
HAL Id: inria-00566359
https://hal.inria.fr/inria-00566359

Submitted on 16 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schedulability conditions for non-preemptive hard
real-time tasks with strict period

Mohamed Marouf, Yves Sorel

To cite this version:
Mohamed Marouf, Yves Sorel. Schedulability conditions for non-preemptive hard real-time tasks with
strict period. 18th International Conference on Real-Time and Network Systems RTNS’10, Nov 2010,
Toulouse, France. �inria-00566359�

https://hal.inria.fr/inria-00566359
https://hal.archives-ouvertes.fr

Schedulability conditions for non-preemptive hard real-time tasks

with strict period

Mohamed MAROUF

INRIA Rocquencourt

Domaine de Voluceau BP 105

78153 Le Chesnay Cedex - France

Email: mohamed.marouf@inria.fr

Yves SOREL

INRIA Rocquencourt

Domaine de Voluceau BP 105

78153 Le Chesnay Cedex - France

Email: yves.sorel@inria.fr

Abstract

Partial answers have been provided in the real-time lit-

erature to the question whether preemptive systems are

better than non-preemptive systems. This question has

been investigated by many authors according to several

points of view and it still remains open. Compared to pre-

emptive real-time scheduling, non-preemptive real-time

scheduling and the corresponding schedulability analy-

ses have received considerable less attention in the re-

search community. However, non-preemptive scheduling

is widely used in industry, and it may be preferable to

preemptive scheduling for numerous reasons. This ap-

proach is specially well suited in the case of hard real-time

systems on the one hand where missing deadlines leads

to catastrophic situations, and on the other hand where

resources must not be wasted. In this paper, we firstly

present the non-preemptive model of task with strict pe-

riod, then we propose a schedulability condition for a set

of such tasks, and finally we give a scheduling heuristic

based on this condition.

1 Introduction

The main goal of hard real-time systems is to guaran-

tee the schedulability of the task set on an uniprocessor

platform so that each task completes its execution within

its deadline. After the pioneering work of Liu and Lay-

land [1], a lot of works has been done in the area of hard

real-time scheduling to analyze and predict the schedula-

bility of a preemptive task set under different scheduling

policies and several task models. Although preemptive

sheduling is more efficient than non-preemptive schedul-

ing, this latter is important for a variety of reasons. Non-

preemptive scheduling algorithms are easier to implement

than preemptive algorithms, and can exhibit lower over-

head at run-time. Preemption destroys program local-

ity and affects the cache behavior, making the execution

times more difficult to characterize and predict [2, 3].

Although, some works allow the computation of the

exact cost of preemptions in the scheduling analysis [4],

usually this cost is approximated as stated by Liu and Lay-

land [1]. This approximation may lead to incorrect be-

haviour during the real-time execution of the tasks or at

least a waste of resources due to the WCET and memory

margins the designer must take. In the same vein the over-

head of preemptive scheduling algorithms is more difficult

to characterize and predict than the one of non-preemptive

scheduling algorithms. Since scheduling overhead is of-

ten ignored in scheduling models, an implementation of

a non-preemptive scheduler will be closer to the formal

model than an implementation of a preemptive sched-

uler. In this case, the cost of the scheduler itself could

be taken into account in schedulability conditions. Non-

preemptive scheduling on a uniprocessor naturally guar-

antees exclusive access to shared resources and data, thus

eliminating both the need for synchronization and its asso-

ciated overhead. In control applications, the input-output

delay and jitter are minimized for all tasks when using

a non-preemptive scheduling discipline, since the inter-

val between the start and end times is always equal to

the task computation time [5]. This simplifies the tech-

niques for delay compensation in the control design. In

many practical real-time scheduling problems involving

I/O scheduling, properties of device hardware and soft-

ware either make preemption impossible of prohibitively

expensive [6]. For these reasons, designers often use non-

preemptive approaches even if the theoretical results do

not extend easily to them [7].

