified output after a trace of S.
– (4): Pass is emitted iff TC observes a trace of S accepted by TP.
– (5): Inconc may be emitted only if the trace observed by TC belongs to S

(thus, it is conformant) but is refused by TP. In this case, the test execution
can be interrupted, as Pass cannot be emitted any more.

Notice that for test cases satisfying Definition 5, Fail and Pass verdicts are
uniquely defined, so that they are emitted appropriately and as soon as pos-
sible. In particular for Fail, the requirement is stronger than the usual notion
of soundness [16] which says that only non conformant IUT s can be rejected.
On the other hand, Definition 5 does not uniquely define the Inconc verdict.
We have adopted this definition in anticipation of the general (symbolic) test
selection algorithm (addressed in Section 4) where checking whether a trace is
refused is undecidable.

2.3 Off-line Test Selection Algorithm

For finite ioLTS, the principles of test generation using test purposes [12] are
described by Table 2. Explanations and sketch of proof are given below.

1. After Step 1, by properties of ×, TracesPass(P ) = ATraces(S,TP), implying
Property (4) of Table 1, and Traces(P ) ⊆ Traces(S), implying Property (2).
Intuitively, the product P combines information about conformance, coming
from S, and information about the game with the IUT , coming from TP .

2. After Step 2, we have Traces Inconc(P ′) ⊆ RTraces(S,TP), implying Prop-
erty (5) of Table 1. Properties (2) and (4) from the previous step are pre-
served. This selection step is based on the definition of RTraces(S,TP) and
the following property: pref ≤(TracesPass(P )) = Tracescoreach(Pass)(P ). The
exact knowledge of coreach(Pass) allows to detect when an action extends
a trace and causes it to be refused (i.e., not a prefix any more of accepted
traces).

3. After Step 3, we have TracesFail(TC ) = Traces(TC ) ∩ (Traces(S) · Λ! \
Traces(S)), which is Property (3) of Table 1. Moreover, Property (1) be-
comes true (rule (Fail)). Properties (2), (4), (5) are preserved by the trans-
formation.

The TGV tool [9] is based on the above algorithm. The main optimization,
consists in performing these operations on the fly. This means that S, P , P ′,
and TC are built in a lazy way, from a high level specification, thus avoiding the
state explosion problem. This involves both a reachability and coreachability

.
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Table 2. Off-line test selection algorithm

{ 1. Product and Pass verdict }
P := S × TP; Pass := QS × AcceptTP;

{ 2. Selection and Inconc verdict }
P ′ = (QP , QP

0 , Λ, →P ′
) is equipped with Inconc ⊆ QP and →P ′

is de-
fined by:

q, q′ ∈ coreach(Pass)
q

α−→P q′ α ∈ Λ? ∪ Λ!

q
α−→P ′

q′
(KeepI)

q∈coreach(Pass), q′ �∈coreach(Pass)
q

α−→P q′ α ∈ Λ!

q
α−→P ′

q′ q′ ∈ Inconc
(Inconc)

{ 3. Input-completion and Fail verdict }

TC = (QP ′ ∪ {Fail}, QP
0 , ΛTC , →TC) with ΛTC

? = Λ! and ΛTC
! = Λ?, and

→TC is defined by:

q
α−→P ′

q′

q
α−→TC q′

(KeepF) ¬(q α−→P ′) α ∈ Λ!

q
α−→TC Fail (α ∈ ΛTC

? )
(Fail)

analysis of P that do not modify the soundness of the test case. A test case
generated as above is called a complete test graph as it contains all traces
accepted by TP . This notion will be formalized in Section 6. TGV also allows
to generate other test cases that are less complete, by pruning some outputs
and the corresponding subgraphs.

We do not describe the on-line selection phase, that occurs during the parallel
execution of the test case with the IUT . It is described later for ioSTS.

3 ioSTS: Input/Output Symbolic Transition Systems

In this section, we introduce a model of symbolic automata with a finite set of
locations and typed variables, which communicates with its environment through
actions carrying values. We call it ioSTS for Input/Output Symbolic Transition
Systems. Figure 1 gives an example of such an ioSTS.

