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Abstract: Distributed or peer-to-peer storage systems introduce redundancy to preserve
the data in case of peer failures or departures. To ensure long-term fault tolerance, the
storage system must have a self-repair service that continuously reconstructs lost fragments
of redundancy. The speed of this reconstruction process is crucial for the data survival. This
speed is mainly determined by available bandwidth, a critical resource of such systems. We
propose a new analytical framework that takes into account the correlation of concurrent
repairs when estimating the repair time and the probability of data loss. Mainly, we intro-
duce queuing models in which reconstructions are served by peers at a rate that depends on
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Analyse du temps de reconstruction de données dans le
système de stockage pair-a-pair

Résumé : Dans les systèmes de stockage distribués ou pair à pair, redondance des données
doit être rajoutée afin de garantir l’intégrité du contenu en cas de panne ou de départ d’un
pair. Afin d’assurer au système une résistance aux pannes sur le long terme, un processus
interne doit continuellement reconstruire les fragments de redondance perdus. La vitesse de
reconstruction de ces fragments des données est cruciale pour garantir l’intégrité du contenu.
La bande passante disponible au sein du système déterminant en grande partie la vitesse de
reconstruction.

Une nouvelle méthode d’analyse est proposée prenant en compte la corrélation entre
réparation simultanées lors de l’estimation du temps total de réparation et la probabilité de
perte de données. Notre contribution principale est une modélisation basée sur le modèle
des files d’attente dans laquelle les reconstructions sont effectuées par les pairs à un débit
dépendant de la bande passante disponible. Ce modèle montre que pour la plupart des
systèmes actuels, un temps de reconstruction exponentiel est inadéquate. Les modèles et
schémas proposés ont été validés par analyse mathématique ainsi que par un grand nombre
de simulations et expérimentations en utilisant la plateforme GRID’5000.

Mots-clés : Système d’stockage pair-à-pair, durée de vie des données, modèles de files
d’attente, regenerating codes, évaluation de performances,



Analysis of the Repair Time in Distributed Storage Systems 3

1 Introduction
Distributed storage systems are foreseen as a cheap and scalable way to backup data. These
systems exploit the already available resources of users in terms of bandwidth, disk space,
and processing, dismissing the need of building costly dedicated infrastructure. The highly
distributed nature of such systems raises questions about durability, availability, security,
and routing of the data.

These systems are subject to peer failures or departures. Thus, redundancy data is
introduced to ensure long term data survival. To introduce redundancy, most of the proposed
storage systems use either the simple replication or the space efficient erasure codes [21],
such as the Reed-Solomon coding. When using these codes, a file (or more generally, a block
of data), is divided into s fragments, from which the coding scheme generates r fragments of
redundancy. Then, the system sends the n = s+ r fragments of the data block into different
peers of the network. The data block can be recovered if any s among the s+ r fragments
are present in the system.

This redundancy needs to be maintained during the system lifetime by a self-repairing
process. The duration of this repairing process is crucial to determine the system reliability.
That is, repairs that last long increase the probability of losing data exponentially. The
speed of this repair process is mainly determined by how much bandwidth is available. This
bandwidth is usually limited by the peers’ upload link capacity, which is arguably one of
the most scarce resource of such systems (i.e., when compared to the processing capacity or
the storage space).

Imagine a scenario where users are connected using a typical home connection via an
Asymmetric Digital Subscriber Line (ADSL) with upload capacity of 1Mbps. We expect
that only part of this bandwidth is allocated to the storage system, let us say 128kbps.
The average amount of data per peer is 100 gigabytes. When a peer fails, if 100 peers
participate to the repairing process at an optimal rate of 128kbps, then the system would
need theoretically 17 hours to recovery the contents of the failed disk. By our models, if
we consider that peers have an expected lifetime of 1 year, this repair time lasts around 22
hours, which gives a probability of data loss per year (PDLPY) of 10−8 (we set s = 7 and
r = 7).

However, in this paper we show that, due to several factors, in practice the repair time
is in fact much greater than this optimal time. For instance, the imbalance on the amount
of data per peer negatively impacts the efficiency of the bandwidth utilization. Continuing
with the same example, for the same average amount of data per disk of 100 gigabytes, if
the system have disks with heterogeneous capacity (limited to 3 times the average amount),
then the repair time of a disk reaches 9 days. Which gives a PDLPY of 0.2. Many orders
of magnitude more than the previous case! Hence, the importance of having models that
estimate correctly the repairing time for limited bandwidth scenarios.
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4 Giroire, Gupta, Modrzejewski, Monteiro, and Pérennes

Our contribution
We propose a new analytical model that precisely estimates the repair time and the probability
of losing data of storage systems based on erasure codes. This model takes into account the
bandwidth constraints of peers when processing reconstructions.

We show that is crucial to take into account the peer imbalance to estimate the system
efficiency. Indeed, we show that the traffic load is not well distributed among peers: young
peers inherently store less data than the old ones, thus they contribute asymmetrically to
the reconstruction process. Hence, we propose to introduce biases in the protocol to correct
this imbalance, and show that it improves the efficiency of the system.

We discuss how far the distribution of the reconstruction time given by the model is from
the exponential classically used in the literature. We exhibit the different possible shapes
of this distribution in function of the system parameters. This distribution impacts the
durability of the system.

We address scheduling and control issues. Indeed, each peer is involved in many re-
constructions, thus we need to schedule their execution. We compare several policies, and
propose a simple greedy-like policy that allows the system to reduce the reconstruction time.

We show a somewhat counterintuitive result that we can reduce the reconstruction time
by using a less bandwidth efficient Regenerating Code. This is due to the degree of freedom
given by erasure codes to choose which peers participate to the repair process.

