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Many pull policies can be found in the literature for controlling multistage
production/inventory systems. In this paper, we present a framework that
enables us to describe the dynamics of a large class of pull control policies,
using the same set of canonical functions.

The class of policies we consider here include well known pull policies, like
kanban, CONWIP, basestock, generalized kanban, extended kanban, but also
many other hybrid policies, and their extensions to systems producing batches.

Each of these policies is characterized by the values of some parameters.
These parameters values are calculated thanks to a computational algorithm
that relies on the use of path algebra tools, especially (min,+) algebra tools.

This canonical formulation allows to identify under which values of the con-
trol parameters, two different policies have the same dynamics behavior. It
also enables to derive methods for evaluating and comparing the performance
of several pull control policies, as we illustrate it in the paper.

Keywords: Pull control policies; hybrid policies; (min,+) algebra; queueing systems; batch
production; performance comparison.

1. Introduction

This paper deals with make-to-stock pull control policies for multi-stage produc-
tion/inventory systems. In other words, we consider manufacturing systems which are
decomposed into stages. Each stage consists of a manufacturing process (which is a sub-
part of the studied manufacturing system), and an output buffer (containing semi-finished
products). Parts are produced in manufacturing processes in order to maintain the out-
put buffers to given nominal levels. The coordination among the stages is achieved via a
pull control policy, i.e., the release of parts into each stage is triggered by real demands
for finished products.
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2 Di Mascolo & Bollon

Such pull control policies are characterized by the way the information is transmitted
from downstream (i.e. arriving demands) to upstream.

In a general case, two classes of information flows can be distinguished, namely the
global and the local information flows (Bonvik 1996). The global information flow links
a given stage directly to the arrival process of external demands, whereas the local
information flow links the input of a given stage to the output buffer of the stage, and
gives an information on the consumption of a part by the downstream stage. Many pull
policies can be found in the literature for controlling production/inventory systems. They
differ according to the way the information is transmitted upstream. For example, the
kanban (Monden 1983) and the CONWIP (CONstant Work In Process) (Spearman et al.
1990) use a local transfer of information, whereas the basestock (Lee and Zipkin 1992)
uses a global flow of information. There are also some hybrid policies, that combine
these traditional policies, and thus local and global information flows. We can quote,
among others, the extended kanban (Dallery and Liberopoulos 2000) and the generalized
kanban (Buzacott 1989), which both incorporate the kanban and basestock policies,
but also some other hybrid policies present in (Bonvik 1996), that combine CONWIP
and kanban, or basestock and modified kanban, for example. Other hybrid policies are
presented in (Liberopoulos and Dallery 2000). They are variants of well known policies,
obtained by adding a local control for the Work In Process of each stage, or by nesting
several pull control systems.

Some of the existing pull control policies may have the same behavior, under certain
conditions. However, it is often very difficult to know if the behaviors of two policies are
identical, since they are often described using different tools, like, for example, queue-
ing networks, Petri nets, sets of equations or control cells. Comparison studies have
been conducted those last years. Some of them are motivated by the introduction of
a new policy, which is compared to some existing ones, using simulation. See for ex-
ample (Bonvik 1996), which introduces hybrid policies combining CONWIP and kan-
ban, or basestock and modified kanban, or (Boonlertvanich 2005), which introduces the
”extended-CONWIP-kanban” control policy.

Many papers propose a quantitative comparison among some known policies, based
on the evaluation of some performance measures, and an optimization of their param-
eters on some case studies. See for example (Duri et al. 2000), which compares the
performance of the kanban, basestock and generalized kanban systems, obtained using
analytical methods, (Bonvik et al. 1996), which compares the performance of the kanban,
minimal blocking, basestock, CONWIP, and hybrid kanban/CONWIP control policies
using discrete-event simulation, (Geraghty and Heavey 2005), which compares the perfor-
mance of the kanban, CONWIP, Hybrid Kanban/CONWIP systems using discrete-event
simulation, or (Kleijnen and Gaury 2003), which compares four policies (kanban, CON-
WIP, Hybrid Kanban/CONWIP and generic kanban) using discrete-event simulation,
heuristic optimization, risk analysis and bootstrapping. Other papers propose a qualita-
tive comparison using a unified modelling framework. This is the case of (Liberopoulos
and Dallery 2000) which proposes a way for defining pull control mechanisms, based
on queueing network representation with synchronization stations. The proposed frame-
work helps describing and comparing classical multi-stage production/inventory control
policies (base stock, kanban, generalized kanban, extended kanban). It also enables to
introduce new control approaches, by adding local mechanisms to control the Work In
Process in each stage, or by nesting several pull control systems. Finally, several produc-
tion control systems that have appeared in the literature are shown to be equivalent to
some of the new introduced control systems. In (Liberopoulos and Dallery 2003), this
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Unified description of pull control policies 3

framework is extended in order to include policies dealing with lot sizing.
In a previous paper (Bollon et al. 2004), we proposed a unified framework to describe

the dynamics of some pull control policies (basestock, kanban, generalized kanban, and
extended kanban). This formulation consists in a function, which is the same for all
the studied policies, and whose parameters differ from one policy to another. It thus
allows a systematic approach to derive some properties for each policy and to find all
identical dynamics between two systems, by comparing the parameters. We used this
approach to find some equivalences between the extended kanban and the generalized
kanban mechanisms.

In this paper, our first aim is to extend the framework proposed in (Bollon et al. 2004),
which was limited to the base stock, kanban, generalized kanban, and extended kanban
policies. The proposed formulation thus enables now the description of a large class of
pull control policies, including all the policies described above and their extensions to
systems producing batches, such as those presented in (Liberopoulos and Dallery 2003).
Note that, as shown in section 4, many other new policies can also be considered. Our
formulation enables us to represent all these policies with the same set of canonical
functions, each policy being characterized by the values of some parameters.

Secondly, we derive two algorithms that enable the computation of the formulation’s
parameters, one for the policies without batch production, and the second for the policies
with batch production. These algorithms rely on the use of a shortest path search. They
are obtained using path algebra tools, especially (min,+) algebra tools.

Finally, we show how our formulation can be used to compare the behavior and the
performance of pull control policies.

This paper is organized as follows: in section 2, the modelling assumptions used for
the systems studied in this paper are presented. In section 3, our formulation is briefly
presented and the canonical representation is given for basestock and generalized kanban
policies. Some elements about path algebra, that are necessary to the derivation of the
new algorithms presented in this paper, are also given. Section 4, shows how this canonical
formulation can be extended to more general pull control policies, thanks to the use of
path algebra. An efficient computational algorithm that enables us to find the parameters
of the canonical representation is derived. In section 5 it is shown how this formulation can
be extended to systems producing batches. The corresponding computational algorithm
is derived and applied on some pull control policies encountered in the literature. Finally,
in section 6, we show how our formulation can be used in order to obtain some properties
of pull policies, and how it can be used to calculate performance parameters of a large
class of pull control policies.

2. Modelling assumptions

The production/inventory systems that are considered here are divided into N stages.
Each stage i consists of an output buffer, denoted by Pi, which contains the finished
parts of the stage, and a manufacturing process, denoted by Fi, which is used to supply
the output buffer of the stage. We assume that raw parts are always available at the
input of the system. Demands which cannot be immediately satisfied are backlogged in
a queue denoted by DN .

We consider the case of stages in series, and we assume that there is no blocking at the
entry of each manufacturing system (i.e. the first queue of each manufacturing system
has an infinite capacity, or the first station is an infinite server station) and at the exit

Page 3 of 29

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 13, 2009 17:3 International Journal of Production Research IJPR˙oct09

4 Di Mascolo & Bollon

(i.e. parts are never blocked in the manufacturing process due to what happens outside
the manufacturing process). Note that some cases for which these assumptions are not
satisfied have been considered in (Bollon 2001) and in (Bollon et al. 2004).