In hard real-time systems some sensors and actuators

have accurate periods. In order to produce (resp. receive)

data at the right period the corresponding real-time tasks

must have strict periods. Strict period means that if the

task τi has the period Ti then ∀j ∈ N, Sj+1

i − Sj
i = Ti

[8], where τ j
i and τ j+1

i are respectively the ith and the

(i + 1)th repetitions of the task τi that we call instances,

and Sj
i and Sj+1

i are respectively their start times. On

the other hand, these sensor and actuator tasks always

cooperate with other tasks the periods of which may be

strict or not. In this paper, in order to simplify the prob-

lem, we shall assume that all the periods are strict rather

than a mixture of strict and non strict periods. In order to

schedule a set of non-preemptive strict periodic tasks, it

is enough to study the behaviors of these tasks for a time

interval equal to the least common multiple (LCM), called

the hyper-period [9].

It exists a lot of uniprocessor schedulability analyses

based on scheduling algorithms like RM and EDF, but as

they deal with non strict periods, their schedulability con-

ditions become at least a necessary conditions in the case

of strict periods.

This paper is organized as follows: in section 2 we

present the related work. Section 3 is devoted to the

schedulability analysis: we start by presenting the model

of tasks then we propose a schedulability analysis through

several theorems and corollaries. Section 4 gives a

scheduling heuristic, and finally, section 5 presents a con-

clusion and further work.

2 Related work

Preemption related problems have received considerable

attention in the real-time community. For example it exists

a lot of uniprocessor schedulability conditions for pop-

ular algorithms like RM and EDF [1]. Unfortunately,

these schedulability conditions become, at best, neces-

sary conditions [10] in the non-preemptive case. How-

ever, non-preemption related problems must not be ig-

nored since their resolutions may have great advantages

in term of schedulability as pointed out previously. On

the other hand these problems are NP-Hard in the strong

sense as Jeffay, Stanat and Martel [6] showed. Baruah and

Chakraborty [11] analyzed the schedulability of the non-

preemptive recurring task model and showed that there

exists polynomial time approximation algorithms for both

preemptive and non-preemptive scheduling. Buttazzo and

Cervin [5] used the non-preemptive task model to reduce

jitter. A comprehensive schedulability analysis of non-

preemptive systems was performed by George, Rivierre,

and Spuri [10]. The main difference between the works

previously presented and the works proposed in this pa-

per lies in the type of period we consider. We remind

the reader that usually periods are such that the difference

between the start times of two task instances may vary

whereas it is a constant in our case.

Cucu and al. [12, 13, 14] extended the result given

by George and al. [10] in two directions: first when

some non-preemptive tasks with strict periods have prece-

dences, and second when multiple pairs of such tasks

have latency constraints. These multiple latency con-

straints also called “end-to-end” constraints, possibly may

have themselves precedences. In the same context (non-

preemptive tasks with strict periods and precedences),

Kermia and al. gave in [15] a necessary and sufficient

schedulability condition for two tasks, which becomes a

sufficient condition for more than two tasks.

Eisenbrand and al. proposed a similar works in [16].

They studied the schedulability conditions of tasks which

have harmonic periods, i.e., for each pair (τi, τj), Ti | Tj

or Tj | Ti. This problem is a particular case of the general

problem presented in this paper.

3 Schedulability analysis

As the problem of scheduling a set of non-preemptive pe-

riodic tasks on an uniprocessor is NP-Hard in the strong

sense, we propose a scheduling heuristic based on a lo-

cal schedulability condition. This local condition assumes

that a set of tasks is already scheduled and verifies if a

new task added to this set leads to a new schedulable set

of tasks.

We start by studying the problem of two tasks, one al-

ready scheduled and a new task to be scheduled, then we

extend this result for a set of more than two tasks.

3.1 Tasks model

We consider real-time systems of non-preemtive tasks

with strict periods. We assume that every task has a dead-

line equal to its period. A non-preemptive task τi =
(Ci, Ti, Si) with the strict period Ti is characterized by:

• a period Ti equal to the deadline,

• a worst case execution time Ci ≤ Ti,

• a start time Si.

Afterwards, when the start time is unknown a task τi =
(Ci, Ti, Si) is denoted by τi = (Ci, Ti). We denote by Si

the start time of the first instance of a task τi: Si = S1
i .

The figure 1 shows an example of task with strict pe-

riod.