To the best of our knowledge, this is the first detailed model proposed to estimate
the distribution of the reconstruction time under limited bandwidth constraints. We vali-
date our model by an extensive set of simulations and by test-bed experimentation using the
Grid’5000 platform.

Related Work
Several works related to P2P storage systems have been done, and a large number of systems
have been proposed [4, 3, 2, 12]. But few theoretical studies exist. Most studies are Markov
chain models that assume in fact a poissonian reconstruction process (i.e., with independent
reconstruction time). Furthermore, in these models, only the average analysis are studied
and the impact of congestion is not taken into account.

In [17, 1, 7] the authors use a Markov chain model to derive the lifetime of the system.
In these works, the reconstruction time follows an exponential (or geometric) distribution,
which is a tunable parameter of the models. However, in practice, a large number of repairs
start at the same time when a disk is lost (corresponding to tens or hundreds of GBs of
data). Hence, the reconstructions are not independent of each other.

Dandoush et al. in [6] perform a simulation study of the download and the repairing
process. They use the NS2 simulator to measure the distribution of the repair time. They
state that a hypo-exponential distribution is a good fit for the block reconstruction time.

INRIA
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However, they assume that reconstruction events are independent, which means that they
do not take into account their correlation when a disk fails.

Similarly to the present paper, other works also study the impacts of competition for
the bandwidth. Ramabhadran et Pasquale in [18] address resource allocation problems in
replicated systems. They study different schemes to optimize the average file availability.

Picconi et al. in [15] study the durability of storage systems. Using simulations they
characterize a function to express the repair rate of systems based on replication. However,
they do not study the distribution of the reconstruction time and the more complex case of
erasure coding.

Organization
The remainder of this paper is organized as follows: in the next section we give some details
about the studied system, then in Section 3 we discuss the impact of load imbalance. The
queueing model is presented in the Section 4, followed by its mathematical analysis. The
estimations are then validated via an extensive set of simulations in Section 5. Lastly, in
Section 6, we compare the results of the simulations to the ones obtained by experimentation.

2 Description
In this section we give details about the studied storage system and the modeling assump-
tions.

Peer bandwidth. In a peer-to-peer system, peers are typically connected to the net-
work via an ADSL (Asymmetric Digital Subscriber Line) link. Thus, we model here asym-
metric capacities as they are the configurations most often encountered in practice: each
peer has a maximum upload and download bandwidth, resp. BWup and BWdown; we set
BWdown = 10BWup (in real systems, this value is often between 4 and 10). The bottleneck
of the system is considered to be the peer links and not the network internal links.

Peer availability and peer failures. Peers can be highly available (as servers that are
kept in a controlled environment), or conversely, be barely available with a low presence
interval. Since we consider the case of backup storage systems, the peers are expected to
stay connected at least few hours per day.

Following the work by Dimakis [8] on network coding, we use similar values of availabil-
ity and failure rate from the PlanetLab [16] and Microsoft PCs traces [3]. To distinguish
from transient failures, a peer is considered as failed if it leaves the network for more than a
timeout, which was set to 24 hours. In that case, all data is considered lost. The Mean Time
To Failure (MTTF) in the Microsoft PCs and the PlanetLab scenarios are respectively 30
and 60 days. For given values of s = 7 and r = 7, we achieve a block availability of 5 nines
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6 Giroire, Gupta, Modrzejewski, Monteiro, and Pérennes

in the Microsoft PCs scenario. The peer failures are then considered as independent and
Poissonian with mean value given by the traces explained above. We consider a discrete time
in the following and the probability to fail at any given time step is denoted as α = 1/MTTF .

Redundancy Scheme and Repair. In this study we use Regenerating Codes (RC) [8] to
introduce redundancy, as they are foreseen as the most efficient codes in terms of bandwidth
usage. Similarly to the Reed-Solomon erasure codes, a data block is divided into s fragments,
to which are added r fragments of redundancy. Then, the n = s + r fragments are spread
into n peers in such a way that the block can be regenerated by retrieving any s fragments.
However, when employing the Regenerating Codes, the repairing process can be done by
creating a new fragment to replace the missing one, instead of regenerating the whole block
as required by Reed-Solomon codes. Hence, a lost fragment can be repaired efficiently by
contacting d peers, with s ≤ d < n (d is called the repair degree of the block). Each one
of the d peers needs to send a small sub-fragment to the reconstructor peer, which in turn
will store the repaired fragment. This reconstructor peer which is in charge of the repair
is chosen uniformly at random. To achieve this repair efficiency, these codes introduce an
overhead on the fragment size (that is, how much the original fragment must be increased
in size to achieve the regenerating code property). δMBR is the overhead factor of the
Minimum-Bandwidth Regenerating Codes [8]. It is defined as follows:

δMBR(d) = 2d
2d− s+ 1 .

The most efficient case is when d is the maximum, d = n − 1. Hereafter we note Lr =
δMBR(n− 1)Lf , as the amount of information transferred to reconstruct one fragment when
d = n− 1, where Lf is the original size of the fragment.

Nevertheless, the model presented in this work can be adapted to systems using different
codes to introduces redundancy, e.g., Replication, Reed-Solomon, Hierarchical codes [9], or
Hybrid coding. Basically, the main change would be to replace the bandwidth efficiency of
RC by the bandwidth efficiency of the other code.

Monitoring the data and network size. We consider distributed systems of any size,
e.g., thousands of peers. However, for practical reasons and maintainability, the fragments of
blocks are often stored on small logical subset of peers that are self-structured. This subset
is inherited from the DHT terminology of P2P architectures, where they are often called
leafset or neighborhood. In the following examples, we consider sizes of neighborhood of 100
to 200 peers. Hereafter in this chapter, we use the terms peer and disk interchangeably.

