
HAL Id: inria-00565129
https://hal.inria.fr/inria-00565129

Submitted on 11 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Building and Augmentation of Piecewise
Planar Environments Using the Intersection Lines

Gilles Simon, Marie-Odile Berger

To cite this version:
Gilles Simon, Marie-Odile Berger. Interactive Building and Augmentation of Piecewise Planar Envi-
ronments Using the Intersection Lines. Visual Computer, Springer Verlag, 2011, 27 (9), pp.827-841.
�inria-00565129�

https://hal.inria.fr/inria-00565129
https://hal.archives-ouvertes.fr


The Visual Computer manuscript No.
(will be inserted by the editor)

Interactive Building and Augmentation of Piecewise Planar

Environments Using the Intersection Lines

Gilles Simon · Marie-Odile Berger

Received: date / Accepted: date

Abstract This paper describes a method for online interac-

tive building of piecewise planar environments for imme-

diate use in augmented reality. This system combines user

interaction from a camera-mouse and automated tracking /

reconstruction methods to recover planar structures of the

scene that are relevant for the augmentation task. An im-

portant contribution of our algorithm is that the process of

tracking and reconstructing planar structures is decomposed

into three steps - tracking, computation of the intersection

lines of the planes, reconstruction- that can each be visually

assessed by the user, making the interactive modeling pro-

cedure really robust and accurate with intuitive interaction.

Videos illustrating our system both on synthetic and long

real-size experiments are available at

http://www.loria.fr/˜gsimon/vc.

Keywords Interactive building · Structure-from-motion ·

SLAM · Particle filtering · Camera tracking · Augmented

reality

1 Introduction

Augmented Reality (AR) has now progressed to the point

where real-time applications are being considered and need-

ed. Computer vision techniques greatly contributed in achiev-

ing the required reliability and accuracy of the positioning

systems. Marker-based techniques [16] as well as those based

on a CAD model of parts of the observed scene [20] have
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been used successfully in many areas. The scene (or marker)

measurements are used both to compute the camera pose and

define the position and orientation of the 3-D virtual objects

with regard to the real world. In this paper, we want to go

one step beyond by being able to perform AR in a priori

unknown environments. More precisely, we aim to track a

calibrated hand-held camera in a previously unknown scene

without any known initialization target, while building a

3-D map of this environment and populating this map with

virtual objects. This may be of particular interest in some

collaborative scenarios where users add and share informa-

tion in an environment they are discovering together [15]. It

would also enable in-situ prototyping e.g. of home landscape

designs or visual special effects during the footing stage.

Past years have seen the emergence of simultaneous lo-

calization and mapping (SLAM) vision-based techniques for

estimating the pose of a moving monocular camera in un-

known environments [13,4,5,17,19]. However, only few of

these works address the problem of adding virtual objects

into the map while it is being built. A minimum require-

ment to be able to perform this task is that some planar

surfaces are identified into the map upon which the virtual

objects can be placed with correct orientation. Planar sur-

faces also make easy to handle self-occlusions of the map

as well as collisions, occlusions, shadowing and reflections

between the map and the added objects. Unfortunately, auto-

matic detection of multiplanar surfaces is far from been safe,

as it is discussed in section 2. Most systems use a number of

thresholds and these have a noticeable effect on system per-

formance. Moreover, because these techniques produce an

unsorted point-cloud or mesh model, they lack the ability to

describe the scene in terms of separable well defined objects

suitable for use in AR systems. The benefit of using semi-

automatic, rather than fully automatic algorithms, is that we

can model relevant structures for augmentation.



2

Some interactive systems have been designed to online

modeling of scenes [8,2,30]. For instance, [2] enables the

definition of 3-D models through a series of user input ac-

tions and 3-D gestures. Object’s vertices are clicked in one

frame using the “camera-mouse” principle (see below). This

provides a 3-D ray of possible positions of the vertex in

space. The epipolar line is then computed for every frame

as the camera is moved to a different viewpoint, and the

user has to scroll with the wheel the current estimate of the

vertex’s depth along the line until the vertex’s projection is

aligned with the true object’s vertex in the video. After creat-

ing two vertices, a 3-D line can be defined, and after creating

three vertices, a 3-D plane can be defined. It is also possible

to use an existing plane to constrain new vertices, and faces

can be extruded into volumes using the wheel.

In this paper, our goal is not to have a complete or overly

detailed geometric scene model. We only need to consider

those parts of the scene that are relevant to camera tracking

and virtual object positioning. We thus propose a simpler

and faster procedure to define the environment, based on

paintbrush-like drawing in the video stream and automatic

method to recover plane equations from areas outlined by

the user.

2 Further Related Works

The main purpose of this section is to show why interac-

tivity is needed for plane discovery in AR applications. [3]

presents a simple AR game in which an agent has to navigate

using real planar surfaces in a scene. The RANSAC algo-

rithm [7] is used at each frame of operation of a SLAM sys-

tem to search for planes in the 3-D point-cloud map. Plane

hypotheses are generated from minimal sets of points ran-

domly sampled from the subset of point features with suffi-

cient confidence. A point is deemed to be in consensus with

the hypothesis if its perpendicular distance to the plane, d,

is less than a suitably chosen threshold dT , e.g. dT = 0.5cm.

As well as looking for new planes in each frame, the sys-

tem also considers new 3-D points added to the SLAM map

as candidates for addition to existing planes. A 3-D point

is added to an existing plane if d < dT . An obvious draw-

back of this method is that tuning the dT threshold may be

difficult in practice as this value depends on the size of the

scene. Moreover, this requires that the map is scaled using

some physical measurements of the scene. In [3], a marker

whose size is known is used to initialize the map, but mark-

ers are not easily usable on a larger-than-room scale. Several

other limitations of this approach are also pointed out by the

authors in the conclusion of [9].