Figure 1: Model for non-preemptive tasks with strict pe-

riod

We assume that periods and WCETs are multiple of a

unit of time U , i.e. they are integers representing some

cycles of the processor clock. If a task τi with execution

time Ci is said to start at time unit t, it starts at the begin-

ning of time unit t and completes at the end of time unit

t + Ci − 1. Reciprocally, a time interval [t1, t2] denotes a

set of consecutive time units, given by {t1, t1 + 1, ..., t2}.

3.2 Schedulability analysis of two tasks

Before giving schedulability and non-schedulability con-

ditions for two tasks, we start by introducing some inter-

mediate results.

The next theorem presents a necessary and suffi-

cient condition for the schedulability of two tasks τ1 =
(C1, T1, S1) and τ2 = (C2, T2, S2) when the great com-

mon divisor (GCD) of the two task periods GCD(T1, T2)
is added to the start time Si, i = 1, 2 of a task τi, i = 1, 2.

Theorem 1 Two tasks τ1 = (C1, T1, S1) and τ2 =
(C2, T2, S2) are schedulable if and only if the tasks τ1 =
(C1, T1, S1) and τ ′

2 = (C2, T2, S
′

2) are schedulable,

where S′

2 = S2 + g and g = GCD(T1, T2).

Proof

We start by proving the sufficient condition. We assume

that the tasks τ1 = (C1, T1, S1) and τ2 = (C2, T2, S2) are

schedulable. Let ∆S1 (resp. ∆S2) be the time interval

between the start times of τ2 and τ1 (resp. τ ′

2 and τ1):

∆S1 = S2 − S1 and ∆S2 = (S2 + g) − S1. Lets ∆S be

the time interval between an instance of τ ′

2 and an instance

of τ1: ∆S = (S′

2+n·T2)−(S1+m·T1), where n, m ∈ N.

∆S = (S2 + g + n · T2) − (S1 + m · T1)

= (S2 − S1) + n · T2 − m · T1 + g

= ∆S1 + n · T2 − m · T1 + g.

According to Bezout’s theorem [17], ∃p, q ∈ Z such that

p ·T2+q ·T1 = g, where g = GCD(T1, T2). By choosing

p = −n and q = m we have: ∆S = ∆S1 − (p · T2 − q ·
T1 + g) = ∆S1.

So ∃n, m ∈ N : ∆S = ∆S1, which means that the

the difference between the start time of the first instances

of τ1 and τ2 is equal to the difference between the nth

instance of the task τ1 and the mth instance of the task

τ ′

2. As τ1 and τ2 are schedulable then τ1 and τ ′

2 are also

schedulable.

To prove the necessary condition, we assume that τ1 =
(C1, T1, S1) and τ ′

2 = (C2, T2, S
′

2) are schedulable, with

S′

2 = S2 + GCD(T1, T2).
Let ∆S = (S2 + n · T2) − (S1 + m · T1).

∆S = (S2 + (g − g) + n · T2) − (S1 + m · T1)

= (S2 + g − S1) + n · T2 − m · T1 − g

= ∆S2 + n · T2 − m · T1 − g.

According to the Bezout theorem ∃n, m ∈
N/n · T2 − m · T1 − g = 0, so ∃n, m ∈ N, ∆S = ∆S1

then the tasks τ1 and τ2 are schedulable ⊡

The next corollary is a direct deduction of the theorem

1. It shows that two tasks τ1 = (C1, T1, S1) and τ2 =
(C2, T2, S2) remain schedulable if

∀n ∈ N, n · GCD(T1, T2)

is added to the start time Si of a task τi.

Corollary 1 Two tasks τ1 = (C1, T1, S1) and τ2 =
(C2, T2, S2) are schedulable if and only if τ1 =
(C1, T1, S1) and τ ′

2 = (C2, T2, S
′

2) are schedulable,

where S′

2 = S2 + n · g, n ∈ N and g = GCD(T1, T2).

Proof

We prove this corollary by recurrence.