Variables, Predicates, Assignments. In the sequel we shall assume a set of
typed variables. We note Dv the domain in which a variable v takes its values.
For a set of variables V = {v1, . . . , vn}, we note DV the product domain Dv1 ×
. . .×Dvn

. An element of DV is thus a vector of values for the variables in V . We
use also the notation Dv for a vector v of variables. Depending on the context, a
predicate P (V ) on a set of variables V may be considered either as a set P ⊆ DV ,
or as a logical formula, the semantics of which is a function DV → {true, false}.
An assignment for a variable v depending on the set of variables V is a function
of type DV → Dv. An assignment for a set X of variables is then a function
of type DV → DX . We do not specify the syntactical constructions used for
building predicates and assignments. They are discussed in the full paper.

Definition 6 (ioSTS). An Input/Output Symbolic Transition System M is de-
fined by a tuple (V,Θ,Σ, T ) where:
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– V = Vp ∪ Vo is the set of variables, partitioned into a set Vp of proper
variables and a set Vo of observed variables.

– Θ is the initial condition: a predicate Θ ⊆ DVp
defined on proper variables.

– Σ = Σ? ∪ Σ! is the finite alphabet of actions. Each action a has a signature
sig(a), which is a tuple of types sig(a) = 〈t1, . . . , tk〉 specifying the types of
the communication parameters carried by the action.

– T is a finite set of symbolic transitions. A symbolic transition t =
(a,p, G,A), also noted

[
a(p) : G(v,p) ? v′

p := A(v,p)
]
, is defined by (i)

an action a ∈ Σ and a tuple of (formal) communication parameters
p = 〈p1, . . . , pk〉, which are local to a transition; without loss of general-
ity, we assume that each action a always carries the same vector p, which
is supposed to be well-typed w.r.t. the signature sig(a) = 〈t1, . . . , tk〉; Dp is
denoted by Dsig(a); (ii) a guard G ⊆ DV × Dsig(a), which is a predicate on
the variables and the communication parameters, and (iii) an assignment
A : DV × Dsig(a) → DVp

, which defines the evolution of the proper variables.
We denote by Av the function in A defining the evolution of the variable
v ∈ Vp.

This model is rather standard, except for the distinction between proper and ob-
served variables. The observed variables allow an observer ioSTS M1 to inspect
the variables of another ioSTS M2 when composed together with it. Note also
that there is no explicit notion of control location, since the control structure of
an automaton can be encoded by a specific program counter variable.
The semantics of an ioSTS M=(V,Θ,Σ, T ) is an ioLTS �M�=(Q,Q0, Λ,→):
– Q = DV , Q0 = {ν = 〈νp,νo〉 | νp ∈ Θ ∧ νo ∈ DVo

};
– Λ = {〈a,π〉 | a ∈ Σ ∧ π ∈ Dsig(a)};
– → is defined by

(a,p, G,A) ∈ T ν = 〈νp,νo〉 ∈ DV π ∈ Dsig(a) G(ν,π)
ν′ = 〈ν ′

p,ν
′
o〉 ∈ DV ν′

p = A(ν,π)

ν
〈a,π〉→ ν′

(Sem)

The rule says that a transition (a,p, G,A) of an ioSTS is fireable in the current
state ν = 〈νp,νo〉, if there exists a valuation π of the communication parameters
p such that 〈ν,π〉 satisfies the guard G; in such a case, the valued action 〈a,π〉
is taken, the proper variables are assigned new values as specified by the assign-
ment A, whereas observed variables take arbitrary values. Such a behaviour for
observed variables reflects the fact that their value is defined by another ioSTS.