The scale-dependent threshold problem may be tackled

by segmenting planes into the 2-D video images instead of

the 3-D point-cloud. A lot of works have been devoted these

last years to identifying multiple homographies between an

image pair where point correspondences have been estab-

lished. The so-called “Sequential RANSAC” has been pro-

posed as a solution (e.g. in [32]): this algorithm consists

in iteratively applying RANSAC on the set of correspon-

dences, from which detected inlier groups are withdrawn af-

ter each iteration. However, as pointed out by various au-

thors [35,28,23], this approach suffers from strong limita-

tions [23]: detection of false homographies (validation of

groups that are composed of outliers), fusion of nearby ho-

mographies (two or more homographies are detected as the

same consensus set), segmentation of the consensus set of

a single homography into smaller ones (e.g. when spatial

tolerance is too small), and so on. To tackle these issues,

[35] introduced the multi-RANSAC algorithm. The strategy

is to detect all homographies simultaneously by fusing the

different groups found by RANSAC. The method is effec-

tive, but the number of homographies to be found is user

specified, which is not acceptable in our application con-

text. Other methods have been proposed that do not require

specifying the number of homographies [34,28,23]. Never-

theless, their practical use generally still requires the setting

of one or several sensitive parameters. Only the a contrario

approach does not need any parameters at all [22,23], but

this approach is highly combinatorial and can not reach real-

time requirement.

A common problem shared by all these approaches is

their dependence on the feature density and distribution in

the image stream. More explicitly, extracting bounded pla-

nar surfaces from sets of detected-as-coplanar points can

lead to two inverse problems. On the one hand, it can lead to

fill the gap in between non-connected surfaces (in [3], this

is partly tackled by introducing another distance threshold).

On the other hand, it can lead to disconnecting two parts

of the same surface, or severely clip a surface e.g. if a lo-

calized group of features is at the center of a large uniform

surface (see for instance the walls in Fig. 8). Incorporating

reconstruction of sparse 3-D line segments and dense photo-

consistency in multiple view may help to avoid these prob-

lems [26], but at the expense of unacceptable increase in

computation time (2 to 3 minutes per image in [26]).

Integrating human user input will allow us to safely seg-

ment and reconstruct relevant pieces of planes from a video

stream. Adding user input in a SLAM process is quite natu-

ral as SLAM processes already imply active manipulation of

the camera, if only for getting the required parallax motions.

For instance, in [17], user cooperation is used for initializ-

ing the map: when the system is started, the user places the

camera above the workspace and presses a key to capture a

first key-frame. The user then smoothly moves the camera

to a slightly offset position and makes a second key-press

that provides a second key-frame. Some point features are

tracked between the two key-frames from which the base

map is triangulated using a five-point stereo algorithm (all
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this procedure has been recently implemented on a mobile

phone [19]). The main limitation of [17] with regard to our

goals is that only one plane, the dominant plane, is detected

in the point-cloud map.

This paper is an expanded version of [25]. It provides

detailed proofs of corollary 1 and 2, and the detailed expla-

nation for the different stages of the system (sections 5 to

8). It also provides some extra experimental results shown

in section 9.4.

3 System Overview

Our system is designed for a scene containing multiple pla-

nes. One of these planes, called the reference plane, has to be

partially visible during all the mapping operations. In stan-

dard use of the system, the reference plane is the ground

plane and the other planes are walls.

User input is performed using a hand-held camera and

four keyboard keys (the directional arrows). The camera-

mouse method is used to define the planar regions (called

2-D blobs) in the image stream. This method consists in se-

lecting objects by pointing at them through the camera. A

fixed cursor, generally a cross at the center of the camera

window, is used for ray-casting selection [2,12]. In our in-

terface, the cursor is not a cross but a circle and we do not

have one but two cursors (Fig. 7): one circle on the bottom

half of the screen is used to define 2-D blobs on the refer-

ence plane and another circle on the top half of the screen is

used to define 2-D blobs on the other planes. Pressing the up

or down key enables the operator to freeze the related cir-

cle into a blob which is immediately tracked in subsequent

frames using RANSAC matching of Harris corners1 inside

the blob. Each time the user presses the key again, a convex

hull is computed between the tracked blob and the related

circle, forming a new blob which at its turn is tracked, and

so on, until the blob is fully defined.

Different tasks are performed during a working session

that are described below. In order to better understand how

things work in practice, the reader is invited to watch the

videos associated with this paper 2.

Map initialization. Two blobs are indicated on non-parallel

planes using the camera-mouse. These blobs are tracked

while the camera is moved, and reconstructed in 3-D us-

ing the procedure described in section 4. Visual infor-

mation (intersection line between the planes, coordinate

system axes) are displayed on the video stream in order

to help the user to evaluate the accuracy of the solution

and decide to cancel or validate it.

1 Harris corners [10] are accurate, fast to compute and easy to match

between subsequent frames using cross-correlation.
2 http://www.loria.fr/˜gsimon/vc

Camera tracking. Once some 3-D blobs are available in

the map, multi-planar camera tracking can perform ac-

cording to section 5 and virtual objects can be added to

the scene.

Map expansion. At any time of the process, new 3-D blobs

can be added to the map using the camera-mouse. These

blobs can give rise to new planes or expand existing ones

(section 6).

Failure recovery. A procedure is used to recover from track-

ing failure, e.g. due to fast camera motion (section 7).

This procedure is based on SIFT feature matching3 be-

tween a set of keyframes and the current frame. The

keyframes are stored during the working session upon

user request and each time a 3-D blob is added to the

map.