For n = 1, this corollary is equivalent to the theorem

1. For n ≥ 2 we assume that τ1 = (C1, T1, S1)
and τ ′

2 = (C2, T2, S2 + n.g) are schedulable. Ac-

cording to the theorem 1, τ1 = (C1, T1, S1) and

τ ′

2 = (C2, T2, (S2+n·g)+g) = (C2, T2, S2+(n+1)·g))
are also schedulable, so τ1 = (C1, T1, S1) and

τ ′

2 = (C2, T2, S2 + (n + 1) · g) are schedulable

⊡

Remark 1 The corollary 1 can be reformulated, by re-

placing n from corrolary 1 by 1, as follows:

Two tasks τ1 = (C1, T1, S1) and τ2 = (C2, T2, S2)
are schedulable if and only if τ1 = (C1, T1, S1) and

τ2 = (C2, T2, S2mod(GCD(T1, T2))) are schedulable.

Where mod(GCD(T1, T2)) is the modulo function of

GCD(T1, T2).

Using the previous results, the following theorem gives

a necessary and sufficient condition of the schedulability

for two tasks τ1 = (C1, T1, S1) and τ2 = (C2, T2, S2).

Theorem 2 Two tasks τ1 = (C1, T1, S1) and τ2 =
(C2, T2, S2) are schedulable if and only if

C1 ≤ (S2 − S1) mod(g)) ≤ g − C2 (1)

where g = GCD(T1, T2).

Proof

We start by proving that the condition (1) is a sufficient

condition. Let T1 = n1 · g and T2 = n2 · g where

g = GCD(T1, T2) and n1 ∧ n2 = 1. Without loss of

generality, we assume that S1 = 0.

The condition (1) becomes

C1 ≤ S2 mod(g) ≤ g − C2. (2)

According to the remark 1, the condition (2) becomes

C1 ≤ S2 ≤ g − C2. (3)

Each instance of the task τ1 is executed in the interval

I1 =

+∞
⋃

n=0

[n · T1, n · T1 + C1]

=
+∞
⋃

n=0

[(n · n1) · g, (n · n1) · g + C1]

and each instance of the task τ2 is executed in the interval

I2 =

+∞
⋃

m=0

[m · T2 + S2, m · T2 + S2 + C2]

=

+∞
⋃

m=0

[(m · n2) · g + S2, (m · n2) · g + S2 + C2].

For each interval of time of length g, an instance of τ1

is executed in the interval [0, C1] and an instance of τ2 is

executed in the interval [S2, S2 + C2].
The condition (3) gives: C1 ≤ S2 and S2 + C2 ≤ g.

So [0, C1] ∩ [S2, S2 + C2] = ∅ then the tasks τ1 and τ2

are schedulable.

To prove the necessity of the condition (1), we show

that if the condition (1) is not satisfied then the tasks τ1

and τ2 are not schedulable. Without loss of generality, we

assume that S1 = 0. The condition (1) is not satisfied

means that:

S2 mod(g) < C1 or g − C2 < S2 mod(g).

According to the remark 1, the last condition becomes:

S2 < C1 or g − C2 < S2.

The first condition S2 < C1 means that an instance

of the task τ2 starts its execution before the end of the

execution of the instance of the task τ1, then the two tasks

τ1 and τ2 are not schedulable.

The second condition g−C2 < S2 becomes g < S2 +
C2, which means that an instance of the task τ2 completes

its execution outside a time interval of length g, so it will

overlap an instance of τ1 which start it execution exactly

at the bigenning of a time interval of length equal to g,

then the τ1 and τ2 are not schedulable.

So in these two last cases the tasks τ1 and τ2 are not

schedulable, which prove the necessety of the condition

(1) ⊡

Example 1 Let consider two tasks τ1 = (1, 8, 0)
and τ1 = (2, 12, 5). GCD(T1, T2) =
GCD(8, 12) = 4, GCD(T1, T2) − C2 = 2 and

(S2 − S1) mod(GCD(T1, T2)) = 5 mod(4) = 1. So

the condition (1) is satisfied then the tasks τ1 and τ2 are

schedulable (figure 2).

Figure 2: Scheduling of two tasks

The following corollary gives a specific condition of

schedulability for two tasks. Notice that in this corol-

lary the start times are useless because two tasks can be

schedulable with many different start times.