Table 1 shows a summary of the notations used in this chapter.

INRIA
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3 Preliminary: Impact of Disk Asymmetry
In this section we start by showing that the efficiency of the system is affected by the
imbalanced distribution of data among peers. We then estimate analytically this imbalance
and its impact. After this preliminary study, the definition of the queuing model is given in
Section 4.
Factor of efficiency. When a peer fails, it is replaced by a new peer with an empty
disk. Since disks fill up during the system life, a recently replaced disk is empty, while an
old disk contains many fragments. Hence, at any given time disks with very heterogeneous
number of fragments are present in the system. This heterogeneity has a strong impact on
the reconstruction process: (1) when a disk dies, the number of block reconstructions that
start depends on the number of fragments present in this disk. A lot of fragments are lost
if the disk was full, but much less for a young disk. (2) during the repair, the peers have
to send fragments to the reconstructors that rebuild the missing fragments. A peer storing
more fragments has to send a lot more fragments during this phase than a peer with fewer
fragments. Hence, such peers become a bottleneck of the system, when on the contrary the
less loaded peers stay idle during some part of the time.

To estimate the impact of this imbalance on the system, we introduce a factor of efficiency
ρ when the system is under load, defined as

ρ(load) = work

min(load, bandwidth)

where load is the sum over all peers of the number of fragments in their queues at the
beginning of the time step; bandwidth is the total bandwidth of the system (BWup·Nτ)
accounted in time steps of size τ ; and work is the number of fragments that were effectively
uploaded by the peers during the time step. When ρ = 1, the system works at its maximum
speed, meaning that no peer was idle while another one could not finish its work. Note
that ρ greatly depends of the load. If the load is very large compared to the bandwidth
of the system, every peer works at almost full capacity and the efficiency is close to one.
Similarly, when the load is small, everybody has few fragments to upload and all the work
is done. But, between these two cases, the imbalance between the peers causes a range of
inefficiencies.
Estimation of the Imbalance The disk size has in fact a very strong effect on the general
imbalance of the system. Figure 1 shows a histogram with the number of fragments in failed
disks. These results are obtained by simulation of N = 200 peers with MTTF = 60 days
(1440 hours). The amount of data per peer is 14GB. We set s = r = 7, and the fragment
size lr = 2 MB. Hence we have a total of F = 7·105 fragments in the system. Then, the
average number of fragments per peer is D̄ = 7000.

We denote the disk capacity of peers as C (number of fragments). Hence, x = C/D
is the size factor of disks, i.e., how big is the disk when compared to the average amount
of fragments per disk in the system. When the size factor x = 3 (that is, disk capacity

RR n° 7538



8 Giroire, Gupta, Modrzejewski, Monteiro, and Pérennes

Table 1: Summary of the main notations.

N Total number of peers
s Number of initial fragments of a block
r Number of redundancy fragments of a block
n Number of fragments of a block, n = s+ r
d Repair degree of the Regenerating Code,

by default d = n− 1
δMBR Efficiency of the Regenerating Codes
Lf Size of a fragment, in bytes
Lr Amount of data to repair a fragment
B Total number of blocks in the system
F Total number of fragments in the system
α Peer failure rate (α = 1/MTTF )
NF Number of peers with full disks
ϕ Ratio of full disks, NF /N
C Capacity of a disk (number of fragments)
D̄ Average number of fragments per disk
x Disk size factor, x = C/D

BWup Peer upload bandwidth (kbit/s)
v Rate at which a disk fills up (fragments per cycle)

Tmax Number of time steps to fill up a disk, Tmax = C/v

C = 21, 000 fragments), the imbalance is very large. At the opposite, when x = 1.1, the
disk size is close to the average number of pieces per disk in the system. Hence, most of
the disk fillings become full, 83% in our example. The disks that are not full (17%) have an
almost uniform distribution. In the following, we give a method to calculate that imbalance
analytically.

Disk age and disk size distributions can be precisely approximated for systems with a
large number of blocks. The block fragments are reconstructed by peers that have free space
in their disks (i.e., there are N − NF such peers, where NF is the number of peers with
full disks). Since these peers are chosen at random to reconstruct the blocks, at each time
step the distribution of the rebuilt fragments among peers follows a multinomial distribution
with parameters: the number of rebuilt fragments and 1/(N − NF ). As the multinomial
distribution is very concentrated around its mean, the filling up process can be approximated
by an affine process of its age, in which, at each time step, each disk gets the number of
reconstructed fragments divided by the number of non-full peers, roughly

v = αF

N −NF

INRIA
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Distribution of the number of fragments per disk
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Figure 1: Distribution of fragments per failed disk for different disk size factor x of 1.1, 2,
and 3. The number of full disks in each scenario is respectively 83%, 18%, and 4%. (y-scales
are different)

where α is the peer failure rate. This filling process stops when the disk is full. That is after
a number of time steps Tmax such that C = αTmaxF/(N − NF ), where C is the peer disk
capacity (maximum number of fragments per disk). The number of fragments of a disk thus
depends on the age of the disk.

At each time step a disk has a probability α to experience a failure. Hence, the dead age
of a disk follows a geometric law of parameter α. That is, Pr[dead age = T ] = (1−α)T−1α.
Hence the distribution of the number of fragments in a disk follows a truncated geometric
distribution, that is, for 1 ≤ T < Tmax
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10 Giroire, Gupta, Modrzejewski, Monteiro, and Pérennes

Pr[D = vT ] = (1− α)T−1α, and
Pr[D = C] = 1− (1− α)Tmax .