Bundle adjustment. A bundle adjustment of the position

and orientation of all the planes and keyviews in the map

can be requested at any time of the process, as described

in section 8.

Intersection lines with the reference plane play a cru-

cial role in this process. Given the correspondence of image

lines between a pair of images, the homographies induced

by planes containing the line in 3-space are reduced from a

3-parameter to a one-parameter family [24]. This property is

used there to get faster convergence and improved accuracy

during the map building steps. Moreover, intersection lines

provide visual hints that help the user to assess the accuracy

of the system-generated results and prevent map corruption.

4 Map Initialization

When two non-parallel planes are observed from two dif-

ferent views, closed-form solutions exist for computing the

equation of the planes as well as the camera motion between

the views [6,33]. However, the accuracy of these methods

is generally too poor for applications where the re-projected

structures have to be perfectly aligned with their image coun-

terpart. This is partly due to the fact that, although the same

camera motion is applied to the two planes, motion param-

eters are computed separately for each plane. Two solutions

are obtained, which are generally similar but not identical,

and one of these solutions has to be arbitrary chosen. It

is also not possible to integrate constraints such as fixing

the angle between the planes. For similar reasons, closed-

form solutions are not well adapted to handle more than

two views of the same planes. Closed-form solutions are

therefore mainly used as initial guesses to minimize the dif-

ference between some observed image points and their re-

3 SIFT features [21] are invariant to image scale and rotation and are

shown robust to some extend to affine distortion, change in viewpoint

and change to illumination. This makes them particularly suitable for

feature matching between distant images.
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projections so that the estimation is optimized in the least-

square sense [33].

In [13], an extended Kalman filter (EKF) is used to cau-

sally estimate the camera motion, as well as the equation of

the planes related to some planar patches and the parameters

of an affine model used to handle the illumination changes

on the patches. However, Kalman filtering is sensitive both

to the initial values of the state vector and the tuning of the

first covariance matrices. Moreover, the size of the state vec-

tor is relatively high (18-parameters for two planes) due to

the fact that the planar patches are tracked inside the EKF

framework.

We propose to divide this computationally complex es-

timation problem into several simpler ones:

1. the planar surfaces are tracked independently between

the images, using RANSAC matching of Harris corners;

2. the projected intersection line between the observed pla-

nes (two parameters) is causally estimated using a par-

ticle filter (PF). PF has these advantages over EKF, that

it does not require any initial estimate of the state vec-

tor and it can handle non-linear measurement functions.

Moreover, the PF framework allows to easily fuse dif-

ferent kinds of likelihood measurements: in our case, a

geometric constraint imposed by the homographies and

a photometric constraint due to the specific appearance

of an intersection line in the image can be considered to-

gether, enhancing both the rate and the accuracy of the

detection;

3. the motion of the camera and the equation of the planes

in the 3-D Euclidean space are linearly approximated

and then iteratively refined using the Levenberg-Mar-

quardt optimization method. As the projection of the in-

tersection line in the first image is known, the equations

of the two planes can be expressed using 3 instead of

5 parameters. In addition to reducing the risk of being

trapped into a local minimum and shortening the pro-

cessing time of the iterative optimization, this simpler

parameterization allows to easily incorporate knowledge

on the angle between the planes.

Each stage of this algorithm is thus a rather simple task,

and an important point is that the intermediate results can be

assessed by the system or the operator before going to the

next stage:

– tracking failures in stage 1 are automatically detected by

simply thresholding the number of inlier matches of the

homographies (see section 5),

– the detected line of stage 2 can be visually assessed by

simple image comparison,

– the 3-D reconstruction obtained at stage 3 can be visu-

ally assessed by displaying the world coordinate frame;

in order to facilitate this assessment, the origin of the

coordinate frame is put on the middle of the intersection

line and one of the three axes is aligned with that line.

Sections 4.1 and 4.2 now detail how the causal estima-

tion of the projected intersection line is performed, which is

a crucial stage of the algorithm; the Euclidean reconstruc-

tion of the scene - camera geometry based on the knowledge

of that line is then explained in section 4.3.

4.1 Preliminaries

We first set out some theoretical results that will be useful.

A plane projective transformation is a planar homology if it

has a line of fixed points (the axis), together with a fixed

point not on the line (the vertex) [14,11]. Algebraically, an

equivalent statement is that the 3× 3 matrix representing the

transformation has two equal and one distinct eigenvalues.

The axis is the join of the eigenvectors corresponding to the

degenerate eigen-values. The third eigenvector corresponds

to the vertex.

Suppose we have two images, I1 and I2, of a scene con-

sisting of two non-parallel planes, π1 and π2. Let C1 and C2

be the positions of the camera center when I1 and (resp.) I2
were acquired. We further assume that the full-rank planar

homographies, H1 and H2, induced by planes π1 and (resp.)

π2 between I1 and I2 are known.

Proposition 1. The 3 × 3 matrix S = H−1
2
H1 is a planar

homology, whose axis is the projection l in I1 of the intersec-

tion line between π1 and π2 and the vertex is the epipole e,

projection of C2 in I1.

Proof Let us first prove that any point on line l is fixed by

S. Let p be a point on l. p is the projection in I1 of a point P

on the intersection line between π1 and π2. As P is on π1, p

is transformed by H1 to the projection p′ of P in I2. Now as

P is on π2, p′ is transformed by H−1
2

to the projection p of P

in I1. This yields H−1
2
H1p ∼ p where ∼ denotes an equality

up to a scale factor.