Corollary 2 Two tasks τ1 = (C1, T1) and τ2 = (C2, T2)
are schedulable if and only if:

C1 + C2 ≤ GCD(T1, T2) (4)

Proof

From the condition (1) of the theorem 2 we have:

C1 ≤ GCD(T1, T2) − C2

then

C1 + C2 ≤ GCD(T1, T2)

⊡

This corollary was presented in [15] as a general

necessary and sufficient schedulability condition. We

prove here that it is only a specific case of theorem 2.

The theorem 2 gives a time intervals for the schedula-

bility of two tasks. The next theorem gives a non schedu-

lability condition based on the computation of comple-

mentary intervals to the intervals where two tasks are

schedulables.

Theorem 3 Two tasks τ1 = (C1, T1, S1) and τ2 =
(C2, T2, S2) are not schedulable if and only if:

(S2 − S1)mod (GCD(T1, T2)) ∈

[0 , C1[∪](GCD(T1, T2) − C2) , GCD(T1, T2)[
(5)

Proof

Two tasks are not schedulable if and only if the schedu-

lability condition of the theorem 2 is not satisfied, which

means that:

C1 ≥ (S2 − S1) mod(GCD(T1, T2)) (6)

or

(S2 − S1) mod(GCD(T1, T2)) ≥ GCD(T1, T2) − C2.
(7)

As

0 ≤ (S2 − S1) mod(GCD(T1, T2)) ≤ GCD(T1, T2)

then the condition (6) becomes

0 ≤ (S2 − S1) mod(GCD(T1, T2)) ≤ C1

and the condition (7) becomes

GCD(T1, T2) − C2 ≤ (S2 − S1) mod(GCD(T1, T2))

(S2 − S1) mod(GCD(T1, T2)) ≤ GCD(T1, T2).

And finaly

(S2 − S1)mod (GCD(T1, T2)) ∈

[0 , C1[∪](GCD(T1, T2) − C2) , GCD(T1, T2)[

⊡

Example 2 Let consider the same tasks of the example 1

and change the start time of the task τ2: τ1 = (1, 8, 0) and

τ2 = (2, 12, 3). We have:

(S2 − S1)mod(GCD(T1, T2)) = 3mod(4) = 3

and the time interval

](GCD(T1, T2) − C2) , GCD(T1, T2)[=](4 − 2) , 4[

=]2 , 4[.

The condition (5) is satisfied then the tasks τ1 and τ2 are

not schedulable. As we can see in the figure 3, the third

instance τ3
1 of the task τ1 starts its execution before that

the second instance τ2
2 of the task τ2 has completed its

execution.

Figure 3: Overlapping of two tasks

The following corollary gives a specific condition of

non schedulability for two tasks.

Corollary 3 A set of n tasks Γn = {τ1 = (Ci, Ti), i =
1, n} is not schedulable if at least two tasks τi and τj of

Γn have comprime periods:

∃(i, j) ∈ [1, n]2 such as GCD(Ti, Tj) = 1 (8)

Proof

If ∃(i, j) ∈ [1, n]2, GCD(Ti, Tj) = 1:

The condition (5) of non schedulability of two tasks gives:

[0 , C1[∪](GCD(T1, T2) − C2) , GCD(T1, T2)[=

[0 , C1[∪]1 − C2 , 1[

and

(S2 − S1)mod (GCD(T1, T2)) = 0.

Thus the condition (5) is satisfied so τ1 and τ2 are not

schedulable ⊡

This corollary was presented in [18] as a general

necessary and sufficient non schedulability condition. We

prove here that it is not true because it is only a specific

case of theorem 3 which gives a general necessary and

sufficient non schedulability condition.

The next theorem gives the possible start times of the

second task to be scheduled when the first task is already

scheduled.