We also assume that we have a mono-product system and that processes can produce
batches of size Qi at stage i. The size of batches for demands is QN+1. We assume that
Qi is a multiple of Qi+1, and QN+1 = 1, as usually assumed when dealing with batches
(see (Axster and Rosling 1993) and (Liberopoulos and Dallery 2003) for example). This
choice prevents the system from having useless remaining parts in a stage, and it also
enables us to simplify the calculations.

In each manufacturing process, we use a push control mechanism, but the different
stages are coordinated using a pull mechanism. With a pull control policy the production
is pulled downstream by the demand. Whenever a demand is received, it is transmitted
directly or indirectly to upstream stages in order to maintain a certain level in stock.
The way this transmission of information is done depends on the control policy that is
used.

When a part leaves a manufacturing process or a stock, or when a demand arrives,
an information can be sent upstream the system to allow one or several parts to be
processed. For example in a kanban policy when a part leaves a stock, a kanban label is
sent to the upstream manufacturing process. This kanban allows a new part to enter the
process. For a basestock policy, each demand is sent to all the manufacturing processes
inputs to allow the process of a new part.

The processing times or the times between two demand arrivals can be either determin-
istic or stochastic, with general distribution. We only assume that the control mechanism
is instantaneous.

3. Principles of our formulation of pull control policies

In this section, the unified framework initially proposed in (Bollon et al. 2004) for the
description and the comparison of basestock, kanban, extended kanban and generalized
kanban policies is described. Some elements about path algebra that are necessary to the
derivation of the new algorithms presented in this paper are also given.

Let us first define some elements used to describe the dynamics of the system.

3.1. Elements and notations for our unified formulation of policies

We use a capital letter with an upright font to denote objects like manufacturing processes
Fi or stores Pi. The scalar value for the number of parts present in an object is denoted
by a small letter written with an italic font. For example, the number of parts in Fi, Pi

or DN are respectively fi, pi and dN . If we need the value of these quantities at a given
time t, we write fi(t), pi(t), etc.

We prove in (Bollon 2001), that the state of the system can be expressed with a state
vector �X , introduced in (Veatch and Wein 1994). This vector �X, whose components are
denoted by xi, for i = 1, · · · , N , is defined as follows

xN = pN − dN and xi = pi + fi+1 for i = 1, · · · , N − 1. (1)

These components are illustrated in figure 1. A component xi is equal to the sum of

Page 4 of 29

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 13, 2009 17:3 International Journal of Production Research IJPR˙oct09

Unified description of pull control policies 5

 

Demands … 

∞ 

x1 x2 xN-1 xN 

 

 

p1 f1 

x0 

f2 

fN 

pN 

p2 

 

Figure 1. State variable for an N -stage line

parts present between two consecutive manufacturing outputs. When the quantity xN is
positive, it represents the number of available finished goods and when it is negative, it
represents the number of unsatisfied demands that are backordered.

The vector �X gives the size of the different inventory positions which are always positive
except for the last one, which represents finished goods minus demands.

Each occurrence of an event (an outgoing part from a manufacturing process or a
demand arrival) changes the vector �X . Conversely, if a vector change is known, then the
event that has occurred is known too. In other words, all the events are detected if the
vector �X is known at every moment.

Let us now consider the values fi. When they can be expressed as functions of �X, they
are denoted by fi( �X)1. The components of the N -dimensional function �F ( �X) are defined
by fi( �X) for i varying from 1 to N . The knowledge of this vector �F ( �X) enables us to
find the dynamics of the system: if �X is known at every moment, events that occur are
known, and the state of the system given by the values of pi, fi and dN is known with
equation (1).

Then, to describe the policy, we only have to search for �F ( �X). For this, we use some
tools described in the next section.

3.2. Path algebra in dioids

We present here some basic definitions of (min,+) algebra and its relation with graphs
and shortest path search, which are tools that we use in our developments (see (Baccelli
et al. 1992) for more details on this algebra).

3.2.1. Basic notions of (min, +) algebra.

We consider the set R ∪ {+∞} associated with the min operator (denoted by ⊕) and
the usual addition (denoted by ⊗). This algebraic structure is called Rmin and is a dioid.
The neutral element for ⊕ is ε = +∞. ε is absorbing for ⊗. The neutral element for ⊗ is
e = 0. In Rmin an inequality e � f is equivalent to e ⊕ f = e, which means e � f , with
usual notations.

Note that if we denote by ⊕ the max operator and by ⊗ the usual addition, then the
set (R ∪ {−∞} ,⊕, ⊗) also has a dioid structure and is called (max,+) algebra.

The (min,+) algebra and the (max,+) algebra are often used to give a linear behavior
representation of so called Timed Event Graphs (or TEG). These graphs are special cases
of timed Petri Nets. They are composed of places (circles) and transitions (bars) and are
such that each place has exactly one upstream and one downstream transition (see figure
2-a-). A transition is ”fired” once each upstream place contains at least one available
token (small black circle). Then one token is removed from each upstream place and one

1Note that fi can be a function of the time (then we have a scalar value inside the brackets) or a function of the
state (then we have a vector inside the brackets).
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Figure 2. Example of a Timed Event Graph and its associated graph

token is added to each downstream place. A time delay can be associated with a place:
the token becomes available to fire the downstream transition only when this delay has
been consumed. In this paper, we are interested in a special case of a TEG, where all
delays are zero, and transitions are fired at the earliest. Figure 2-a- shows a TEG with
5 places and 6 transitions, where all delays are zero. Transitions Zi have no upstream
places and are called input transitions.

3.2.2. Linear representation of Timed Event Graphs.

Two kinds of variables are used to describe the system state. They are associated with
transitions. The first ones are counters: they count the number of tokens that have gone
through a transition by a certain time. The other ones are daters, which give the moment
when a transition is fired for the nth time. At the beginning, all the daters and counters
have the value zero. In this paper, we only deal with counters. For the TEG of figure 2-a-,
the counters are denoted by z1(t), z2(t), z3(t), y1(t), y2(t) and y3(t). For example, y1(t)
is the number of tokens that have gone through transition Y1 at time t. Some relations
linking these counters can be written to describe the dynamics of the system. We give
below the inequalities obtained for the example of figure 2-a-.

y1(t) � z1(t) + 3

y2(t) � min (z2(t) + 4, z3(t))

y3(t) � min (y1(t), y2(t)) .

(2)

We can then write relations (2) in Rmin as follows:

y1(t) � 3 ⊗ z1(t)

y2(t) � 4 ⊗ z2(t) ⊕ z3(t)

y3(t) � y1(t) ⊕ y2(t).

(3)

Note that an equivalent dual system of inequalities can be given with the (max,+)
algebra and the daters.

The use of (min,+) algebra and its notations enables us to obtain concise linear expres-
sions for the formulations we are looking for. We will see now that the use of this algebra
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Unified description of pull control policies 7

and the associated results enables us also to facilitate the calculation, as explained in the
following.

For the special case of TEG with all delays equal to zero, that we consider here, it is
always possible to express every counter function yi(t) with input counters zi(t) and the
initial number of tokens of each place using linear recurrences over the (min,+) algebra.

In other words, if we denote by �Z(t) ∈ R
m
min the vector having the counters zi(t) of

the m input transitions Zi as its components, and by �Y (t) ∈ R
n
min the vector having the

counters of the n other transitions Yi as its components, then �Y (t) is the solution of the
following system of inequalities (note that the symbol ⊗ has been omitted, as for the
usual multiplication):

�Y (t) � A �Y (t) ⊕ B �Z(t), (4)

where A and B are matrices which belong respectively to R
n×n
min and R

n×m
min .

For the example of figure 2-a- they are given by:

A =

⎡
⎣ε ε ε

ε ε ε
e e ε

⎤
⎦ and B =

⎡
⎣3 ε ε

ε 4 e
ε ε ε

⎤
⎦.