Let us now prove that the epipole e is fixed by S. e is

the projection in I1 of a point P1 on π1. P1 is the intersection

between π1 and the ray passing though C1 and C2. As C1,

C2 and P1 are aligned, the projection e′ = H1e of P1 in I2
is the epipole in I2. Using the same reasoning but reversing

the roles of I1 and I2, we prove that H−1
2
e′ = H−1

2
H1e is the

epipole e in I1, which concludes the proof.

Corollary 1. The 3 × 3 matrix T = HT
2
H−T

1
is a planar

homology, whose axis is a pencil of lines intersecting at the

epipole e and the vertex is the projection l of the intersection

line between π1 and π2.
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Proof As T = S−T , this result can be obtained by applying

the principle of duality between points and lines in the pro-

jective plane P2 to Proposition 1: the “set of collinear points”

forming the axis of S is the same as the “set of concurrent

lines” forming the axis of T in the dual space. Similarly, the

“distinct fixed point” forming the vertex of S becomes the

“distinct fixed line” forming the vertex of T. Finally, just as

the collinear fixed points of S form the distinct fixed line l

of T = S−T , the concurrent fixed lines of T intersect at the

distinct fixed point e of S = T−T .

Corollary 2. When applying the projective transforma-

tion S, a point on line l is mapped to itself, whereas a point

on a line passing through e is generally mapped to another

point on the line: among the fixed lines of T, only l is fixed

pointwise.

Proof This directly comes from Proposition 1: the only fixed

points of S are the points on l and the epipole e. A geometri-

cal interpretation of this result is shown in figure 1: p′ = Sp

is generally distinct from p, except when p = e or p is on

line l.

Fig. 1 Fixed lines of the homology.

4.2 Detection of the intersection line

We describe in this section a major contribution of our ap-

proach, that consists in using temporal geometric and (op-

tionally) photometric consistency to detect the intersection

lines between the reference plane and other non-parallel planes.

We now assume we are able to compute several pairs

of homographies Hi
1
, Hi

2
between I1 and subsequent images

Ii. From Corollary 1, the imaged intersection line l may be

algebraically computed as the distinct eigenvector of any ho-

mologyTi = Hi
2

T
Hi

1

−T
. However, this is unstable in practice

as Ti are non-symmetric matrices. By contrast, l can be reli-

ably computed using temporal consistency. We use particle

filtering, a well known technique for implementing a recur-

sive Bayesian filter by Monte Carlo simulations [1]. The key

idea is to represent the required posterior density function

p(xi|z1:i), where z1:i is the set of all available measurements

up to time i, by a set of random samples x
j

i
with associated

weights w
j

i
, and to compute estimates based on these sam-

ples and weights:

p(xi|z1:i) ≈

N
∑

j=1

w
j

i
δ(xi − x

j

i
),

N
∑

j=1

w
j

i
= 1. (1)

We implement the generic PF according to the framework

described in [1]. Resampling is used whenever a significant

degeneracy is observed (i.e., when the effective sample size

Ne f f falls below some threshold NT ). Our implementation

has the following characteristics:

1. particles are homogeneous coordinates of lines under the

form [cos(θ), sin(θ),−ρ]T . The first mode of distribution

(1) is taken as the estimated line l (in image I1) at time

i. Initially, the particles are uniformly distributed inside

the largest ellipse E contained in the image (see Fig.2,

first frame);

2. the prior p(xi|xi−1) is the normal distribution centered at

xi−1 with covariance matrix V (V = I[10−4, 10−4, 25]T in

our experiments); the importance density is the prior;

3. the likelihood density at time i is given by:

p(zi|xi) = p(z
g

i
|xi)p(z

p

i
|xi),

where z
g

i
and z

p

i
are (assumed independent) geometric

and (resp.) photometric measurements we now detail.

4.2.1 Geometric likelihood

Measuring “how fixed” a line is when transformed by Ti

provides a geometric measure of the likelihood of the re-
lated particle. However, it has been shown in section 4.1,

Corollary 1, that an infinity of lines are fixed by Ti: the ver-
tex l of Ti, but also any line passing through the epipole of
the camera associated with image Ii in image I1. In order to
avoid confusion between all these possible candidates, we
use Corollary 2 and measure the fixity of some points on
the line rather than the global fixity of the line. In practice,
we found enough discriminant to measure the fixity of the
intersection points p1 and p2 of the line with the ellipse E:

p(z
g

i
|xi) ∝ exp













−
D2

2σ2
g













,D =

√

√

√

1

2

2
∑

k=1

||z(pk ) − z(Sipk)||2

where ||.|| denotes the L2 norm of a vector, z : P2 → R2 is

a function such that z((x y z)T ) = (x/z y/z)T , Si = Hi
2

−1
Hi

1

and σg is set to 3 in our experiments.
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frame #1 frame #5 frame #10 frame #20 frame #50

Fig. 2 Particle filtering on a synthetic sequence.

4.2.2 Photometric likelihood

Accuracy and convergence of the PF can be increased by

measuring the distance of the particles to the highest gradi-

ents of the image. This is done by applying the following

operations to the images:

1. Sobel filtering,

2. hysteresis thresholding,

3. lines detection using the Hough Transform (HT).

The HT is accelerated by only incrementing accumulators

(ρ, θ) for which θ is compatible in a range of ±5 degrees with

the gradient vector obtained by Sobel filtering. A significant

pruning is also obtained by computing a single global HT

updated from frame to frame by transferring the line candi-

dates of image i to image 1, using the homography Hi
k

−T
,

k = 1 or k = 2: doing that, only the projections of the lines

on plane πk contribute to the local maxima of the HT (other

lines are transferred to varying coordinates of the HT). Fi-

nally, we keep the lines m
j

i
corresponding to the M greatest

local maxima of the HT (M = 100 in our experiments). This

leads to:

p(z
p

i
|xi) ∝ exp













−
D2

2σ2
p













,D =
M

min
j=1

√

√

√

1

2

2
∑

k=1

(m
j

i
|pk)2, (2)

where (.|.) denotes the dot product,m
j

i
is expressed under the

form [cos(θ), sin(θ),−ρ]T and σp = σg in our experiments.