Theorem 4 Let τ1 = (C1, T1) be a task already sched-

uled and τ2 = (C2, T2) the task to be scheduled. If

τ1 = (C1, T1) and τ2 = (C2, T2) are schedulable then

the possible start times S2 of τ2 are given by: ∀n ∈ N and

∀m ∈ [C1, GCD(T1, T2) − C2]

S2 = S1 + n · GCD(T1, T2) + m (9)

Proof

Let assume that a task τ1 = (C1, T1) is already sched-

uled and a task τ2 = (C2, T2) is a task to be sched-

uled. According to the theorem 2, τ1 = (C1, T1) and

τ2 = (C2, T2) are schedulable if and only if:

C1 ≤ (S2 − S1) mod(g)) ≤ g − C2

where g = GCD(T1, T2). Let (S2 − S1) mod(g) = n
with C1 ≤ n ≤ g − C2

which is equivalent to:

S2 − S1 = n + m · g with C1 ≤ n ≤ g − C2 and m ∈ N

so S2 = S1+n+m·g with C1 ≤ n ≤ g−C2 and m ∈ N ⊡

Example 3 Let consider a task τ1 = (1, 10) already

scheduled and τ2 = (3, 15) the task to be scheduled.

We assume that the start time of τ1 is S1 = 0. As

GCD(T1, T2) = 5 and C1 +C2 = 4 ≤ 5 so the condition

(4) is satisfied then the tasks τ1 and τ2 are schedulable.

The theorem 5 gives:

S2 = 0 + n · 5 + m where n ∈ N and 1 ≤ m ≤ 5 − 3.

So S2 = 5 · n + m where n ∈ N and 1 ≤ m ≤ 2.

S2 belongs to the following set:

S2 ∈ {1, 2, 6, 7, 11, 12, 16, 17, · · ·}.

The figure 4 shows some possible start times of the task

τ2.

1 (1,10) 2 (3,15)

t0 10 20 30

t0 10 20 30

t0 10 20 30

t0 10 20 30

t0 10 20 30

t0 10 20 30

1

2

6

7

11

12

Figure 4: Scheduling possibilities for two tasks

3.3 Schedulability analysis for more than

two tasks

Contrary to the schedulability study for two tasks where

a necessary and sufficient condition of schedulability ex-

ists, there is no necessary and sufficient condition for more

than two tasks [15].

It has been proven in [15] that the necessary and suffi-

cient condition of schedulability for two tasks (4) given in

the corollary 2 becomes a sufficient condition in the case

of more than two tasks:

n
∑

i=1

C(ti) ≤ GCD(∀i, Ti) (10)

However, it is a very restrictive condition of schedula-

bility for a set of tasks. The next example illustrates this

restriction.

Example 4 Let consider four tasks τ1 = (1, 6), τ2 =
(1, 8), τ3 = (1, 12) and τ4 = (1, 24). We have g =
GCD(T1, T2, T3, T4) = 2. These four tasks do not sat-

isfy the condition (10)

4
∑

i=1

Ci = 4 > g.

However, this set of tasks is schedulable as shown in the

figure 5.

Figure 5: Scheduling of four tasks

The next theorem gives a schedulability condition for a

set of tasks that does not satisfy the condition (10).

Theorem 5 Let Γn = {τi = (Ci, Ti), i = 1, n} be a

set of tasks that satisfies the condition (10). Let τc be the

task to be scheduled such as Γn ∪ {τc} does not satisfy

the condition (10). τc is schedulable if: ∃τi = (Ci, Ti) ∈
Γn, Ti 6= g such as

Ci · δ (Tcmod(Ti)) ≥ Cc (11)

Where mod is the modulo function and δ is the Kronecker

symbol:

δ[i] =

{

1 if i = 0
0 otherwise

Proof

The condition (11) is equivalent to

Tc is a multiple of Ti and Ci ≥ Cc.

We assume that the tasks of Γn satisfy the condi-

tion (10) and all their first instances τ1
i are sched-

uled in the time interval [0, g]. In a time interval

[n · g, (n + 1) · g], an instance τ j
i is executed during the

interval [n · g + Si, (n + 1) · g + Si + Ci], and no other

instance of Γn could be executed in this interval. As we

supposed that Ti > g then some intervals of length g do

not contain any instance of τi. In these intervals we can

schedule a task which has the same period and WCET

as τc. As such a task can be scheduled thus the task τc

which has the same or a multiple period as τi and a worst

execution time Cc ≤ Ci, can be scheduled ⊡

Theorem 6 Let Γn = {τi = (Ci, Ti), i = 1, n} be a

set of tasks that satisfies the condition (10). Let τc be the

task to be scheduled such as Γn ∪ {τc} do not satisfy the

condition (10). τc is schedulable if: ∃τi = (Ci, Ti) ∈
Γn, Ti > g such as

Ci · δ (Tc · mod(2g) + Ti · mod(2g)) ≥ Cc (12)

Proof

The condition (12) is equivalent to:

Ti and Tc are multiple of 2 · g and Ci ≥ Cc.