3.2.3. Path algebra.

The smallest solution of system (4) can be given in an explicit way, using the ”Kleene
star” operator A∗:

�Y (t) = A∗B �Z(t) with A∗ =
⊕
k�0

Ak, (5)

where the product of two matrices A (belonging to R
n×n
min ) and B (belonging to R

n×m
min )

is defined as a matrix belonging to R
n×m
min denoted by AB (or A2 if B = A), whose

components (AB)ij are given by
k=n⊕
k=1

AikBkj. A0 is the identity matrix in Rmin, where

each component is equal to e = 0 on the diagonal and ε = +∞ for the other elements.
This solution can be calculated using a shortest path search in a graph where vertices

correspond to transitions and arcs correspond to places. Near a place there are two
transitions, one before and one after, the vertices related to them are respectively the
beginning and the ending of the arc associated with this place. The initial number of
tokens present in the place will be the weight of the arc. Figure 2-b- gives the graph
associated with the TEG of figure 2-a-.

Then, the value of A∗
ij gives the weight of the shortest directed path from Yj to Yi.

Note that A∗
ij = ε if there is no path from j to i. Knowing that a component Bij gives

the weight of the arc from Zj to Yi, then a component Gij of matrix G = A∗B represents
the weight of the shortest directed path from Zi to Yj.

Then the solution (5) can be written equivalently:

yi(t) =
m⊕

j=1

(Gji ⊗ zj(t)) for i = 0, · · · , n . (6)
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Figure 3. Main counters of a two-stage production line

Note that as a TEG never contains a circuit of negative weight, then matrix A∗ is
always a finite matrix and is given by:

A∗ =
k=n−1⊕

k=0

Ak. (7)

This link between (min,+) algebra and the graphs through the Kleene star, enables
us to derive efficient algorithms to compute the canonical formulations, as we are going
to see in the next sections.

The control mechanisms in a make-to-stock pull control policy can be expressed by an
event graph. In this case (min,+) algebra will be useful to describe the policies. Note
that an equivalent representation of an event graph can be obtained using a queueing
network. It is this queueing network representation that we are using in the remainder
of the paper.

3.3. Structure of pull control systems and required counters

A production line using a pull control policy can be divided into two parts (see figure 3):

• The first part is composed of stocks Pi and manufacturing processes Fi where the
production flow takes place. Each stock is connected to a synchronization station on
which the second part of the system acts.

• The second part is the mechanism of the pull policy. It controls the production re-
quirement flow of information moving upstream the line.

In the production part of the system we use a counter at the end of each manufacturing
process Fi (represented by an oval in figure 3) and each buffer Pi (represented by a queue,
linked to a synchronization station in figure 3). The first counter, denoted by ui, detects
the outgoing of products from the manufacturing process and the other, denoted by vi,
counts the release of available parts from stocks. If a synchronization station coincides
with a counter ui or vi, then we denote it by Ui or Vi respectively. In the control part
of the system, an input counter d is used to detect the arrival of demands. The pull
control policy may require additional synchronization stations Wi, which we associate
with counters denoted by wi.

For an N-stage line, an arc connects the arrival of a demand, represented by a transition
called D, to a queue DN at the synchronization station VN . Depending on the policy,
some other arcs move from a transition D, Vi, Ui or Wi to an upstream transition Vj or
Wj .
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Figure 4. Counters for a two-stage basestock system
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Figure 5. Counters for a two-stage generalized kanban system

Figures 4 and 5 illustrate the notations and counters for a two stage basestock system
and a two stage generalized kanban system. The queues are labelled according to their
content (Pi, Di,...) and their initial value is indicated inside braces. Note that for both
systems, each arriving demand generates a production order in order to maintain buffers
Pi at their nominal levels denoted by Si. In the base stock system, this information is
immediately transmitted to all the stages, (via the synchronization stations Vi), whereas
for the generalized kanban, these production orders are not transmitted instantaneously
upstream since they must be associated with a free kanban (synchronization with queues
Bi). The production orders, waiting for free kanbans (in queues Bi) to be transmitted,
are put in queues Ai. There are thus additional synchronization stations called Wi (and
associated with counters wi). The Ki kanbans of a stage i circulate around the input and
the output of the processes Fi. They move from the input to the output of the process
attached to a part. To move from the output to the input of the process they must
be associated with a demand from downstream. Initially, when t = 0, we assume that
fi(0) = 0, di(0) = 0, pi(0) = Si and, for the generalized kanban, ai(0) = 0, bi(0) = Ki.

To calculate the �F ( �X) function, we first use the previously defined counters to obtain
the function of the time �F (t) whose components are:

fi (t) = fi (0) + vi−1 (t) − ui (t) for i = 1, · · · , N . (8)

Considering that the control part of the system is an event graph and that the ui(t)
and d(t) are inputs of this event graph, then the vi−1(t) can be expressed in terms of
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ui(t) and d(t) using a (min,+) algebra. Moreover counters ui(t) and d(t) can be linked
to variables xi through equations (9):

xi (t) − xi (0) = ui (t) − ui+1 (t) for i = 1, · · · , N − 1 and

xN (t) − xN (0) = uN (t) − d (t) .
(9)

They can then be removed and replaced by an expression using �X(t) in equation (8).
If all the counters are removed and replaced by the �X(t) components, we can obtain the
function �F ( �X) from �F (t) by substituting �X for �X(t).

3.4. A canonical formulation

In (Bollon et al. 2004), we calculated the functions �F ( �X) for four pull control policies:
basestock, kanban, extended kanban and generalized kanban. For these calculations we
used the (min,+) algebra notations that facilitated calculations and enabled us to obtain
concise expressions.

For these policies, the function fi( �X) always has the same structure, that we call the
canonical formulation. This formulation is given in equation (10), where the fractions
stand for the usual minus:

f1

(
�X
)

=
N+1⊕
j=1

(
C(1,j)

/
j−1⊗
k=1

xk

)
and

fi

(
�X
)

=
N+1⊕
j=i

(
C(i,j)

/
j−1⊗
k=i

xk

)
⊕ xi−1 for i = 2, · · · , N .

(10)

The parameters C(i,j) of this formulation define the policy and are calculated from the
control parameters of each policy, namely, Sk, the maximum level of finished products
of each stage k, and Kk, the number of kanbans in each stage k. For example, for a
basestock control policy, the parameters C(i,j), for 1 � i � j � N , are:

C(i,N+1) =
N⊗

k=i

Sk and C(i,j) = ε (11)

and for a generalized kanban control system the parameters C(i,j), for 1 � i � j � N ,
are:

C(i,N+1) =
N⊗

k=i

Sk and C(i,j) = Kj ⊗
j−1⊗
k=i

Sk. (12)

Note that for each parameter C(i,j), a control cell, like those introduced in (Bonvik
1996), including processes and stocks from Fi to Fj can be defined. In that control cell,
the number of parts should never exceed C(i,j).

In the next section, we show that a canonical formulation can be found for many other
pull policies and we derive an algorithm that enables us to compute this formulation
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Figure 6. Description of a class of policies having a canonical formulation

efficiently for all the policies. Then, in section 5, we extend this work to systems producing
batches.

4. Canonical formulation for more general pull control policies
without batch production

4.1. Existence for a class of pull policies

In this part we are going to show that it is possible to describe a class of pull policies
with our canonical formulation. This class is defined in proposition 4.1 and is illustrated
in figure 6.