This measure benefits from the robustness of the HT and

can therefore tolerate partial occlusions of the intersection

line (see for instance the results presented in section 9.2).

In our system, the intersection line starts to be estimated

and displayed as soon as a new 2-D blob is introduced on

a non-reference plane while another 2-D blob is already be-

ing tracked on the reference plane, or vice versa. The two

blobs can be extended during the particle filtering process.

The user can choose between using both the geometric and

the photometric measurements or the geometric measure-

ment alone in case where the intersection line is occluded

by some physical objects (see section 9.2). In case of slow

convergence, the user can reset the particle filter using the

keyboard left key. Once the user validates the estimated line

(using the right key), the Euclidean reconstruction procedure

we now describe is called.

4.3 Euclidean reconstruction

The reconstruction procedure in image Ii makes use of:

– the projection l in image I1 of the intersection line be-

tween two planes π1 and π2

– a pair of homographiesHi
1

and Hi
2

(below denoted as H1

and H2 for sake of simplicity) that map points lying on

π1 (resp. π2) between I1 and Ii.

Moreover, we assume that the intrinsic parameters of the

camera are known and that the homogeneous coordinates

of the image points are affinely pre-transformed using the

inverse intrinsic matrix [6]. From these data, we want to get

the equations Π1 = [nT
1
, d1]T and Π2 = [nT

2
, d2]T of π1 and

(resp.) π2 in the first view coordinate system, as well as the

camera motion R, t between I1 and Ii. As d1 is an overall

scale factor4, and as we can use ||n1|| = ||n2|| = 1, we have

to estimate 11 parameters: 2 for π1, 3 for π2, 3 for R and 3

for t.

However, as l is known, it is shown in Fig. 1 that π2 be-

longs to a sheaf of planes passing through the 3-D intersec-

tion line between π1 and the plane passing through l and the

camera center C1. This is algebraically expressed as [11]:

Π2 ∼ Π1 + λ[l
T0]T , (3)

where λ is an unknown scalar. Therefore, we can replace the

three parameters used to describe n2, d2 by only one addi-

tional parameter λ, and finally estimate 9 parameters instead

of 11. The benefits of this parameter reduction in terms of

accuracy and computation times are illustrated in section

9.1. Moreover, in the common case where π1 is orthogonal

to π2, equation (n1|n2) = 0 coupled with equation (3) lead to

λ = −1/(n1|l) and only 8 parameters to be estimated.

4 in our implementation, d1 is set to the assumed distance between

the camera center at the beginning of the process and the reference

plane.
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Each set of values for the 9 or 8 parameters gives rise to

two predicted homographies {Ĥ j} j∈{1,2} given by [6]:

Ĥ j = d jR + tn
T
j .

Therefore, if n1 ≥ 4 points {vk
1
}1≤k≤n1

and n2 ≥ 4 points

{vk
2
}1≤k≤n2

are lying on π1 and (resp.) π2 in I1, the 9 or 8-

parameter set p can be estimated by iterative minimization

of the mean square distance between the points transformed

by Ĥ j and the points transformed by H j:

p = argmin

2
∑

i=1

ni
∑

k=1

||z
(

Ĥvki

)

− z
(

Hvki

)

||. (4)

In our system, the points {vk
i
} are the vertices of the 2-

D blobs defined by the user. Minimization (4) is performed

using the Levenberg-Marquardt algorithm. This algorithm

requires initial values for p. It is shown in [6] that the simul-

taneous estimate of the camera motion and the plane pose

corresponding to a homography has in general two physical

solutions which can be obtained using SVD. As we know

two homographies, this twofold ambiguity can be removed

by finding the common solution for camera motion: this pro-

vides initial values for R, t and the equations of the planes.

As for the intersection line detection step, the user has

the opportunity to validate the solution, in which case two

3-D blobs are added to the map, or to reset the procedure, in

which case I1 is set to the current frame.

5 Camera Tracking

Once the initialization stage has been done, the added 3-D

blobs can be used to compute the camera pose from frame

to frame. Formally, a 3-D blob b is a 3-D planar polygon

included in a plane πb of equation [X, Y, Z, 1]Πb = 0, where

Πb = [nT
b
, db]

T is expressed in the world coordinate system.

It must be noted that several blobs can share the same plane

equation. A 3-D blob is said visible relatively to a camera

pose R, t (given some camera intrinsic parameters and an

image size) if it is in front of the camera and a part of its

surface projects inside the image and is not totally occluded

by another 3-D blob. This visibility test can be done effi-

ciently using the depth test and stencil buffer available in

most graphics rendering engines. In the following, V(R, t)

denotes the set of 3-D map blobs that are visible relatively

to the camera pose R, t.

Camera poses are computed from inter-image tracking

of the blobs, according to the method described in [31]. At

every frame, the system performs the following two-stage

procedure:

1. Let R̃, t̃ be the camera pose obtained in the previous

frame. For each 3-D blob inV(R̃, t̃), a set of point matches

is determined using normalized cross-correlation between

Harris corners in the current frame and Harris corners

inside the visible part of the blob in the previous frame;

this set of matches is obtained using a RANSAC-based

computation of the planar homography that best fits the

corners between the two views; blobs that do not get

enough matches are not considered further in this iter-

ation; in the case where no blob remains, the failure re-

covery procedure described in section 7 is called.