(1)

Note that here v, NF , and Tmax are unknown for the moment. The value of v depends on
the number of full disks NF , and of Tmax depends directly of the filling rate v. To find
the value of these variables, we use the fact that we know the expectation of the geometric
distribution which is just the average number of fragments inside the system. This number
is F/N (we neglect here the fragments that are in reconstruction, first order approximation
for small α). Hence, we get E[D] = D := F/N . By definition, the expectation is also given
by

E[D] =
Tmax−1∑
i=1

vi(1− α)i−1α+ C(1− (1− α)Tmax).

To obtain Tmax, we now have to solve the equation:

1
x

= 1− α− (1− α)Tmax+1

αTmax
,

obtained by identifying the two expressions for the expectation, by dividing by v, and because
C = xD. By solving that equation using the Maple software, we obtain that

Tmax =
αW ( 1

α ln(1− α)x(1− α) x+α−xα
α )− ln(1− α)x(1− α)

ln(1− α)α ,

where W is the Lambert W function. For example, when MTTF = 1440 hours (α =
1/1440), the number of full disks and the number of time steps to fill up a disk are, for
different disk capacities:

x NF (in %) Tmax(hours)
1.1 83 278
1.5 42 1257
2 20 2293
3 6 4060

We verify that these values are very close to the ones obtained by simulation (Figure 1).
Effects of the Imbalance on the Bandwidth Efficiency Since some peers store less
fragments, their load during the reconstruction process is also smaller. Thus, the overall
bandwidth of the system is not fully utilized.

In a system using Regenerating Codes encoding, to repair a fragment, d = n − 1 small
sub-fragments have to be sent to the peer in charge of the reconstruction. Simulations show
that the speed of the reconstruction is given by the time that the most loaded peer takes
to send the fragment. This time is in turn given by the number of fragments stored by
this peer. We get this number from the distribution of the number of fragments per peer
previously derived. For a majority of data blocks, the most loaded peer storing one of its

INRIA



Analysis of the Repair Time in Distributed Storage Systems 11

fragment is in fact a full disk. This claim is valid for most systems in practice, that is, for
the parameters usually found in the literature.

Indeed, recall that NF denotes the number of full disks (and ϕ = NF /N the fraction
of full disks). We compute the probability for a block that one of its fragment is on a full
peer (with n− 1 available fragments when it is being repaired). Recall also that a full disk
stores x times the average number of fragments per disk in the system. Then, the fraction
of fragments stored on full disks is ϕx. The probability of the block to have at least one
fragment on a full disk is then

Pfull = 1− (1− xϕ)n−1.

For a system with n = 14 (the value of NF for different values of x is given above), the
probability for different disk capacities is

x 1.1 1.5 2 3
ϕx 0.91 0.63 0.4 0.18
Pfull 1− 10−14 1− 10−5 1− 10−3 0.92

We see that for most practical systems, each block has a fragment on a full disk. Hence,
it is enough to consider the work done by the most loaded peers to obtain the reconstrution
times. These peers have a load greater than the average load by a factor of 1

x .

Factor of efficiency. An other way to phrase it: the factor of efficiency ρ of the system is
approximately

ρ ≈ 1
x

where x is the fraction between disk capacity and the average number of fragments per disk.

More complex models for large disk capacities. We consider that in practice, for
fairness issues, the storage system sets a limit of disk capacity not too far from the average
amount of data stored. A factor x between 1.1 and 3 seems reasonable. For systems with a
very large disk capacity (for example x = 10), ρ has to be estimated in a different way. As
a matter of fact, a large number of blocks store no fragments on full disks. It is thus not
enough to only consider the load of the full disks. This difficulty can be addressed by using
a multi-queue model. The peers are partitioned into a number C of classes depending on
the number of data they store. The model has one queue per class. When a disk fails, we
estimate the number of fragments that each class has to upload, that is how much work they
do, and in this way derive the factor of efficiency ρ. The analysis of this model is beyond
the scope of our study here.

RR n° 7538



12 Giroire, Gupta, Modrzejewski, Monteiro, and Pérennes

4 The Queueing Model
We introduce here a Markovian Model that allows us to estimate the reconstruction time
under bandwidth constraints. The model makes an important assumption:

1. The limiting resource is always the upload bandwidth.

Assumption 1 is reasonable as download and upload bandwidths are strongly asymmetric
in common installations. Using this assumption, we model the storage system with a queue
storing the upload load of the global system.

4.1 Model Definition
We model the storage system with a Markovian queuing model storing the upload needs of
the global system. The model has one server, Poissonian batch arrivals and deterministic
time service (Mβ/D/1, where β is the batch size function). We use a discrete time model.
The peers in charge of repairs process blocks in a FIFO order.

Chain States. The state of the chain at a time t is the current number of fragments in
reconstruction, denoted by Q(t).
Transitions. At each time step, the system reconstructs blocks as fast as its bandwidth
allows it. The upload bandwidth of the system, BWupN , is the limiting resource. Then,
the service provided by the server is

µ = ρ
BWupNτ

Lr
,

which corresponds to the number of fragments that can be reconstructed at each time step
τ . The factor ρ is the bandwidth efficiency as calculated in the previous section, and Lr is
the number of bytes transferred to repair one fragment. Hence, the number of fragments
repaired during a time step t is µ(t) = min(µ,Q(t)).

The arrival process of the model is caused by peer failures. When a failure occurs, all
the fragments stored in that peer are lost. Hence, a large number of block repairs start at
the same time. We model this with batch inputs (sometimes also called bulk arrival in the
literature). The size of an arrival is given by the number of fragments that were stored on
the disk. As explained in Section 3, it follows a truncated geometric distribution.