In figure 6, a generic stage i is represented in grey. Most of the queues and transi-
tions are not necessarily present. Entities present in the upper part of figure 6 (called
”unchanging part”) are required. Those present in the lower part of the figure (called
”part depending on the policy”) can appear one or several times, or can be dismissed.
So manufacturing processes Fi, stocks Pi, queue DN , synchronization stations Vi−1, Ui

and D, arcs going downstream and the arc going from D to DN are all required. The arcs
that are going upstream can reach any of the upstream queues that are oriented in the
same direction. The synchronization station Ui which follows Fi enables us to locate the
counter ui and it often contains only one arc and has no utility for the policy itself (as
it was the case for the basestock policy in figure 4) .

Note that this class of policies, described in proposition 4.1 below, includes basestock
(figure 4), kanban, generalized kanban (figure 5), extended kanban and many other hybrid
policies, like those presented in (Bonvik 1996) and in (Liberopoulos and Dallery 2000).
An example of such a hybrid policy (CONWIP/Kanban) is given in figure 7.

Proposition 4.1: An N-stage queueing production system has a canonical formulation
Fi( �X) for i = 1, · · · , N given by equation (10), if it is defined as follows:

• In its production part the queueing system is composed of:
• Manufacturing processes Fi which are composed of a queue followed by a station Mi.
• Synchronization stations Ui (associated with counters ui (t)) having a unique input

coming from Mi and an output going to queue Pi.
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• Stocks with queues Pi. A queue P0 containing raw parts, and thus never empty, is
added.

• Synchronization stations Vi, for i = 0, · · · , N (associated with counters vi (t)) having
an input coming from Pi and an output going to Fi+1. Note that VN has an output
going outside the system.

• In the control part depending on the policy, the system can be composed of:
• Queues D(i,j) feeding Vi or W(i+1,k), for i = 0, · · · , N − 1 and j, k ∈ N.
• A queue DN feeding VN and fed by D.
• Synchronization stations Vi, Ui or W(i,j) (respectively associated with counters vi (t),

ui (t) and w(i,j) (t)) with outputs going to some queues D(k−1,l) feeding Vk−1 or
W(k,m), where 1 � k � i � N and l,m ∈ N. In a same stage we assume that
synchronization stations W(i,j) are ordered so that W(i,j)can not feed W(i,m) for
j � m.

Proof : of proposition 4.1
The values for fi(t) are given by equation (8). The difficulty relies in the way to express

counters vi as functions of counters ui. The queueing network for the control mechanisms
of the make-to-stock pull control policy, illustrated in figure 6, can be expressed by an
event graph with no delay. Synchronization stations correspond to transitions and queues
correspond to places. So a system of inequalities as in (4) can be set when describing the
dynamics of the event graph. For this system, input transitions (Zi in (4)) are Ui and D.
Other transitions (Yi in (4)) are Vi and W(i,j). Matrices A and B of relation (4) can be
obtained line by line by describing each transition by equations (as we did for the TEG
of figure 2).

The solution (5) of this system allows to express counters vi(t) and w(i,j)(t) as func-
tions of counters uk(t) and d(t). This solution can be calculated using a shortest path
search, as shown in section 3.2.3. For this, we define a graph G (see figure 7 for an ex-
ample) where vertices correspond to synchronization stations and where arcs between
vertices correspond to arcs between synchronization stations (note that stations Fi are
not represented in these graphs). The initial number of tokens in a queue at the end of
an arc gives the weight of this arc in the graph G. Counters vi and wi can be expressed as
functions of counters uj , for j = 1, · · · , N , and d. Note that for finding the fi functions,
we only need to express counters vi as functions of counters uj and d (see equation (8)).
Let us denote by g(i, j) the weight of the shortest path in G from Ui to Vj and by g(i)
the weight of the shortest path in G from D to Vi. Then the solution (5) of the system
of inequalities (4) can be written equivalently as in equation (6):

vi(t) =
N⊕

j=1

(g(j, i) ⊗ uj(t)) ⊕ (g(i) ⊗ d(t)) for i = 0, · · · , N . (13)

For a make-to-stock pull control policy following the definition of proposition 4.1 we have
(remember that pj(0) denotes the content of queue Pj at time 0) :

g(j, j) = pj(0) and g(j, i) = ε for 1 � j < i � N . (14)

So, after a simplification, the index j in equation (13) will not run from 1 to N but from
1 to i. From equations (8), (9), (13) and (14) we obtain the canonical formulation given
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Figure 7. Algorithm 4.2 for a CONWIP/Kanban policy

in equation (10). Parameters C(i,j) are then given by:

C(i,j) =

(
j−1⊗
k=i

pk(0)

)
⊗ g(j, i − 1) and

C(i,N+1) =

(
N⊗

k=i

pk(0)

)
⊗ g(i − 1) for 1 � i � j � N .

(15)

�

The proposition is thus proved and, through the use of equation (15), this proof enables
us to derive the algorithm 4.2 presented in the next section to compute the canonical
formulation.

4.2. An algorithm to compute the canonical formulation

The algorithm 4.2 below is able to calculate the canonical formulation for any policy
consistent with proposition 4.1. It uses the links that exist between (min,+) algebra
and the graphs, as shown in the proof of proposition 4.1. The core of this algorithm is
a shortest path search1. In figure 7 the algorithm is running for the CONWIP/Kanban
hybrid policy (see (Bonvik 1996) for more details on this policy). From left to right, one
can see the queueing network of this policy, the temporary graph G used for calculation,
and the computations for parameters C(i,j) of the canonical formulation.

Algorithm 4.2 We assume that fi(0) = 0 for i varying from 1 to N .

// Construction of a temporary graph G used for calculations
Add vertices to the empty graph G, corresponding to each Vi, Ui, D and W(i,j);
name them as the associated synchronization stations.

1Note that as all the weights on the arcs have positive values, we can use Dijkstra algorithm to compute the weight
of the shortest path of the graph
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Add an arc from a vertex to another every time an arc exists between the corre-
sponding synchronization stations. No arc should be added from Vi−1 to Ui. The
weight is given by the initial number of tokens present in the queue at the end of
the arc.

If (considering that there is an arc of weight fi(0) between Vi−1 and Ui

a zero length cycle exists) then
Print ” System is not alive”; exit

End if

// fi calculation :
For i from 1 to N do

For j from i to N do

C(i,j) =

(
j−1⊗
k=i

pk(0)

)
⊗ weight of the shortest oriented path from Uj to Vi−1 in G

End for j

C(i,N+1) =
(

N⊗
k=i

pk(0)
)
⊗ weight of the shortest oriented path from D to Vi−1 in G

If i = 1 then

Print f1

(
�X
)

=
N+1⊕
j=1

(
C(1,j)

/
j−1⊗
k=1

xk

)

Else

Print fi

(
�X
)

=
N+1⊕
j=i

(
C(i,j)

/
j−1⊗
k=i

xk

)
⊕ xi−1

End if
End for i

Note that when a zero length cycle is found in the graph obtained from G by adding
arcs of weight fi(0) = 0 from each Vi−1 to Ui, there is no solution because the system is
not alive. For example a kanban policy with a parameter Ki equal to zero is not alive.

In next section, we show how these computations can be extended to systems producing
batches.

5. Systems producing batches

5.1. Existence of a canonical formulation for a class of pull control
policies producing batches

Let us consider the category of pull control policies described by proposition 4.1. We
now assume that processes are producing batches of size Qi at stage i. The batch size of
demands is QN+1. As in (Axster and Rosling 1993), we assume that Qi is a multiple of
Qi+1, and QN+1 = 1. These choices prevent the system from having useless remaining
parts in a stage, and they also allow us to simplify the results.