Given this semantics, most notions and properties of ioSTS are defined in
terms of their underlying ioLTS semantics. For example, a run (resp. a trace) of
an ioSTS M is a run (resp. a trace) of its ioLTS semantics �M�. An ioSTS M
is deterministic if �M� is deterministic. Whether an ioSTS is deterministic or
not cannot be decided for ioSTS in the general case, as it implies the knowledge
of reachable states. Sufficient conditions for an ioSTS to be deterministic exist
(mutual exclusion of guards of all transitions labeled by the same action).

The product of ioSTS is more complex than that of ioLTS: ioSTS synchronize
on actions, but also via observed variables, which observe runs (not only traces).

.



Symbolic Test Selection Based on Approximate Analysis 357

Definition 7 (Product). Two ioSTS Mi = (V i, Θi, Σ, T i), i = 1, 2 with the
same alphabet are compatible for product if V 1

p ∩ V 2
p = ∅ (proper variables are

disjoint). In this case, their product M1 ×M2 = M = (V,Θ,Σ, T ) is defined by

– V = Vp ∪ Vo, with Vp = V 1
p ∪ V 2

p and Vo = (V 1
o ∪ V 2

o ) \ Vp;
– Θ(〈v1,v2〉) = Θ1(v1) ∧ Θ2(v2);
– T is defined by the following inference rule:

[
a(p) : G1(v1,p) ? (v1

p)
′ := A1(v1,p)

]
∈ T 1[

a(p) : G2(v2,p) ? (v2
p)

′ := A2(v2,p)
]

∈ T 2[
a(p) : G1(v1,p) ∧ G2(v2,p) ? (v1

p)′ := A1(v1,p), (v2
p)′ := A2(v2,p)

]

If V 1
o ∩V 2

p �= ∅, G1 and A1 may depend on proper variables of M2 (cf. Figure 3).
Let M1 and M2 be two ioSTS compatible for product, and M = M1 ×M2.

Then Traces(M) ⊆ Traces(M1) ∩ Traces(M2). Let also F i = Xi × DV i
o
, where

i = 1, 2 and Xi ⊆ DV i
p
, be sets of accepting states of ioSTS Mi. By taking

as set of accepting states F = X1 × X2 × DVo
for M, we have TracesF (M) ⊆

TracesF 1(M1)∩TracesF 2(M2). It is not hard to see that the two trace inclusions
are obtained from corresponding equalities for runs and accepting runs, which
become inclusions by projection on observable actions.

The testing theory for ioLTS developed in Section 2.1 also applies to ioSTS.
Specifications, test purposes and test cases are assumed to be ioSTS; moreover

– A specification is supposed to be an ioSTS S = (V S , ΘS , Σ, TS) with only
proper variables and no observed variable (V S = V S

p );
– A test purpose for S is an ioSTS TP = (V TP , ΘTP , Σ, TTP ) such that

V TP
o = V S

p (symbolic test purposes are allowed to observe the internal state
of S). The set of accepting states is defined by the truth value of a Boolean
variable Accept ∈ V TP

p . TP should be complete except when Accept = true,
which means that for any action a,

⋃
(a,p,G,A)∈TTP G ⇔ ¬Accept. This con-

dition can be enforced syntactically by completion of TP . It ensures that
TP does not restrict the runs of S before they are accepted (if ever).

– A test case is an ioSTS TC = (V TC , ΘTC , Σ, TTC ) with a variable Verdict ∈
V TC of the enumerated type {none, fail, pass, inconc}.

The set of accepted traces is defined as ATraces(S,TP) = TracesAccept(S × TP)
(as in Definition 4, except that the product is now the ioSTS product).