We define β as a random variable taking values β ∈ {0, v, 2v, . . . , Tmaxv}, which rep-
resents the number of fragments inside a failed disk (see Equation (1) for the probability
distribution function of β). Recall that v is the speed at which empty disks get filled, and
that Tmax = C/v is the elapsed time to fill a disk. Further on, β/v is the elapsed time to
have a disk with β fragments.

The arrival process of the model is Poissonian. A batch arrives during a time step with
probability f , with f ≈ αN . For the simplicity of the exposition, we consider here that only

INRIA



Analysis of the Repair Time in Distributed Storage Systems 13

Figure 2: Transition around state i of the Markovian queuing model.

one failure can happen during a time step (note that to ensure this, it is sufficient to choose
a small enough time step). Formally, the transitions of the chain are, for ∀i ≥ µ,

Qi → Qi−µ with prob. 1− f
Qi → Qi−µ+β ,∀β with prob. f(1− α)

β
v−1α

Qi → Qi−µ+C with prob. f(1− (1− α)Tmax)

When 0 ≤ i < µ, the i blocks in the queue at the beginning of the time step are reconstructed
at the end. Hence, we have transitions without the term i− µ:

Qi → Q0 with prob. 1− f
Qi → Qβ ,∀β with prob. f(1− α)

β
v−1α

Qi → QC with prob. f(1− (1− α)Tmax)

Figure 2 presents the transitions for a state i. The following table summarizes the
notation introduced in this section.

Q(t) Number of fragments to be repaired
f Batch arrival rate, f = αN
β Number of fragments on a failed disk

(i.e., batch size)
ρ Factor of efficiency, ρ ≈ 1

x

µ Service rate, µ = ρBWupNτ/Lr
(fragments per time step)

4.2 Analysis
Here, we give the expressions to estimate the values of two important system metrics: the
distribution of the block reconstruction time and the probability of data loss. These expres-
sions are derived from the stationary distribution of the Markovian model, as presented in
the following.
A Normalized Model. The queuing model has a service of µ and an input process of average
fβ. To simplify the presentation of the analysis, we introduce then a normalized model with

RR n° 7538



14 Giroire, Gupta, Modrzejewski, Monteiro, and Pérennes

service of 1, hence an input of mean β′ = β/µ.

4.2.1 Stationary Distribution

We analyze here the stationary state of this normalized queuing model. As the chain is
irreducible and aperiodic, it exists when the service rate is larger than the load. Let P be
the probability generating function of the Markovian model, that is P is defined as:

P (z) =
∑
i

Piz
i,

where Pi is the probability that the system is in state i, that is, i fragments have to be
repaired.

The system reconstructs one block per time step (unless of course, no block is in the
queue). It is translated in the generating function language into a division by z. The effect
of a peer failure is translated by a multiplication by the probability generating function of
the input I, defined as

I(z) =
∞∑
j=0

Ijz
j ,

with Ij the probability that the batch is of size j. Hence, we obtain the functional equation(
P (z)− P0

z
+ P0

)
I(z) = P (z).

It gives
P (z) = (z − 1)P0

z
I(z) − 1 .

As P (1) = 1, I(z)− z admits 1 as a root and thus can be written as I(z)− z = (z− 1)Q(z).
We have

P (z) = P0I(z)
Q(z) . (2)

As we have seen in Section 3, the size of the input follows a truncated geometric distribu-
tion of parameter α. A batch is of size vj with probability (1−α)j−1α, for j ∈ [0, 1, ..., Tmax].
It gives

I(z) = (1− f) + f

Tmax−1∑
j=1

(1− α)j−1αzvj + f(1− α)Tmax−1zvTmax .

It can be rewritten as

I(z) = 1 + f(zv − 1)(zTmax(1− α)Tmax − 1)
(1− α)zv − 1 .
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We factorize I(z)− z by (z − 1). We get

Q(z) = I(z)− z

= (z − 1)(−1 +
f(
∑v

j=1
zi)(zvTmax (1−α)Tmax−1)

(1−α)zv−1 ).

The value of P0 is obtained by the normalization
∑∞
i=0 Pi = 1 which implies P (1) = 1.

P0 = Q(1)
I(1) = 1− 1

α
(fv((1− α)Tmax − 1)).

We now have an expression of the three terms of Equation 2 and we get a close form of the
probability generating function P (z).

4.2.2 Distribution of the Waiting Time

The distribution of the block reconstruction time is given by the stationary distribution P
of the model calculated above. As we have Markovian (batch) arrivals, the probability for
a batch to arrive when there are n blocks in the queue is exactly Pn (for the difference of
distribution for an arriving customer and an outside observer, see for example [5]). If there
are Q fragments in the queue when a batch of size β′ = jv arrives, the arriving fragments
have waiting times of Q + 1, Q + 2, Q + β′. We define the probability generating function
J as

J(z) =
Tmax∑
j=1

(
(1− α)j−1α

jv∑
i=1

zi
)
.

The probability generating function W of the waiting times then is just

W (z) = P (z)J(z).

The distribution of the waiting times can then be directly obtained from the generating
function by extracting its coefficients

Pr(W = k) = [zk]W (z) = dkW (z)
k!(dz)k

∣∣∣∣
z=0

. (3)

The first coefficients can be computed numerically and then a singularity analysis gives the
asymptotic behavior, see for example [10]. Hence, the value of Pr(W = k) can be computed
analytically. However, in the following, we also use another method and calculate them
numerically by iterating the queuing model.
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4.2.3 Number of Dead Blocks

The expected number of dead blocks is indirectly given by the model by computing the
waiting time in the queue of a block that has to be reconstructed.