First let us consider the case when processes are composed of an infinite input queue
followed by a server processing batches of size Qi. Batches of size one are then allowed
to enter the infinite input queue, but batches of size Qi are outgoing from the process.
Consequently nothing changes for the computation of the canonical formulation (10),
and the number of parts in process for stage i is given by fi( �X).
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Unified description of pull control policies 15

If we now consider that, at each stage i, inputs and outputs are batches of size Qi

for the process composed of an infinite queue followed by a station, then processes may
create some blocking. The synchronization station preceding the process must also deliver
batches of size Qi for parts and control information. To compute the functions fi( �X),
algorithm 4.2 can no longer be used. However, for a class of pull policy with batches, it is
possible to use a similar algorithm with a new notation1, as shown in algorithm 2. Note
that this class of policies with batches, described in proposition 5.1 below, includes the
installation and echelon kanban policies illustrated in figures 8 and 9, the installation and
the echelon stock (Q,r)-policies described in (Axster and Rosling 1993), and the hybrid
policies described in (Liberopoulos and Dallery 2003).

Proposition 5.1: The policy of a queueing system producing batches can be defined
by the functions

f1

(
�X
)

=

⎢⎢⎢⎣ N⊕
j=0

(
C(1,j)

/
j⊗

k=1

�xk	Qk+1

)⎥⎥⎥⎦
Q1

and

fi

(
�X
)

=

⎢⎢⎢⎣ N⊕
j=i−1

(
C(i,j)

/
j⊗

k=i

�xk	Qk+1

)
⊕ �xi−1	Qi

⎥⎥⎥⎦
Qi

for i = 2, · · · , N.

(16)

if it is defined as follows:

• The queueing system in its production part is composed of:
• Manufacturing processes Fi including an infinite queue followed by a station Mi

producing batches of size Qi. Inputs and outputs of the process are batches of size
Qi.

• Synchronization stations Ui (associated with the batch counter ui (t)) having a unique
input for batches of size Qi coming from Mi and an output going to the queue Pi.
Each output of Ui delivers batches of size Qi.

• Stocks with queues Pi. The raw parts queue P0 is never empty.
• Synchronization stations Vi (associated with the batch counter vi (t)) having an input

coming from Pi and an output going to Fi+1 or out of the system for i = N . Every
output from Vi are batches of size Qi+1. When batches are outgoing from Vi, Qi+1

parts are taken in each queue linked with it.
• In the control part, the system is composed of:

• Queues D(i,j) feeding Vi or W(i+1,k), for i = 0, · · · , N − 1 and j, k ∈ N.
• A queue DN feeding VN and fed by D.
• Synchronization stations Vi, Ui or W(i,j) (respectively associated with counters vi (t),

ui (t) and w(i,j) (t)) with outputs going to some queues D(k−1,l) feeding Vk−1 or
W(k,m), where 1 � k � i � N and l,m ∈ N. In a same stage we assume that
synchronization stations W(i,j) are ordered so that W(i,j)can not feed W(i,m) for
j � m. When batches are outgoing from W(i,j), Qi parts are taken in each queue
linked with it.

Proposition 5.1 is similar to proposition 4.1 except that on each stage i, synchroniza-
tion stations are making batches of size Qi+1, and that we obtain a modified canonical

1we denote by �α� the highest integer smaller than or equal to α and by �α�β = β
⌊

α
β

⌋
the highest multiple of β

smaller or equal to α
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formulation.
To prove proposition 5.1, it is enough to prove algorithm 5.2 below, which builds the

functions fi

(
�X
)

of equations (16).

5.2. An algorithm to compute the canonical formulation for batch
production systems

Algorithm 5.2 This algorithm is used for the queueing production system defined in
proposition 5.1 – notations are identical. We assume that fi(0) = 0 for i varying from 1
to N .

// Construction of a temporary graph G used for calculation
Add vertices to the empty graph G, corresponding to each Vi, Ui, D and W(i,j);
name them as the associated synchronization stations.

Add an arc from a vertex Uk, Vk−1, W(k,l) or D to a vertex Vi−1 or W(i,m) every
time an arc exists between the corresponding synchronization stations. The weight
on the arc is given by

⌊
d(i−1,j)

⌋
Qk

(or
⌊
d(i−1,j)

⌋
QN+1

if the arc is coming from D)
where d(i−1,j) (0) is the initial number of tokens present in the queue D(i−1,j) at the
end of the arc.

Add an arc from the vertex Uk to the vertex Vk, for k varying from 1 to N . The
weight on the arc is given by �pk (0)	Qk+1

.

// fi calculations :
For i from 1 to N do

For j from i to N do

C(i,j) =

(
j−1⊗
k=i

�pk(0)	Qk+1

)
⊗ weight of the shortest oriented path from Uj to Vi−1 in G

If
( ⌊

C(i,j)

⌋
Qi

= e
)

then print ”System is not alive”

End for j

C(i,N+1) =

(
N⊗

k=i

�pk(0)�
Qk+1

)
dN (0) ⊗ weight of the shortest oriented path from D to Vi−1 in G

If i = 1 then

Print f1

(
�X
)

=

⌊
N+1⊕
j=1

(
C(1,j)

/
j−1⊗
k=1

�xk	Qk+1

)⌋
Q1

Else

Print fi

(
�X
)

=

⌊
N+1⊕
j=i

(
C(i,j)

/
j−1⊗
k=i

�xk	Qk+1

)
⊕ �xi−1	Qi

⌋
Qi

End if
End for i

This algorithm is similar to algorithm 4.2. The number of customers in queues is
rounded off to a certain multiple, so some customers may not always be useful. We give
a proof for this algorithm 5.2 in appendix A.
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Note that there is a deadlock in the system only if a loop, including a manufacturing
process Fi can be found and the number of customers in this loop is not sufficient to
enable the manufacturing process to work.

No cycle can be found in the graph G because vertices can be ordered in such a way
that an arc is always going from a vertex to another one placed further away.

However, if C(i,j), for j 
= N + 1, is not equal to ε (the infinite value), then there is
a loop in the queueing network going upstream from Uj to Vi−1 in the control part and
downstream from Vi−1 to Uj in the production part. If

⌊
C(i,j)

⌋
Qi

is equal to e (the value

zero) then for any state vector �X, fi( �X) is equal to zero, which means that manufacturing
Fi never works and consequently the system is not alive.

5.3. Application of the algorithm for the formulation of some pull
policies

We are now going to apply proposition 5.1 to find the values of parameters C(i,j) for
some pull policies encountered in the literature. Note that in algorithm 5.2 above, only
the operator ⊗ (standing for the usual addition) appears in the expression giving C(i,j).
Thus, in the remainder of the section, we will use the usual notations for the addition
and the multiplication. The values of parameters C(i,j) are then given by:

C(i,j) =

(
j−1∑
k=i

�pk(0)	Qk+1

)
+ g(j, i − 1) and

C(i,N+1) =

(
N∑

k=i

�pk(0)	Qk+1

)
− dN (0) + g(i − 1)

for 1 � i � j � N,

(17)

where g(j, i − 1) is the weight of the shortest path in G from Uj to Vi−1 and g(i − 1) is
the weight of the shortest path in G from D to Vi−1.

5.3.1. Description of the installation and echelon kanban policies

These installation and echelon kanban policies, derived from the kanban and introduced
in (Liberopoulos and Dallery 2003), are illustrated by the queueing networks of figures 8
and 9 .

In such policies, there is a finite number of kanban cards, associated to each stage,
which is an integer multiple of the stage batch size Qi and will be denoted by KiQi. A
kanban may be either free or attached onto a part. When Qi free i-stage kanbans have
accumulated at stage i (in queue Di−1), an order of size Qi is placed at stage i. If Qi

parts are available in the output buffer Pi−1 of stage i− 1, the free kanbans are attached
onto these parts and are sent to the manufacturing process Fi of stage i. The kanbans
remain attached to the parts until they reach a certain final output buffer. When a part
leaves this final output buffer for a given stage i, the kanban that was attached to it is
detached and becomes a free kanban.