2. The camera pose R, t is computed by iterative minimiza-

tion of the global transfer error of the visible blobs:

R, t = argmin
∑

b∈V(R̃,t̃)

MSE(Πb, R̃, t̃,R, t), (5)

where MSE(Πb, R̃, t̃,R, t) is the mean square residual

error computed over the corner correspondences obtained

for blob b. The residual error of a pair of corners is

the Euclidean distance between the corner in the current

frame and the corner in the previous frame transferred to

the current frame using the induced homography [6]:

H(Πb, R̃, t̃,R, t) = RR̃T −
(t − RR̃T t̃)(R̃nb)

T

(db − (t̃|R̃nb))
. (6)

This 6-parameters non-linear optimization is performed

using the Levenberg-Marquardt algorithm, initial values

being provided by R̃, t̃.

At the end of step 2, Akaike’s model selection criterion

is used to prevent unpleasant jittering effects induced by im-

age noise [31]. This criterion is based on a balancing of the

residual error obtained from minimization (5) and a com-

plexity term which penalizes higher order motion models. If

a stationary motion is detected, the current pose is replaced

by the previous one; in the case where a pure rotation is de-

tected, minimization (5) is performed one more time under

the constraint t = t̃.

6 Map Expansion

During the tracking process, new 2-D blobs can be defined

using the camera-mouse. In the case where a blob is drawn

on the reference plane, say π1, its 3-D counterpart is ob-

tained by back-projecting the related 2-D vertices onto the

known reference plane. In the case where a blob is drawn

on a plane non-parallel to the reference plane, the intersec-

tion line with the reference plane is filtered. If this line is

aligned with another intersection line in the map, merging

with the related plane is proposed by drawing the involved

blobs in a special color (green on the video). This proposal

can be accepted by pressing the right key. Pressing the right

key when no merging was proposed involves adding a new

plane to the map. In that case, the equation Π2 of the new

plane is obtained using a similar procedure as in section
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4.3, except that, as the equation Π1 of the reference plane

is known as well as the camera pose R, t, we only have to

iteratively compute one parameter (λ). If the new plane is

known to be perpendicular to the reference plane, we even

get a closed-form solution for λ as explained in section 4.3.

7 Failure Recovery

A keyframe k is stored in memory upon user request and

each time a new 3-D blob is added to the map. A keyframe is

a data structure containing the camera pose Rk, tk computed

when the keyframe was stored and a set of SIFT features ex-

tracted from the related frame and stored in a k-d tree. Only

features inside a visible blob in the keyframe are stored,

accompanied with a link to the related 3-D blob. When a

keyframe is introduced due to the addition of a 3-D blob b

to the map, a link k(b) to that keyframe is also stored in the

data structure associated to the 3-D blob, as well as the set

of Harris corners and associated patches detected inside the

corresponding 2-D blob (see Fig. 3). These corners will be

used to refine the SIFT-based pose estimate as described be-

low. When a tracking failure is detected, the following two-

stage process is performed (Fig. 3):

1. SIFT-based rough pose estimate. SIFT features are de-

tected in the current frame and RANSAC matching is

performed with the SIFT features extracted inside each

blob visible in keyframe k (k = 1 initially); if a suffi-

cient number of matches is found inside at least one of

these blobs, the current camera pose is computed by per-

forming minimization (5) between the keyframe and the

current frame, using all the blobs visible in keyframe k

containing enough matches; otherwise, k is incremented

and this stage is repeated until a keyframe is found or the

list of keyframes is empty (which means that the recov-

ery procedure failed for the current frame).

2. Pose refinement. The first stage provides an approximate

camera pose R̂, t̂ for the current frame from which cam-

era tracking may resume. However, this pose was ob-

tained using the blobs visible both in the current frame

and the selected keyframe, whereas other blobs can be

visible in the current frame that may be used to refine

the pose. Visible blobs can be identified using the ap-

proximate camera pose R̂, t̂. For each blob visible in

the current frame, an estimate of the homography that

maps this blob between the keyframe where it was in-

troduced and the current frame can be obtained: Ĥ =

H(Πb,Rk(b), tk(b), R̂, t̂). This homography can be used to

generate a set of reliable matches (xi
b
, yi

b
) ↔ (x′ib, y

′i
b),

referred to as H-matches in the following, between the

keyframe and the current frame: (xi
b
, yi

b
) is the Harris cor-

ner i stored in the data structure associated to the blob;

this corner is transferred to the current frame using Ĥ,

and a cross-correlation score is computed between all

the patches in a neighborhood of the transferred corner

(typically, a search window of size 11) and the patch as-

sociated to the corner in the keyframe, warped using Ĥ.

(x′ib, y
′i
b) is taken as the center of the patch that obtains

the highest score. Outliers can be removed using the

RANSAC paradigm. Finally, the following non-linear

optimization is performed using the generated sets of H-

matches:

R, t = argmin
∑

b∈V(R̂,t̂)

MSE(Πb,Rk(b), tk(b),R, t), (7)

with initial values of R, t set to R̂, t̂.