4 Off-line Test Selection for ioSTS

The aim of this section is to extend the test generation principles of ioLTS to
symbolic test generation, taking into account the following difficulties:

1. Ensuring semantic transformations through operations on ioSTS;
2. Relying on approximate coreachability analysis instead of exact analysis, due

to undecidability issues in the (infinite-state) symbolic case.
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Table 3. Off-line symbolic test selection algorithm

{ 1. Product and Pass verdict }
P := S × TP
P ′ = (V P ∪ {Verdict}, ΘP ∧ Verdict = none, Σ, T P ′

) is defined by

[ a(p) : G(v, p) ? v′ = A(v, p) ] ∈ T P[
a(p) : G(v, p) ∧ Verdict = none ?

v′ := A(v, p), Verdict′ := if AAccept then pass else Verdict

]
∈ T P ′ (3)

{ 2. Selection and Inconc verdict }
P ′′ = (V P ′

, ΘP ′
, Σ, →P ′′

) is defined by

[ a(p) : G(v, p) ? v′ = A(v, p) ] ∈ T P ′

[ a(p) : G(v, p) ∧ preα(A)(coreachα) ? v′ = A(v, p) ] ∈ T P ′′ (KeepI)

[ a(p) : G(v, p) ? v′ = A(v, p); Verdict′ := AVerdict ] ∈ T P ′
a ∈ Σ!

[ a(p) : G(v, p) ∧ ¬preα(A)(coreachα) ? v′ = A(v, p); Verdict′ := inconc ] ∈ T P ′′

(Inconc)

{ 3. Input-completion and Fail verdict }

TC = (V P ′
, ΘP ′

, Σ, TTC ) is defined by

t ∈ T P ′′

t ∈ TTC (KeepF)
a ∈ Σ! Ga =

∧
{¬G(v, p) | (a, p, G, A) ∈ T P ′′}

[ a(p) : Ga(v, p) ? Verdict′ := fail ] ∈ TTC (Fail)

We consider again the simple case where the specification S and the test
purpose TP do not contain internal actions or non-determinism. Our running
example is depicted on Figure 1–6. The selection algorithm is given in Table 3.
The first step is the symbolic version of Step 1 for ioLTS (cf. Table 2). The same
invariants hold. The transformation from P to P ′ specifies the behavior of the
Verdict variable and makes states with Verdict �= none sink.

Step 2 is the main step of the selection. As the coreachability problem is now
undecidable, coreachability analysis should be approximated. Fixpoint compu-
tations on ioSTS or similar models can indeed be overapproximated by classical
Abstract Interpretation techniques [4, 7, 10]. We consider here an overapprox-
imation coreachα ⊇ coreach(Pass) of the exact set of coreachable states (see
Figure 7(b)). It can be represented by a logical formula to be used in syntacti-
cal operations on ioSTS. Moreover, preα(A)(X) denotes a formula representing
an overapproximation of the precondition pre(A)(X) = A−1(X) of states in X
by the assignement A. In this context, preα(A)(coreachα) is an overapproxi-
mation of the set of values for variables and parameters which allow to stay in
coreach(Pass) when taking the transition, or in other words it is a necessary con-
dition. Its negation is thus a sufficient condition to leave coreach(Pass), and to
lose the game for the test case. Hence, rule (KeepI) discards all (semantic) tran-
sitions labeled by a (controllable) input that certainly exit coreach(Pass), and
rule (KeepI) “redirects” to Inconc all transitions labelled by an (uncontrollable)
output that certainly exit coreach(Pass).
Finally, Step 3 is the symbolic version of the corresponding step in Table 2.

.
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End Idle
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RecY

Cmp

?Start

?a(p)
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!End
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!Error(p) :
p=y ∧ y<0 ?

!OK(p) :
p=y-x ∧
-2≤p≤2 ?

!NOK(p) :
p=y-x ∧

(p≤-3 ∨ p≥3) ?

Fig. 1. Specification
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!OK(p) :
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Fig. 2. Test Purpose
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!End

!Error(p) :
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!Error(p) :
p=y ∧ y<0 ?

!OK(p) :
p=y-x ∧

(-2≤p≤1 ∨ x≤5) ?

!NOK(p) :
p=y-x ∧

(p≤-3 ∨ p≥3) ?

!OK(p) :
p=y-x ∧

p=2 ∧ x≥6 ?

Fig. 3. Product ioSTS (after Step 1)

Idle,Wait End,Wait

RecX,Wait

RecY,Wait

Cmp,Wait

WaitX,Accept

?Start

?a(p)
p≥6 ?
x := p

?a(p)
p=x+2 ?
y := p

!End :
Verdict := inconc

!OK(p) :
p=y-x=2 ?