The difference between installation kanban and echelon kanban lies in the definition
of the final output buffer, i.e. the point after which kanbans are detached from parts,
which leads to a local transfer of information for the installation kanban policy and a
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Figure 8. Queueing network model of a two-stage production system controlled with an instal-
lation kanban policy
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Figure 9. Queueing network model of a two-stage production system controlled with an echelon
kanban policy

global transfer of information for the echelon kanban policy. In an installation kanban
policy, the final output buffer at a stage i is the output buffer Pi of stage i. In an echelon
kanban policy, the final output buffer at a stage i is the output buffer PN of last stage
N . The kanbans used in installation kanban and echelon kanban policies are respectively
referred to as installation and echelon kanban.

Note that in an installation kanban policy, every part in the manufacturing process Fi

or in the output buffer Pi of a given stage i has one stage-i installation kanban attached
on it. In an echelon kanban policy, every part in the manufacturing process Fi or in the
output buffer Pi of a given stage i has i echelon kanban attached on it, one from each of
stages 1 to i. Thus, in an echelon kanban policy, when a finished part is consumed by a
customer, N echelon kanbans are detached from the part and become free.

5.3.2. Calculation of fi
�(X) for the installation kanban policy

In order to calculate fi
�(X), it is sufficient to calculate the value of parameters C(i,j),

and then use relations (16) to obtain fi
�(X). Consider the graph G obtained for the

installation kanban, with algorithm 5.2. There is a path between each Uj and Vi for
i < j, with the weight �pj (0)	Qj+1

+
∑j

k=i �dk−1 (0)	Qk+1
. Thus we obtain:

Page 18 of 29

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 13, 2009 17:3 International Journal of Production Research IJPR˙oct09

Unified description of pull control policies 19

C(i,j) =
j∑

k=i

(
�pk (0)	Qk+1

+ �dk−1 (0)	Qk+1

)

=
j∑

k=i

(⌊
iI0k
⌋
Qk+1

+
⌊
KI

kQk − iI0k
⌋
Qk+1

)
and

C(i,N+1) = C(i,N) for 1 � i � j � N.

(18)

Parameters C(i,j) are using rounded values of queues level in Pk and Dk. It means
that all about the control for this policy can be expressed with rounded values of these
queues. So without loss of generality we assume that the initial installation stock iI0k is
an integer multiple of Qk+1 for k = 1, · · · , N and parameters in (18) become:

C(i,j) =
j∑

k=i

(KI
kQk) and

C(i,N+1) = C(i,N) for 1 � i � j � N,

(19)

which shows that the behavior of the installation kanban policy does not depend on
the initial installation stock iI0i but only on the batch sizes Qi and the integers Ki for
each stage i. Note that we obtain the same values for the parameters C(i,j) than for
the kanban policy presented in (Bollon et al. 2004), if we consider that the number of
kanbans in stage k is KI

kQk.

5.3.3. Calculation of fi
�(X) for the echelon kanban policies

Consider the graph G obtained for the echelon kanban, with algorithm 5.2. No path
can be found between Uj and Vi for i < j � N − 1. However, one path of weight
pN (0) + di−1(0) is present between UN and each transition Vi−1, and a path of weight
di−1(0) is present between d and each transition Vi−1. We thus obtain:

C(i,j) = +∞

C(i,N+1) = C(i,N) =
N∑

k=i

�pk (0)	Qk+1
+ di−1 (0)

=
N∑

k=i

⌊
iI0k
⌋
Qk+1

+ KE
i Qi − IE0

i

for i = 1, · · · , N and j = i, · · · , N − 1 .

(20)

Again, we assume that the initial installation stock iI0k is a multiple of Qk+1 for k =
1, · · · , N , and the parameters in (20) become:
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C(i,j) = +∞
C(i,N+1) = C(i,N) = KE

i Qi for i = 1, · · · , N and j = i, · · · , N − 1 .
(21)

6. Possible uses of our formulation

The formulation presented in the previous sections can be used for a qualitative or a
quantitative comparison of pull policies.

6.1. Qualitative comparison between pull policies

6.1.1. Identification of existing equivalences between some policies

We consider that two systems, with the same manufacturing process, have an identical
behavior if they have the same dynamics, defined by vector �F ( �X). When a manufacturing
process contains only one server, it can be either on or off. A manufacturing process Fi

is off if fi = 0 and is on if fi � 1. So, two policies have a same control if and only if
all the functions min(1, fi( �X)) for i = 1, . . . , N are equal for any admissible state �X, for
both policies.

For more general manufacturing processes, two policies have an identical behavior if
and only if all the fi( �X) functions are equal. In order to compare functions fi( �X), we
must examine the arguments of the min functions of the canonical formulation (10).
These arguments are equal if parameters Ci,j of the canonical formulation are equal for
both policies.

If all the functions fi( �X) obtained for a given policy are lower than the ones obtained for
a second policy, then, the production capacity of the first policy is always lower than the
one for the second policy. For example, if an extended kanban system and a generalized
kanban system have identical parameters, then for any given state vector �X, the number
of parts in each process of the extended kanban system Fi is always greater than or
equal to the number of parts in each process of the generalized kanban system (compare
functions fi( �X) for i varying from 1 to N). So, with the same parameters, the production
capacity for an N -stage extended kanban system is higher than the production capacity
for an N -stage generalized kanban system as pointed out in (Dallery and Liberopoulos
2000).

Thus, by comparing the values of the fi( �X) functions, we can find under which condi-
tions a policy has the same behavior as another one. In (Bollon et al. 2004), we compared
extended kanban and generalized kanban policies this way, using a polyhedral compari-
son, and we found all the possible parameter values for which the extended kanban and
the generalized kanban have the same dynamics.

As an illustration, let us consider now again the installation kanban and echelon kanban
policies presented in section 5.3.1.

Remember that for each parameter C(i,j) 
= +∞, a control cell can be defined, in which
the number of customers is limited by C(i,j). The echelon and installation stock kanban
policies are controlling the inventory positions

∑N
k=i �xk	Qk+1

which have to reach the
levels C(i,N+1) without exceeding them for i = 1, · · · , N .

For the echelon kanban policy a control is done on the inventory position
∑N

k=i �xk	Qk+1
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with maximum level C(i,N+1) but also on the inventory position
∑N−1

k=i �xk	Qk+1
with

maximum levels C(i,N) for i = 1, 2, · · · , N .
For the installation kanban policy a control is done on the inventory positions

∑j
k=i �xk	Qk+1

with maximum levels C(i,j+1) for i = 1, 2, · · · , N and for j = 1, 2, · · · , N . Parameters
C(i,i) for i = 1, 2, · · · , N control the maximum number of parts in Fi.

So the control on the level of inventory positions with an installation kanban is more
restrictive than with an echelon kanban. On the other hand the production may be slowed
down by this control on inventory positions.

6.1.2. Identification of properties of some policies

It is also possible to compare a policy with itself with different parameters values in
order to find some properties. That way we can find some useless kanbans for the GKCS
as it was pointed out in (Buzacott 1989).

As an illustration, we consider again the installation kanban and echelon kanban poli-
cies presented in section 5.3.1 and we use our formulation to find how deadlocks can be
avoided:

In algorithm 5.2 the system is considered to be not alive if there exists i and j such
that

⌊
C(i,j)

⌋
Qi

is equal to zero.
With the installation kanban we have (see equation(19)):

⌊
C(i,j)

⌋
Qi

�
⌊
C(i,i)

⌋
Qi

=
⌊
KI

iQi

⌋
Qi

for 1 � i � j � N .

Then a deadlock is avoided if
⌊
C(i,i)

⌋
Qi


= 0, which leads to:

KI
i � 1 for i = 1, · · · , N.

With the echelon kanban we have (see equation(21)):

⌊
C(i,N)

⌋
Qi

=
⌊
KE

i Qi

⌋
Qi

for i = 1, · · · , N.

Then a deadlock is avoided if

KE
i � 1 for i = 1, · · · , N.