As a matter of fact, a block dies if it loses, before the end of the reconstruction, the r−1
fragments of redundancy that it has left when the repair starts, plus an additional fragment.
The probability for a peer to still be alive after a period of time of θ time step is (1− α)θ,
where α is the probability for a disk to die during a time step, that is

α = τ

MTBF
.

Hence a good approximation of the probability Pr[die] to die during a reconstruction lasting
a time θ is given by

Pr[die|W = θ] =
s+r∑
i=r

(
s+ r

i

)
(1− (1− α)θ)i((1− α)θ)s+r−i.

For practical systems, the ratio θ/MTTF is small as the probability to of data loss should
be very low. Hence Pr[die] is well approximated by

Pr[die|W = θ] ≈
(
s+ r

r

)
(1− (1− α)θ)r((1− α)θ)s−1.

From this and from the distribution of the waiting time, we get the probability to die during
a reconstruction, PD, with

PD =
∞∑
i=0

Pr[die|W = i] Pr[W = i].

The number of dead blocks during a time T , DT , is then obtained by the number of recon-
structions during T , RT :

DT = PDRT . (4)

4.2.4 Bandwidth Usage

The bandwidth usage is directly given by the distribution of the number of reconstructions
being processed by the system, which comes from the stationary distribution of the queuing
model.

5 Results
To validate our model, we compare its results with the ones produced by simulations, and
test-bed experimentation. We use a custom cycle-based simulator. The simulator models the
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evolution of the states of blocks during time (number of available fragments and where they
are stored) and the reconstructions being processed. When a disk failure occurs, the simu-
lator updates the state of all blocks that have lost a fragment, and starts the reconstruction
if necessary. The bandwidth is implemented as a queue for each peer. The reconstructions
are processed in FIFO order.

We study the distribution of the reconstruction time and compare it with the exponential
distribution which is often used in the literature. We then discuss the cause of the data losses.
Finally, we present two important practical implementation points: (1) when choosing the
parameters of the Regenerating Code, it is important to give to the peer in charge of the
repair a choice between several peers to retrieve the data; (2) we show the strong impact of
different scheduling options on the data loss rate.

5.1 Distribution of Reconstruction Time
Figure 3 shows the distribution of the reconstruction time and the impact of the peer asym-
metry on the reconstruction time for the following scenario: N = 100, s = 7, r = 7, Lr=2
MB, B = 50000, MTTF = 60 days, BWup = 128 kpbs. All parameters are kept constant,
except the disk size factor x (recall that x is the ratio of the maximum capacity over the
average amount of data per peer).

First, we see that the model (dark solid line) closely matches the simulations (blue dashed
line). For example, when x = 1.1 (top plot), the curves are almost merged. The average
reconstruction times are 3.1 cycles vs 3.2 for the model. We see that there is a small gap
when x = 3. As a matter of fact, we saw in Section 3 that simulating the queue of the full
disks is an approximation in this case, as only 92% of the blocks have a fragment on a full
disk.

Second, we confirm the strong impact of the disk capacity. We see that for the three
values of x considered, the shape of the reconstruction times are very different. When the
disk capacity is close to the average number of fragments stored per disk (values of x close
to 1), almost all disks store the same number of fragments (83% of full disks). Hence, each
time there is a disk failure in the system, the reconstruction times span between 1 and C/µ,
explaining the rectangle shape. The tail is explained by multiple failures happening when
the queue is not empty. When x is larger, disks also are larger, explaining that it takes a
longer time to reconstruct when there is a disk failure (the average reconstruction time raises
from 3.2 to 9.6 and 21. when x goes from 1.1 to 2. and 3.). As the number of fragments
per disk follows a truncated geometric distribution, we see the rectangle shape is replace by
a trapezoidal shape explained by the large range of disk fillings.

Third, we compare the distributions obtained with the exponential distribution that is
classically used in the literature. We see that the distributions are far from the exponential
when x = 1.1 and x = 2, but get closer for x = 3. Hence, as we will confirm, the exponential
distribution is only a good choice for some given sets of parameters. To finish, note that the
tails of the distribution are close to exponential.
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Figure 3: Distribution of reconstruction time for different disk capacities x of 1.1, 2, and 3
times the average amount. The average reconstruction times of simulations are respectively
3.2, 9.6, and 21 hours (Note that some axis scales are different).

Figure 4 presents the distribution of a distributed storage system experiencing three
different rates of failures: MTTF of 90, 180 and 360 days. We clearly see the evolution of
the shape of the distribution due to the larger probability to experience failures when the
peer queues are still loaded. The average reconstruction time increases from 5 hours when
the MTTF is 360 days to 12 hours when the MTTF is 90 days.

We ran simulations for different sets of parameters. We present in Table 2 a small subset
of these experiments.
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Figure 4: Distribution of reconstruction time for different MTBF. Different shapes for dif-
ferent values.

Table 2: Reconstruction time T (in hours) for different system parameters

(a) Disk capacity c.
c 1.1 1.5 2.0 3.0
Tsim 3.26 5.50 9.63 21.12
Tmodel 3.06 5.34 9.41 21

(b) Peer Lifetime (MTBF).
MTBF 60 120 180 365
Tsim 3.26 2.90 2.75 2.65
Tmodel 2.68 2.60 2.49 2.46

(c) Peer Upload Bandwidth (kbps).
upBW 64 128 256 512
Tsim 8.9 3.30 1.70 1.07
Tmodel 8.3 3.10 1.61 1.03

5.2 From Where the Deads Come From?
In this section, we discuss in which circumstances the system has more chances to lose some
data. First a preliminary remark: backup systems are conceived to experience basically
no data loss. Thus, for realistic sets of parameters, it would be necessary to simulate the
systems for a prohibitive time to see data losses in our simulations. We hence present here
results for scenarios where the redundancy of the data is lowered (r = 3 and r = 5).
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Figure 5: (Top): Distribution of dead blocks reconstruction time for two different scenarios.
Scenario A: N = 200, s = 8, r = 3, b = 1000,MTTF = 60 days. Scenario B: N = 200, s =
8, r = 5, b = 2000,MTTF = 90 days. (Bottom): Fitting of exponential distribution with
the tail of queueing model (axis scales are different).