Verdict := pass

Fig. 4. Product ioSTS modified
using coreachability analysis and
Inconc verdict (Step 2), and sim-
plified with reachability analysis

Example: The specification describes a program which is waiting for two successive
inputs ?a(p1) and ?a(p2), and emits !OK(p2 −p1) when their difference is less than 2 in
absolute value, and !NOK otherwise. If the value held by the channel ?a is negative, the
message !Error is emitted. The program may also emit !End and ends its execution.
The test purpose specifies that a test of interest is one that terminates with the first
emission of !OK(p), and with p = 2, from a state of the specification where x ≥ 6. A
!NOK(p) message is forbidden. This implies that we should have p≥6 (resp. p = x+2)
in ?a(p) from location RecX (resp. RecY), facts which are discovered by a coreachability
analysis using convex polyhedra [7] and taken into account in Figure 4. The resulting
test case is depicted in Figure 5.

In contrast, if the analysis performed on the product of Figure 3 is a more simple
interval analysis, it would only detects that we should have p ≥ 6 in ?a(p) from location
RecY, and we would obtain the test case depicted in Figure 6. Here, we avoid to lose
the game by receiving a conformant ?Error(p) messages (because we emit !a(p) with
p ≥ 0) but we can lose the game with conformant ?OK(p) or ?NOK(p) messages.
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Fig. 6. Less accurate Test Case

Intuitively, the main effect of approximations for the generated test case will
be either to miss the Inconc verdict, when receiving IUT outputs, or to lose
the game, when sending inadequate inputs to the IUT , as illustrated by the
comparison of Figure 5 and 6. In the worst case, when the approximation does
not deliver any information, the Inconc verdict will never be emitted and the test
case will not guide at all the parallel execution towards accepting states. This
will be formalized in Section 6.

5 On-line Test Selection and Test Case Execution

The off-line test selection phase produces an ioSTS equipped with verdicts, in
which (some) losing strategies has been removed, but it does not implement a
single strategy, in terms of its game against the IUT . Indeed, it may contain
choices between several outputs that may be sent to the IUT . For instance, in
Figure 5, from the location RecY,Wait, the action a(p) may be emitted for any
p ≥ 6. This illustrates the fact that the test case has to assign values to the
formal communication parameters carried by the actions.

As a consequence, test case execution implies on-line constraint solving. A
test case is then executed as follows. At any point of the parallel execution of
TC with IUT , TC is in a known state ν ∈ DV . It may then have the choice
between observing an output of the IUT , or controling an input of the IUT :

– TC observes an output a of the IUT with actual values of parameters π ∈
Dsig(a). As TC is input-complete and deterministic, exactly one transition
(a,p, G,A) ∈ TTC satisfies 〈ν,π〉 ∈ G. It then performs the assignments
ν′ = A(ν,π), and checks the value of Verdict.

– TC controls an input a in a transition (a,p, G,A). By constraint solving, it
chooses π such that 〈ν,π〉 ∈ G, sends a(π) to IUT , performs ν′ = A(ν,π),
and finally checks the verdict.

.
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A test execution driver thus needs to implement the choice between observing or
controlling, the evaluation of guards on outputs of the IUT , constraint solving
for the choice of values of parameters on inputs of the IUT , and evaluation
of assignments. Evaluation of a formula is never a problem, however the use of
constraint solving techniques to instantiate input parameters imposes restrictions
into a decidable theory, such as Presburger arithmetic.

6 Quality of Generated Test Cases

As sketched during the off-line test selection algorithm of Section 4, test case
verdicts are sound, which implies the usual soundness property of test cases —
only non-conformant IUT can be rejected, like for ioLTS. Exhaustiveness —
every non conformant IUT may be rejected [16], can also be proved, but this is
out of the scope of the present paper.