6.2. Quantitative comparison between pull policies

The idea is to calculate an average cost for a large class of policies in order to facilitate
their quantitative comparison. The considered cost increases with the number of parts
present in the production system and with the number of demands that are not imme-
diately satisfied and are thus backordered. It can be calculated from the steady state
probabilities for all the states. We thus have to solve a Markov chain representing all
the possible changes in the states of a given production system. We show here how this
Markov chain can be obtained using the formulation proposed in this paper. In order
to limit the complexity of this Markov chain, we limit here our study to the case of a
2-stage system, with exponential service times. The state vector is then �X = (x1, x2) and
enables to count the number of finished parts (x2, when it is positive), the number of
backordered demands (x2, when it is negative) and the number of intermediate products
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in the production system (x1). In each stage i, the exponential station with service rate
μi is stopped when fi( �X) = 0 or working, with rate μi, when fi( �X) 
= 0. Demands arrive
according to a Poisson process with rate λ. There is an infinite number of states �X since
there is not limit to the accumulation of backordered demands (x2 can thus tend towards
−∞). The possible states and transitions depend on f1( �X) and f2( �X), which define the
control policy. We limit our study to the policies for which the number x1 of products
in the intermediate buffer and in the manufacturing process of station 2 is bounded by
a value called xmax

1 (see Figure 10 for an example). This enables a repetitive structure
for the Markov chain. We also assume that the control curve of station 2 consists in
producing only until a level xmax

2 of finished products is reached in the output buffer
of station 2. We thus have f2( �X) = min(x1, x

max
2 − x2). At xmax

2 , the control curve of
station 2 has a given abscissa, x1 which increases as x2 decreases. When it reaches the
value xmax

1 , the control curve of station 1 becomes vertical and authorizes the processing
of at most xmax

1 products. As its structure is repetitive and infinite, the Markov chain
can be solved using the matrix geometric method (Neuts 1981). In the next section, we
propose a way to number the states in order to obtain a Markov chain that can be solved
using the matrix geometric method. Note that the base stock policy can not be studied
the same way since the structure of the obtained Markov chain is not repetitive, due to
a non bounded value of x1.

6.2.1. States numeration

Figure 10 illustrates the proposed states numeration for a policy such that xmax
1 = 5.

This numeration counts the states from the left to the right, and from the top to the
bottom. We can observe an horizontal line, between ordinates 4 and 5, which represents
the control curve for station 2. We have xmax

2 = 5. The numbers in grey represent the
states for which both stations are on. For state 1, station 1 is on and station 2 is off.
For state 2, both stations are off. For state 5, station 2 is on and station 1 is off. The
transitions between states are shown on the right part of Figure 10.

1 2
3 4 5
6 7 8 9
10 11 1213 14
15 16 1718 19
20 21 22 2324 25
26 27 28 2930 31
32 33 34 3536 37
38 39 40 4142 43
44 45 46 4748 49
50 51 52 5354 55
56 57 58 5960 61
62 63 64 6566 67
68 69 70 7172 73
74 75 76 7879 80
81 82 83 8485 86
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Figure 10. An example of states numeration and transitions between states for a policy
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Let us consider the particular case of a generalized kanban system.
Figure 11 illustrates the control curve and the infinitesimal generator for a generalized

kanban system with parameters: K2 = 1, S1 = 1, and S2 = 5 (K1 taking any value). For
this example, we have xmax

2 = 5 and xmax
1 = 2 .

with

Figure 11. Control curve and infinitesimal generator for a generalized kanban system with K2 =
1, S1 = 1, and S2 = 5.

The structure of the infinitesimal generator shown in figure 11, can be generalized for
any policy for which the control curve of station 2 is horizontal and the control curve of
station 1 becomes vertical after a given value of x2 (see figure 10). We then obtain an
infinitesimal generator with the following structure:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A0 0 0 0 0
. . .

C0 B1 A1 0 0 0
. . .

0 C1
. . . . . . 0 0

. . .

0 0
. . . Bi Ai 0

. . .

0 0 0 Ci Bi Ai
. . .

0 0 0 0 Ci Bi
. . .

. . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

The rank i used in matrix (22) represents the number of ordinates x2 for which there
are less than (xmax

1 + 1) states, i.e. the number of lines, among the states, for which the
control curve is not yet vertical.

On figure 10, for x2 varying from 5 to 1 there are less than 6 states by line, thus i = 5.
On figure 11, there are less than 3 states by line only for x2=5, and, again, i = 1.

Components A0, A1, ...Ai, B0, B1, ...Bi, C0, C1, ... and Ci are submatrices. For j < i
submatrices Aj , Bj and Cj have respectively n, n and m rows and m, n and n columns.
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Number n (respectively m) corresponds to the number of states whose ordinate x2 is
(xmax

2 − j) (respectively (xmax
2 − j − 1) ). If n = m then sub-matrices Aj, Bj, and Cj

have components that are identical to those of Ai, Bi, and Ci, but they have less rows and
colums. Submatrices Ai,Bi, and Ci have xmax

1 rows and xmax
1 columns; they are defined

by:

Ci =

⎛
⎜⎜⎜⎜⎜⎝

0
μ2 0

μ2
. . .
. . . 0

μ2 0

⎞
⎟⎟⎟⎟⎟⎠ , Bi =

⎛
⎜⎜⎜⎜⎜⎝

−Λ1 μ1

−Λ2
. . .
. . . μ1

−Λ2 μ1

−Λ3

⎞
⎟⎟⎟⎟⎟⎠ , and Ai =

⎛
⎜⎜⎜⎜⎜⎝

λ
λ

. . .
λ

λ

⎞
⎟⎟⎟⎟⎟⎠

with Λ1 = μ1 + λ , Λ2 = μ1 + μ2 + λ, and Λ3 = μ2 + λ .
Each submatrix represents transitions between states subsets; these subsets contain

states having the same ordinate x2 in the state space.
These subsets are represented in figure 10 by ovals.
Assuming that f2

(
�X
)

= min (x1, x
max
2 − x2), i.e. station 2 is on as long as a level

xmax
2 of finished products is not reached, and assuming that f1( �X) verifies the properties

of optimal control curves (i.e. D-monotony), then, we have n = m − 1 if n 
= m. For
n = m − 1, Bj has the same structure as Bi, Aj has the same structure as Ai to which
the last row is removed, and Cj has the same structure as Ci to which the first row is
removed. Submatrix B0 differs from Bi by its diagonal. Its structure is the following:

B0 =

⎛
⎜⎜⎜⎝

−Λ1 μ1

. . . . . .
−Λ1 μ1

−λ

⎞
⎟⎟⎟⎠ (23)

With the above infinitesimal generator, we are now able to use the matrix geometric
method (Neuts 1981) in order to calculate the steady state probabilities for all the states.
From these probabilities, we can derive the average number of finished products, x̄+

2 , the
average number of backordered demands, x̄−

2 , and the average number of intermediate
products in the production system, x̄1, by multiplying each possible value of variables x

+

2 ,
x

−
2 , and x1 by its probability. Then, we obtain the average cost as a linear combination

of these values.

7. Conclusion

In this paper, we showed that it is possible to describe a very large class of pull con-
trol policies (including well known ones, like kanban, CONWIP, basestock, generalized
kanban, extended kanban, but also many other hybrid policies, and their extensions to
systems producing batches) thanks to a rather simple mathematical formulation. This
formulation consists in a set of functions, which is the same for all the studied policies,
and whose parameters differ from one policy to another.
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We also provided computing algorithms that enable to calculate these parameter values
for different categories of systems modeled by queueing networks. These algorithms rely
on the shortest path search and on the use of (min,+) algebra tools, that facilitate
calculation and enable us to obtain concise expressions. They can easily be extended
to other production systems, like for example systems with assembly (or disassembly)
between stages.