8 Bundle Adjustment

When a new keyframe k is introduced, a set of H-matches

is computed for each visible blob b ∈ V(Rk, tk) introduced

previously (k(b) < k), between the current keyframe k and

the original keyframe k(b). Therefore, at any time of the pro-

cess, poses of the NK keyframes as well as the plane equa-

tions of the NB 3-D blobs can be refined by performing a

global bundle adjustment:

{Rk, tk}1≤k≤NK
, {Πb}1≤b≤NB

= argmin

NK
∑

k=2
∑

b∈V(Rk ,tk),k(b)<k

MSE(Πb,Rk(b), tk(b),Rk, tk). (8)

In our system, this optimization is done on the fly upon

user request: as the blobs are generally wide areas of the

scene, their number is relatively small (typically, 5 to 20

blobs are enough to define a room), which makes the process

much faster than traditional bundle adjustments (examples

of computation times are given in table 1). However, as cam-

era tracking can perform from the initial map while the bun-

dle adjustment is running, we could as in [17] split tracking

and bundle adjustment into two separately-scheduled tasks,

running on different processing cores.

9 Results

9.1 Synthetic results

Synthetic results were obtained using a 80-frame sequence,

in which the camera follows a circular path while pointing

toward a horizontal and a vertical plane (Fig. 2). A Gaussian

noise of standard deviation 0.3 was added to the coordinates

of the points used to compute the inter-image homographies.

Fig. 2 shows examples of particle distributions obtained in

several images of the sequence.
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Fig. 3 Failure recovery process.

9.1.1 Filtering parameters

Some tests have been performed in order to assess the ef-

fects of the number of particles N and the resampling thresh-

old NT over the convergence of the PF. Figure 4 shows the

mean number of frames (over 100 tests) needed to reach the

convergence, for N varying from 20 to 1000 and NT from

0 to N. The convergence is always reached, even for small

values of N (except for NT = 0 due to the degeneracy prob-

lem). However, the convergence is faster for high values of

N and when NT is closer to N. These results led us to use

N = 1000 particles in our real experiments, which allows

fast convergence without compromising global performance

and NT = N, which means resampling is performed at each

frame.

9.1.2 Euclidean reconstruction

Figure 5 shows the errors obtained on the normal to the

horizontal plane and the x-coordinate of the camera transla-

tion when computing structure and motion between the first

frame of the synthetic sequence and the next 50 frames. Er-

rors are shown for the SVD, the 11-parameters optimization

and the 9-parameters optimization (in that case the intersec-

tion line is extracted from a Hough transform obtained in

the first frame). This graphic shows that the 9-parameters

optimization can substantially improve the accuracy, espe-

cially when the baseline is small (except for too small base-

lines which lead to unstable results). Moreover, the mean
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Fig. 4 Convergence time of the particle filter for different values of N

(number of particles) and NT (resampling threshold).

number of iterations of the Levenberg-Marquardt algorithm

is 3.9 for the 9-parameters optimization, against 6.7 for the

11-parameters optimization.

9.2 An miniature scene

Convergence of the particle filter in presence of cluttered

objects is illustrated on a miniature interior scene (Fig. 6).

Two experiments were performed: in the first experiment,
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Fig. 5 Structure (left) and motion (right) errors measured on the synthetic sequence.

the intersection line between the ground plane and a wall is

occluded by several objects but still partly visible. The ge-

ometric as well as photometric measurements are used in

particle filtering. A video on our website shows the conver-

gence of the particle filter at initialization stage and during

a plane expansion operation5. As shown at top of figure 6,

the convergence at initialization is very accurate and the sec-

ond blob is well recognized as being on the same plane as

the first blob. This illustrates the robustness of the Hough

transform that is used in photometric measurements.

In the second experiment, the intersection line is almost

completely occluded and only the geometric constraint is

used in particle filtering. The same operations are done as in

the first experiment (see the second video on the website).

As shown at bottom of figure 6, the detected line is less ac-

curate than previously but the error is small and again, the

second blob can be merged with the first one.

9.3 An indoor scene

Real-size experiments were realized inside a two-room scene

(Fig. 7). The system ran at about 12 Hz in tracking mode

and 8 Hz in tracking + filtering mode on a PC Dell Preci-

sion 390, 2.93 Ghz, while part of the processor was used to

capture a video of the screen. A Sony DFW-VL500 camera

was used at resolution 320x240; the PC was placed on a trol-

ley, wheeled around the scene, while the camera was held by

hand. The session, which lasted about 10 minutes, was cap-

tured in a 8000-frame sequence; a video is associated to the

paper that shows the most interesting parts of that sequence.

The right window of the video shows a 3-D view of the map

and camera motions.

5 In this video, the line particles are displayed to demonstrate the

convergence of the particle filter. These lines are not shown during

standard use of the application.

During the session, 13 blobs were defined on 6 planes

(including the floor), and 18 keyframes were introduced.

Each time a horizontal blob is added to the map, a virtual

robot is added on the blob; similarly, virtual cubes contain-

ing the number of the associated plane are added on each

vertical blob (the orthogonality constraint between the floor

and the walls is used by the system). As one can see in

the video, the virtual objects appear firmly anchored in the

scene, and camera tracking performs well despite erratic mo-

tions of the hand-held camera. The failure recovery proce-

dure is called 5 times, either due to an abrupt motion of the

camera, or because the known part of the scene disappeared

from the field of view.

Table 1 shows the error angles between the first verti-

cal plane added to the map and the other vertical planes, ob-

tained after each major mapping operation; these errors were

computed considering the planes are orthogonal each other.

The initial estimate of the second plane has a poor accu-

racy (10.3 deg error); a bundle adjustment based on Nk = 6

keyframes and NB = 3 blobs is first attempted, which does

not significantly improve the accuracy; one more keyframe

and a new bundle adjustment allow to obtain satisfying accu-

racy (1.5 deg). The next three planes are successively added

without performing new bundle adjustments; plane 4 is ini-

tialized with 12.6 deg error, which is due to the fact that this

plane appears in fronto-parallel position and contains few

texture information (see Fig. 7, frame #5749). However, a

final bundle adjustment reduces this error to 0.6 deg (see the

last row of table 1 for the other final errors); the accuracy

of plane 5 is not improved by this last operation due to the

fact that only one keyframe was added since that plane was

introduced.
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Fig. 6 Convergence of the particle filter. Top: geometric and photometric measurements are used, as the intersection line is still partly visisble.