These properties are related to conformance or to soundness of verdicts. They
do not say whether test cases are good players in the game against the IUT .
In this section we formalize qualitative properties of test cases relative to their
ability to satisfy the test purpose during test execution, and show how the preci-
sion of the approximate analysis during the off-line selection algorithm influences
them. We consider a fixed specification S and test purpose TP .

We can first compare two test cases in terms of their sets of traces lead-
ing to Pass. The requirement (4) of Table 1 only relates TracesPass(TC ) and
Traces(TC ). However, a test case can be pruned in any state where there exists
a choice between several outputs (inputs of IUT ). Such an operation may reduce
the sets Traces(TC ) and TracesPass(TC ).

Definition 8 (Completeness ordering; completeness of a test case).
Let TC and TC ′ be two test cases with sound verdicts (Definition 5), both
generated from same S and TP. TC ′ is less complete than TC, denoted by
TC ′ �comp TC, if TracesPass(TC ′) ⊆ TracesPass(TC ). TC is a complete test
case if TracesPass(TC ) = ATraces(S,TP).

The test cases produced by the off-line test selection algorithms of Sections 2.3
and 4 are complete. In the TGV tool however [9], they are pruned to remove the
choices between inputs to be sent to the IUT . Thus, in this case the on-line test
selection (described in section 5 for ioSTS) is partly performed off-line.

The (partial) completeness of a test case is not directly related to its quality
as a player in the game for satisfying the test purpose. However, we are only able
to compare the quality of test cases when they are equivalent with respect to the
completeness ordering. Otherwise, two test cases may have disjoint sets of traces,
which makes their comparison as players difficult. We now define an accuracy
ordering between test cases that are equivalent with respect to the completeness
ordering. The definition seems simplistic, however it makes sense when examining
its consequences, by taking the properties of Table 1 into account.
Definition 9 (Accuracy ordering). Let TC and TC ′ be two test cases with
sound verdicts that are equivalent for the completeness ordering. TC is more
accurate than TC ′, denoted by TC �acc TC ′, if Traces(TC ) ⊆ Traces(TC ′).
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!b
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?e
Fail!d

!d

Inconc
!b

c

(b) Approximate analysis

Fig. 7. Control and inconclusiveness: Step 2 of off-line selection algorithms

In particular, using properties of Table 1, TC �acc TC ′ implies
1. Traces Inconc(TC ) ⊆ Traces(TC ′): TC ′ detects inconclusives later than TC ,

if ever;
2. TracesFail(TC ) ⊆ TracesFail(TC ′): TC ′ emits more Fail verdicts than TC ,

The second consequence may seem paradoxical: an accurate test case detects
less conformance errors than a less accurate one! In fact, two test cases that are
equivalent for the completeness ordering have same accepted traces and detect
exactly the same errors along prefixes of those accepted traces. But a less ac-
curate test case (i) exercices weaker control on the inputs of the IUT and (ii)
emits Inconc verdicts later, which gives more opportunity to the IUT to exhibit
non-conformance. Figure 5 and 6 illustrates point (i).

Now, among sound and completeness-equivalent test cases, the optimal test
case can be defined as the test case where refused traces of S w.r.t. TP are never
entered by a controllable input of the IUT and where Inconc verdict is emitted
as soon as an output of IUT enters these refused traces.

Definition 10 (Optimal test case). TC is optimal w.r.t. S and TP if:
1. Traces(TC ) ∩ Λ∗ ·Λ? ⊆ pref ≤(ATraces(S,TP)): TC does not lose the game

on a controllable action;
2. Traces Inconc(TC )=Traces(TC ) ∩ RTraces(S,TP) ∩ pref <(ATraces(S,TP))·

Λ!: TC immediately detects refused traces.

These conditions correspond to properties (7) and (6) of Table 1, respectively.