The simplicity of our formulation allows to identify the existing equivalences between
some policies, by comparing their formulation’s parameters. This has been illustrated in
(Bollon et al. 2004) with the comparison of the dynamics of the extended kanban system
and the generalized kanban system. It would be interesting to develop an algorithm al-
lowing a systematic search of all the identical dynamics between two systems. Thus, when
introducing new control policies, this would facilitate the comparison of their behavior
to the behavior of existing ones.

Finally, this formulation can also be useful for the derivation of methods for evaluating
and comparing the performance of several pull control policies. We showed how a Markov
Chain can be obtained from the canonical formulation of several pull control policies and
solved in order to calculate the average cost associated with a policy. For simple cases,
limited to two stages with exponential service time, we are able to derive the exact
steady-state probabilities. It would be interesting to find a unique method enabling the
analysis of most of the pull control policies existing in the literature with more than two
stages. Such a common method would simplify the quantitative comparison of the pull
policies.
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Appendix A. Appendix

A.1. Properties for the operator �·�Q

Let �α	 be the highest integer smaller than or equal to α and �α	β = β
⌊

α
β

⌋
be the

highest multiple of β smaller or equal to α. We derived the following properties, for a
and b in Rmin, and c and d in N, that will be useful in the proof below:

�a ⊕ b	c = �a	c ⊕ �b	c (A1)

�a ⊗ �b	c	cd = ��a	c ⊗ �b	c	cd = ��a	c ⊗ b	cd (A2)

�a ⊗ �b	cd	c = �a	c ⊗ �b	cd = ��a	c ⊗ �b	cd	c . (A3)

If �Q and �X are vectors, respectively in N
n and in R

n
min, then we define another operator⌊

�X
⌋

�Q
which is in R

n
min, and whose component i is given by �xi	qi

.
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A.2. Proof of algorithm 5.2

Counters ui (t), vi−1 (t), and w(i,j) (t) are batch counters, so if we want to count parts it
suffices to multiply them by Qi, which gives respectively, with (min,+) algebra notations,
uQi

i (t), vQi

i−1 (t), and wQi

(i,j) (t). We still consider that Qi is a multiple of Qj whenever i < j.
The presence of these batches modifies equation 4. Consider for example a synchroniza-

tion station U which delivers batches of size Q, queues R and S are linked on to U and
they are respectively fed with V and W which respectively deliver batches of size Q′ and
Q”. The value for uQ is then the minimal solution of the following (min,+) inequality:

uQ (t) � �r (0) vQ′ (t) ⊕ s (0)wQ” (t)	Q .

For the queueing system described in proposition 5.1 we can obtain a system of inequali-
ties. Let ni be the number of synchronization stations Vj−1 and W(j,k) for 1 � j � i � N .

Let �X (t) be a vector of R
(1+nN+1)
min whose components are:

xni+1 (t) = vQi+1

i (t) , xni+j (t) = w
Qi+1

(i+1,j−1) (t) and x1+nN+1 (t) = d (t) .

Let �Y (t) be a vector of R
N
min whose components are:

yi (t) = uQi

i (t) .

Let �̃Q be a vector defined in N
1+nN+1 whose components are q̃j = Qi for ni−1 < j ≤ ni.

We then obtain

�X (t) �
⌊
A �X (t) ⊕ B �Y (t)

⌋
�̃Q

, (A4)

where A and B are matrices which belong respectively to R
(1+nN+1)×(1+nN+1)
min and R

(1+nN+1)×N
min .

The operator �·	 �̃Q
is defined at the end of appendix section A.1. We can also express the

inequalities system (A4) as below:

xi (t) �
⎢⎢⎢⎣1+nN+1⊕

j=1

aij xj (t) ⊕
N⊕

j=1

bij yj (t)

⎥⎥⎥⎦
q̃i

for i = 1 to (1 + nN+1). (A5)

If i < j, there is no arc from Vi−1 or W(i,k) to Vj or W(j,l), and then we obtain:

j ≤ nk < i ⇒ aij = ε. (A6)

Between Uj and Vj there is an arc going into the queue Pj, so bij = Pj for i = nj + 1.
Also, if i < j, there is no arc from Ui to Vj or W(j,k). So we have

(i > nj + 1) ⇒ bij = ε. (A7)

We are now going to prove that the minimal solution of the system (A4) is

�X (t) =
⌊
Ã∗ B̃ �Y (t)

⌋
�̃Q

, (A8)
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where Ã and B̃ are matrices which belong respectively to R
(1+nN+1)×(1+nN+1)
min and R

(1+nN+1)×N
min ;

the components of Ã are ãij = �aij	q̃j
and those of B̃ are b̃ij = �bij	Qj

if i ≤ nj, and

for i > nj we have b̃ij = �bij	q̃i
(i.e. b̃ij = �bij	min(q̃i,Qj)

). The star operator is defined as
follows:

Ã∗ =
⊕
k�0

Ãk. (A9)

From equation (A8), equation (A4) and the properties given by equations (A1),(A2),(A3).
we obtain:

�X (t) �
⌊
A
⌊
Ã∗ B̃ �Y (t)

⌋
�̃Q
⊕ B �Y (t)

⌋
�̃Q

�
⊕
k�0

⌊
A
⌊
Ãk B̃ �Y (t)

⌋
�̃Q

⌋
�̃Q

⊕
⌊
B �Y (t)

⌋
�̃Q

. (A10)

For �C a vector in R
(1+nN+1)
min we obtain from equations (A2) and (A6):

⌊
A
⌊

�C
⌋

�̃Q

⌋
�̃Q

=

⎛
⎝
⎢⎢⎢⎣1+nN+1⊕

j=1

aij �cj	q̃j

⎥⎥⎥⎦
q̃i

⎞
⎠

i

=

⎛
⎝
⎢⎢⎢⎣1+nN+1⊕

j=1

�aij	q̃j
cj

⎥⎥⎥⎦
q̃i

⎞
⎠

i

=
⌊
Ã �C
⌋

�̃Q
,

so we have ⌊
A
⌊
Ãk B̃ �Y (t)

⌋
�̃Q

⌋
�̃Q

=
⌊
Ãk+1 B̃ �Y (t)

⌋
�̃Q

. (A11)

From equations (A2), (A3) and (A7) we also have the property:

⌊
B �Y (t)

⌋
�̃Q

=
⌊
B
⌊
�Y (t)

⌋
�Q

⌋
�̃Q

=

⎛
⎝
⎢⎢⎢⎣ N⊕

j=1

bij �yj (t)	Qj

⎥⎥⎥⎦
q̃i

⎞
⎠

i

=

⎛
⎝
⎢⎢⎢⎣ N⊕

j=1

�bij	min(q̃i,Qj)
�yj (t)	Qj

⎥⎥⎥⎦
q̃i

⎞
⎠

i

=
⌊
B̃ �Y (t)

⌋
�̃Q

. (A12)

Then from equations (A10), (A11) and (A12), we can obtain1 as shown in (Baccelli
et al. 1992) for the solution (5), that �X (t) =

⌊
Ã∗ B̃ �Y (t)

⌋
�̃Q
. The functions fi( �X) are ob-

tained with
xni−1+1(t)

yi(t)
= v

Qi
i−1(t)

u
Qi
i (t)

= fi(t) and from equations (A13) similar to equations (9):

1The set Rmin has to be completed with (−∞), it is then denoted by Rmin. It is assumed that (−∞)+(+∞) = +∞.
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uQi

i (t)

u
Qi+1

i+1 (t)
=

�xi (t)	Qi+1

�xi (0)	Qi+1

=
�xi (t)	Qi+1

�pi (0)	Qi+1

and

uQN

N (t)
d (t)

=
xN (t)
xN (0)

=
dN (0)
pN (0)

⊗ xN (t) .

(A13)

We then prove algorithm 5.2 as it is done for algorithm 4.2.
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