We assume that the tasks of Γn satisfy the condition (10)

and all their first intances τ1
i are scheduled in the time

interval [0, g].
Let Ti = 2 · ni · g and Tc = 2 · nc · g.

Let Sc = Si + g.

The start times of the instances τ j
i and τ j

c are given by

Sj
i = Si + n · Ti = Si + 2n · ni · g, n ∈ N

and

Sj
c = Si + g + m · Tc = Si + g + 2m · nc · g, n ∈ N.

The instances τ j
c and τ j

i overlap if Sj
c = Sj

i then

∃n, m ∈ N, Si + g + 2m · nc · g = Si + 2n · ni · g which

gives 2m · nc + 1 = 2n · ni or 2(n · ni −m · nc) = 1 that

is impossible, so no instance τ j
c overlaps τ j

i , then the task

τc is schedulable ⊡

Corollary 4 Let Γn = {τi = (Ci, Ti), i = 1, n} be a set

of tasks that satisfy the condition (10). Let τc be the task

to be scheduled. τc is schedulable if:

[

g −
n

∑

i=1

Ci

]

· δ [Tc · mod(g)]

+

n
∑

i=1

Ci · δ [Tcmod(Ti) · (Tc · mod(2g) + Ti · mod(2g))]

≥ Cc.
(13)

Proof

The condition (13) can be written as

[g −
∑n

i=1
Ci] · δ [Tc · mod(g)]

+

n
∑

i=1

Ci · δ [Tcmod(Ti)] · δ [Tc · mod(2g) + Ti · mod(2g)]

≥ Cc.
(14)

Let τc = (Cc, Tc) the task to be scheduled.

If g −
∑n

i=1
Ci > 0 and Tc is a multiple of g then the

task τ ′

c = ((g −
∑n

i=1
Ci), T c) is schedulable.

If ∃τi ∈ Γn such as Tcmod(Ti) = 0 or Tcmod(2g) +
Ti · mod(2g) = 0 then the task τ ′′

c = (Ci, Tc) is schedu-

lable.

Let Γs be the set of tasks τ = (Ci, Tc) which

are schedulable. If
∑

τci
∈Γs

Ci ≥ Cc than the task

τc = (Cc, Tc) is schedulable ⊡

The following section presents the scheduling heuristic

based on this schedulability condition.

4 Scheduling heuristic

Now, we propose a scheduling heuristic based on the

schedulability condition presented in the previous section.

First, the heuristic (algorithm 1) initializes the set Γ with

the system of n tasks to schedule, and the sets Γ′, Γ′′, Γ′′′

and Γs with the empty set. Γ′ will contain the schedula-

ble tasks that satisfy the condition (10) and Γ′′ = Γ \ Γ′

will contain the relative complement set of Γ′ in Γ. Γs

will contain the schedulable tasks that satisfy the condi-

tion (13). Γ′′′ is used for temporary computations. The

heuristic builds iteratively, according to the index k of the

task τk from Γ, the set Γ′ of tasks which satisfies the con-

dition (10). Then it creates the set Γ′′ = Γ \ Γ′, and

it applies iteratively, according to the index i of the task

τi from Γ′′, the schedulability condition (13) as follows.

To schedule a task τi from Γ′′, the heuristic computes

iteratively, according to the index j of the task τj from

Γ′, Cj · δ [Timod(Tj)] · δ [Ti · mod(2g) + Tj · mod(2g)],

and adds them to g −
n

∑

i=1

Ci. If the condition (13) is

satisfied, that is the result of the previous summation

is greater or equal to the Ci of the task τi, then this

latter task and the tasks τj which satisfy the condition

Ti · mod(g) · (Ti · mod(2g) + Tj · mod(2g)) = 0, are

moved to the set Γs. The heuristic stops when Γ′ or Γ′′

becomes empty. Finally, if the set Γ′′ is empty then the

initial set Γ, else it is not schedulable but the set Γs ∪ Γ′

is schedulable.