We plot in Figure 5 the cumulative number of dead blocks that the system experiences
for different reconstruction times. We give this fraction in function of the time the block
spent in the system before dying. For the queuing model, we derive the expected number of
blocks that died at time T from the distribution of the reconstruction time. A block dies at
time T if its reconstruction process lasts a time θ ≥ T and that it loses r fragments during
time T with at least one exactly at time T . This can be expressed as

N [die at time T ] = Pr[die at time T ]
∑
θ≥T

NP [W = θ]
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with
Pr[die at time T ] =

(
s+r−1
r−1

)
(1− (1− α)T )r((1− α)T )s−1−(

s+r−1
r−1

)
(1− (1− α)T−1)r((1− α)T )s−1.

We give the distribution of the reconstruction times as a reference (vertical lines). The
model (black solid line) and the simulation results (blue dashed line) are compared for two
scenarios with different number of blocks: there is twice more data in Scenario B.

The first observation is that the queueuing models predict well the number of dead
experienced in the simulation, for example, in the scenario A the values are 21,555 versus
20,879. The results for an exponential reconstruction time with the same mean value are also
plotted (queue avg.). We see that this model is not close to the simulation for both scenarios
(almost the double for Scenario A). We also test a second exponential model (queue tail):
we choose it so that its tail is as close as possible to the tail than the queuing model (see
Figures 5b and 5d). We see that it gives a perfect estimation of the dead for Scenario B,
but not for Scenario A.

In fact, two different phenomena appear in these two scenarios. In Scenario B (higher
redundancy), the lost blocks are mainly coming from long reconstructions, from 41 to 87
cycles (tail of the gray histogram). Hence, a good exponential model can be found by fitting
the parameters to the tail of the queuing model. On the contrary, in Scenario A (lower
redundancy), the data loss comes from the majority of short reconstructions, from 5.8 to
16.2 cycles (the right side of the rectangular shape). Hence, in Scenario A, having a good
estimate of the tail of the distribution is not at all sufficient to be able to predict the failure
rate of the system. It is necessary to have a good model of the complete distribution!

5.3 Discussing the Implementation of Regenerating Codes
As presented in Section 2, when the redundancy is added using regenerating codes, n = s+r
peers store a fragment of the block when s are enough to retrieve the block. When a fragment
is lost, s ≤ d ≤ n − 1 peers are in charge of repairing the fragments. The larger d is, the
smaller is the bandwidth needed for the repair. Figures 6 and 7 show the reconstruction time
for different values of the degree d. We observe an interesting phenomena: at the opposite of
the common intuition, the average reconstruction time decreases when the degree decreases:
10 cycles for d = 13, and only 6 cycles for d = 12. The bandwidth usage increases though
(because the δMBR is higher when d is smaller). The explanation is that the decrease of the
degree introduces a degree of freedom in the choice of the peers that send a sub-fragment to
the peer that will store the repaired fragment. Hence, the system is able to lower the load
of the more loaded disks and to balance more evenly the load between peers.

In fact, we can estimate for which degree of freedom, the reconstruction time is minimum.
It happens when the load of the full disks is the same as the load of the other disks. We
define δ = n − 1 − d the allowed degree of freedom for the choice of which peers uploads
the sub-fragments. The full disks store a proportion ϕx of the fragments of the system,
with ϕ the fraction of full disks. We simply look at the how much work we must do on the
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Figure 7: Average Reconstruction Time for
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full disks. The probability to have i fragments (among the n− 1 fragments) on full disks is(
n−1
i

)
(ϕx)i(1 − ϕx)n−1−i. Those blocks sends i − δ units of work the full disks (whenever

i ≥ δ). So the load of the full disks is

n−1∑
i=δ

(i− δ)
(
n− 1
i

)
(ϕx)i(1− ϕx)n−1−i.

We presented here a cut argument for only two classes of peers (full disks and non full disks).
This argument can be generalized to any number of peer classes.

When the load of the full disks becomes equal to the load of the other disks (
∑n−1
i=δ (d−

i+ δ)
(
n−1
i

)
(ϕx)i(1− ϕx)n−1−i), it is no more useful to decrease d. We see that the average

reconstruction time increases when d is too small, as the increased usage of bandwidth is no
more compensated by a better balance of the load.

Note that this phenomena exists for other codes like Reed Solomon where the peer in
charge of the reconstruction has to retrieve s fragments among the s + r − 1 remaining
fragments.

5.4 Scheduling
As peers have a large number of repairs to carry out but very limited bandwidth, the question
of which repairs to do first is crucial. In this section, we study three different scheduling
choices: FIFO, Random, and Most-Damaged data block first.

The FIFO is the default scheduling in the simulator, as discussed in Section 2, the blocks
are processed in the order of arrival. In the Random scheduling, the simulator processes
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Figure 9: Cumulative number of dead blocks
for different scheduling strategies. Processing
the most damaged first is the best strategy.

blocks in a random order (at each time step the list of blocks to be reconstructed is shuffled).
In the Most-Damaged scheduling the blocks are ordered by the level of redundancy (i.e.,
blocks with less fragments available come first). In case of tied values, then the FIFO order
is assumed.