In the case of finite ioLTS it is not hard to see that the algorithm in Sec-
tion 2.3 builds sound, complete and optimal test cases. Completeness is obtained
at Step 1 of the algorithm. Optimality is obtained at Step 2, as Inconc is reached
exactly when leaving coreach(Pass). Both properties are preserved by Step 3.
In the case of ioSTS, we also build sound and complete test cases. However,
the effect of the approximate coreachability analysis is to relax the optimality
(see also Figure 6). The following theorem confirms the relevance of the accu-
racy ordering of test cases (Definition 9) and identifies the consequences of an
approximate analysis in the off-line test selection algorithm.

.



Symbolic Test Selection Based on Approximate Analysis 363

Theorem 1 (Relating accuracy to precision). Let TC and TC ′ be two test
cases generated by the algorithm described in Table 3, where TC was generated
using a more precise approximation α than the approximation α′ used for gener-
ating TC ′, i.e., preα(A)(coreachα) ⊆ preα′

(A)(coreachα′
). Then TC �acc TC ′.

Proof. We need only to consider Step 2. For inputs, only the rule (KeepI) of Step
2 of the algorithm applies. In this case, a better precision for preα(A)(coreachα)
strengthens the guards of the symbolic transitions, implying that fewer semantic
transitions will be inferred in the underlying ioLTS. For outputs, both infer-
ence rules apply. For any state q of the underlying ioLTS, a better precision
for preα(A)(coreachα) means that more semantic transitions from q leading to
Inconc (which is sink) will be inferred by the rule (Inconc) while less transitions
from q to its “normal” successors (which are generally not sink) will be inferred
by the rule (KeepI). This implies that Traces(TC 1) ⊆ Traces(TC 2). Moreover,
TracesPass(TC 1) = TracesPass(TC 2), hence the conclusion of the theorem.

The two extreme cases are actually the following:

– The computation is exact; an optimal test case is obtained, as in Section 2.3;
– The approximation is maximal (preα(A)(coreachα) = true), thus delivers no

information: Step 2 of the algorithm has no effect and the test case is unable
to control the implementation to satisfy the test purpose, nor to detect when
Inconc should be emitted.

7 Conclusion

In this paper, we have presented a symbolic test generation algorithm for
specifications and test purposes given as symbolic automata. Test generation
has been decomposed into an off-line selection of test cases and an on-line
execution on the IUT . The off-line selection is based on syntactical trans-
formations and is parameterized by an approximate fixpoint analysis. We
have showed how the precision of the analysis influences the accuracy of se-
lected test cases. The on-line execution is based on constraint solving. These
algorithms have been implemented in our tool STG, STG relies on NBac
(http://www.irisa.fr/prive/bjeannet/nbac/nbac.html)fortheapproximate
fixpoint analysis and Omega (http://www.cs.umd.edu/projects/omega/) for
constraint resolution inPresburgerarithmetic.STGusesamoregeneralmodel than
the one presented here, in particular admitting non-deterministic specifications
under some restrictions. While most other works are limited to controlable (and
deterministic) systems, we are able to generate test cases for non-controllable (and
non-deterministic) specifications. Moreover, we believe that our framework can
be generalized to other models that cannot be analyzed in an exact way.

In a sense, our approach is an improvement of strictly on-line approaches (as
e.g. TorX [2, 5]), which lack control of the test cases on the IUT . Off-line symbolic
selection seriously improves this feature. In fact, off-line selection based on test
purposes can be seen as a syntactic slicing of the specification w.r.t. particular
scenarios, preserving the capability to generate sound test cases on line.
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Several extensions of our work can be investigated. We have presented this
work in the context of conformance testing, but similar techniques could be used
in structural testing for the selection of test cases based on the source code. Also,
other models can be considered, such as programs with recursive calls modelled
as pushdown automata. One problem is then to decide what is observable and
controlable by a tester. Finally, other selection criteria can benefit from our
techniques, like safety properties [15] or standard structural coverage criteria.
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9. C. Jard and T. Jéron. TGV: theory, principles and algorithms. International Journal
on Software Tools for Technology Transfer, 6, 2004.

10. B. Jeannet. Dynamic partitioning in linear relation analysis. application to the
verification of reactive systems. Formal Methods in System Design, 23(1), 2003.
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