Bottom: more occluding objects are added and only the geometric measurement is used.

#frame NK NB Event (1,2) (1,3) (1,4) (1,5)

675 3 3 P2 added -10.3

792 6 3 Bundle (0.3 s) 9.1

818 6 3 Undo bundle -10.3

891 7 3 Bundle (0.3 s) 1.5

2710 14 10 P3 added 1.5 -1.5

2954 16 11 P4 added 1.5 -1.5 12.6

5648 17 12 P5 added 1.5 -1.5 12.6 7.2

7842 18 13 Bundle (2.1 s) 0.9 -3.2 0.6 7.3

Table 1 Mapping operations and angle errors (in deg) between the ver-

tical planes along the real-size sequence.

9.4 An outdoor scene

In order to assess the performance of the algorithm in a more

natural scene, we have tested our system in an outdoor en-

vironment. Figure 8 shows some snapshots of the session

and the complete video sequence is available on our web-

site. The reference plane is taken as the ground plane which

is covered by grass. Two perpendicular but poorly textured

walls are also visible. Despite this, we succeeded in defining

blobs on these walls by exploiting the ability for the user to

focus on relevant parts of the scene - here pipes and a door -

to build and extend the blobs. Due to the joint use of texture

- in homography computation - and intersection line infor-

mation, detection of the vertical walls is really good. The

error angle between these planes is 3.6 deg.

To estimate whether it would be possible to reconstruct

and segment automatically this scene, we have used the Voo-

doo Camera Tracker [27]. This non-commercial software

estimates camera parameters and reconstructs a 3-D scene

from image sequences. Several algorithms are available for

feature detection and tracking. The structure of the scene as

well as the camera motions are computed sequentially, and

a final bundle adjustment is performed once all the frames

have been solved. In order to be as fair as possible, we did

not use the sequence recorded during the working session.

Actually, all the algorithms failed solving this sequence, which

is not really surprising as it contains camera motions, includ-
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frame #6530 frame #8000

Fig. 7 On-the-fly map-building in a real indoor environment.

ing pure rotations, that were applied to interactively build

the scene. Some of these motions are not favorable to auto-

matic structure from motion. Therefore, we acquired another

sequence where the camera is slowly translated and rotated

so that the distance between the first and the last camera po-

sition is reasonably large (see the video on our website). We

used three different methods for feature tracking:

1. Harris detection + cross-correlation matching,

2. SIFT detection and matching.

3. KLT detection and tracking [29],

Figure 9 shows two snapshots of the feature tracking se-

quence at the beginning and at the end of the sequence for

each of the three feature tracking methods. The full sequen-

ces are available on our website. Among the three tracking

methods, the first two lead to aberrant results and only the

KLT method succeeds in providing consistent camera path

and 3-D point cloud (fig. 10). However, even in that case, the

3-D point-cloud has lots of spurious points and no vertical

plane visually appears6.

Of course, this experiment does not prove that any au-

tomatic algorithm would fail in recovering planes in that

scene, but it illustrates typical problems one may encounter.

In particular, as features are rare on the walls and not very

discriminant on the grass, it is difficult to track the same

physical points over long periods of time. This may explain

why the KLT method performed better than the two other

methods: with KLT, the same points are tracked individu-

ally until tracking fails using image template similarities. In

the two other cases, new sets of features are detected and

matched in each frame, possibly leading to short trajecto-

6 In order to better visualize the 3-D point cloud, a sequence cap-

tured from a virtual camera moving around it is shown on our website.
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Fig. 8 Snapshots of the outdoor sequence.

Harris detection + cross-correlation matching SIFT detection and matching KLT detection and tracking

Fig. 9 Snapshots of the feature tracking sequences used for automatic structure and motion recovery (three different tracking methods). Green

crosses show the tracked features, white crosses the detected but untracked features and yellow curves the feature paths in previous frames.

ries. On the contrary, 2-D blob tracking does not require that

points can be tracked on long sequences. Indeed, our recon-

struction procedure only depends on homographies which

can be estimated from completely different sets of points

matched between consecutive images.

10 Conclusion

We presented a method for interactive building of multi-

planar environments that has been validated on both syn-

thetic and real data. We have shown the benefits of using

semi-automatic rather than fully automatic algorithms for

online building and augmenting of multiplanar scenes. In-
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Fig. 10 3-D point-cloud and camera path obtained using KLT tracking.

teractions are intuitive to a non-expert and informative to

the underlying reconstructing engine, so that only a small

number of interactions are required.

Using the system in larger environments (a complete

level of a building, a street, . . . ) would require some im-

provements: in order to keep a reasonable rate of explo-

ration, the system should be allowed to perform local bun-

dle adjustments as in [17]. The way keyframes are selected

for local relocalization could also be improved: in the cur-

rent implementation, keyframes are considered sequentially

in arbitrary order, and the first keyframe that get enough

SIFT feature correspondences is used to compute a first ap-

proximation of the camera pose. When a lot of keyframes

are available, this procedure may be time consuming. Sort-

ing the keyframes using any fast-to-compute similarity value

with the current frame would make the procedure faster. A

first solution is to consider highly sub-sampled images and

to consider the blurred image as a descriptor as proposed in

[18]. Another solution is to use sensors that may help to sort

keyframes depending on their similarity with the current im-

age position.
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