Figure 8 presents the reconstruction time of these three schedulings. All strategies give
almost the same average reconstruction time, 4.40, 4.43, 4.43 respectively for FIFO, Ran-
dom and Most-Damaged. We see that their distribution changes slightly. In the Random
order the shape has the form of a geometric distribution, with many blocks finishing the re-
construction “early”. However, as depicted in Figure 8, the differences in the number of dead
blocks are enormous. When using the Random scheduling, the dead increases considerably,
as expected.

Most-Damaged has a reconstruction time very close to the others but the number of
losses is much lower. Hence, this is the strategy of choice when implementing such systems.

6 Experimentation
Aiming at validating the simulation and the model results, we performed a batch of real
experimentation using the Grid’5000 platform [11]. We used a prototype of storage system
implemented by a private company (Ubistorage [20]).

Our goal is to validate the main behavior of the reconstruction time in a real environment
with shared and constrained bandwidth, and measure how close they are to our results.
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6.1 Storage System Description
In few words, the system is made of a storage layer (upper layer) built on top of the DHT
layer (lower layer) running Pastry [19]. The lower layer is in charge of managing the logical
topology: finding peers, routing, alerting of peer arrivals or departures. The upper layer is
in charge of storing and monitoring the data.
Storing the data. The system uses Reed-Solomon erasure codes [14] to introduce redun-
dancy. Each data block has a peer responsible of monitoring it. This peer keeps a list of the
peers storing a fragment of the block. The fragments of the blocks are stored locally on the
Pastry leafset of the peer in charge [13].
Monitoring the system. The storage system uses the information given by the lower level
to discover peer failures. In Pastry, a peer checks periodically if the members of its leafset
are still up and running. When the upper layer receives a message that a peer left, the peer
in charge updates its block status.
Monitored metrics. The application monitors and keep statistics on the amount of data
stored on its disks, the number of performed reconstructions along with their duration, the
number of dead blocks that cannot be reconstructed. The upload and download bandwidth
of peers can be adjusted.

6.2 The Grid’5000 Infrastructure
Grid’5000 is an infrastructure dedicated to the study of large scale parallel and distributed
systems. It provides a highly reconfigurable, controllable and monitorable experimental
platform to scientists. The platform contains 1582 machines accounting for 3184 processors
and 5860 cores. The machines are geographically distributed on 9 different hosting sites in
France (two additional sites in Luxemburg and Porto Alegre, Brazil are being added). These
site are connected to RENATER Education and Research Network with a 10Gb/s link.

6.3 Results
There exist a lot of different storage systems with different parameters and different recon-
struction processes. The goal of the paper is not to precisely tune a model to a specific
one, but to provide a general analytical framework to be able to predict any storage system
behavior. Hence, we are more interested here by the global behavior of the metrics than by
their absolute values.
Studied Scenario. By using simulations we can easily evaluate several years of a system,
however when doing experimentation this is not the case. We need to plan our experiments
to last a few hours. Hence, we define an acceleration factor, as the ratio between experiment
duration and the time of real system we want to imitate. Our goal is to check the bandwidth
congestion in a real environment. Thus, we decided to shrink the disk size (e.g., from 10
gigabytes to 100 megabytes, a reduction of 100×), inducing a much smaller time to repair
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Figure 10: Distribution of reconstruction time on a experimentation with 64 nodes during
4 hours compared to simulations.

a failed disk. Then, the peer failure rate is increased (from months to a few hours) to keep
the ratio between disk failures and repair time proportional. The bandwidth limit value,
however, is kept close to the one of a “real” system. The idea is to avoid inducing strange
behaviors due to very small packets being transmitted in the network.

Figure 10 presents the distribution of the reconstruction times for two different exper-
imentation involving 64 nodes on 2 different sites of Grid’5000. The amount of data per
node is 100 MB (disk capacity 120MB), the upload bandwidth 128 KBps, s = 4, r = 4,
LF = 128 KB. We confirm that the simulator gives results very close to the one obtained
by experimentation. The average value of reconstruction time differs from some seconds.

Moreover, to have an intuition of the system dynamics over time, in Figure 11 we present
a timeseries of the number of blocks in the queues (top plot) and the total upload bandwidth
consumption (bottom plot). We note that the rate of reconstructions (the descending lines
on the top plot) follows an almost linear shape. Comforting our claim that a determinist
processing time of blocks could be assumed. In these experiments the disk size factor is
x = 1.2, which gives a theoretical efficiency of 0.83. We can observe that in practice, the
factor of bandwidth utilization, ρ, is very close to this value (value of ρ = 0.78 in the bottom
plot).

7 Conclusion
In this paper, we propose and analyze a new Markovian analytical model to model the
repair process of distributed storage systems. This model takes into account the correlation
between data repairs that compete for the same bandwidth. We bring to light the impact
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Figure 11: Timeseries of the queue size during time (top) and the upload bandwidth ratio
(bottom).

of peer heterogeneity on the system efficiency. The model is validated by simulation and by
real experiments on the Grid’5000 platform.

We show that the exponential distribution classically taken to model the reconstruction
time is valid for certain sets of parameters, but that different shapes of distribution appear
for other parameters. We show that it is not enough to be able to estimate the tail of the
repair time distribution to obtain a good estimate of the system loss rate.

The results provided are for systems using Regenerating Codes that are the best codes
known for bandwidth efficiency, but the model is general and can be adapted to other codes.
We exhibit an interesting phenomena to keep in mind when choosing the code parameter:
it is useful to keep a degree of freedom on the choice of the users participating in the repair
process so that loaded or deficient users do not slow down the repair process, even if it means
less efficient codes.

In addition, we confirm the strong impact of scheduling on the system loss rate.
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