The following example illustrates the execution of our

heuristic in the case of a set of four tasks.

Example 5 Let consider a set of six tasks Γ = {τ1 =
(1, 12), τ2 = (3, 16), τ3 = (1, 20), τ4 = (2, 24), τ5 =

(1, 40)}, g = GCD(12, 16) = 4 and C1 + C2 = 4. The

condition (4) gives: C1 + C2 = GCD(T1, T2) so it does

not give any information about the schedulability of the

rest of the tasks of Γ.

The set of tasks Γ′ is initialized by Γ′ = {τ1 =
(1, 12), τ2 = (3, 16)}.

Γ′′ = { τ3 = (1, 20), τ4 = (2, 24), τ5 = (1, 40)}.

Let apply the condition (13) to the rest of tasks of Γ′′.

The first term of the condition (13) becomes:

[

g −
n

∑

i=1

Ci

]

·δ [Tc · mod(g)] = (4−1−3)·δ [Tc · mod(g)] = 0.

For τc = τ3 = (1, 20), the condition (13) gives:

2
∑

i=1

Ci · δ [Tcmod(Ti) · (Tc · mod(2g) + Ti · mod(2g))]

= C1 · δ [Tcmod(T1) · (Tc · mod(2g) + T1 · mod(2g))]

+C2 · δ [Tcmod(T2) · (Tc · mod(2g) + T2 · mod(2g))]

= 1 · δ [20mod(12) · (20 · mod(2 · 4) + 12 · mod(2 · 4))]

+3 · δ [20mod(16) · (20 · mod(2 · 4) + 16 · mod(2 · 4))]

= 1 · δ[8 · (4 + 4)] + 3 · δ[4 · (4 + 0)] = 0 6≥ C3 = 1.

The condition (13) is not satisfied so the task τ3 is not

schedulable. τ3 is removed from Γ′′: Γ′′ = { τ4 =
(2, 24), τ5 = (1, 40)}.

For τc = τ4 = (2, 24), the condition (13) gives:

1 · δ [24mod(12) · (24 · mod(2 · 4) + 12 · mod(2 · 4))]

+3 · δ [24mod(16) · (24 · mod(2 · 4) + 16 · mod(2 · 4))]

= 1 · δ [0] + 3 · δ [0] = 4 > C4 = 2

The condition (13) is satisfied so the task τ4 is schedu-

lable. τ4 is removed from Γ′′ to Γs and τ1 is removed

from Γ′ to Γs: Γs = {τ1 = (1, 12), τ4 = (2, 24)} and

Γ′′ = {τ5 = (1, 40)}. and Γ′ = {τ2 = (1, 40)}

For τc = τ5 = (1, 40), the condition (13) gives:

3 · δ [40mod(16) · (40 · mod(2 · 4) + 16 · mod(2 · 4))]

3 · δ [0] = 3 > C5 = 1

The condition (13) is satisfied so the task τ5 is schedu-

lable, then: Γs = {τ1 = (1, 12), τ2 = (1, 40), τ4 =
(2, 24)}, τ5 = (1, 40) and Γ′′ = ∅ and Γ′ = ∅. The

initial set Γ is not schedulalbe but the set Γ′′ ∪Γs = Γs is

schedulable.

Algorithm 1 Scheduling Algorithm

1: Initialization of the set Γ with the n tasks to be sched-

uled. Initialization with the empty set of the set Γ′

which will contain the tasks satisfying the condition

(10), of the set Γ′′ which will contain the tasks which

does not satisfy the condition (10), of the set Γs which

will contain the schedulable tasks that satisfies the

condition (13), and of the set Γ′′′ which will contain

temporary tasks.

2: Γ′ = {τ1} where τ1 ∈ Γ.

3: for k = 2 to n do

4: g = GCD(Ti, τi ∈ Γ′ ∪ {τk})
5: C = Ck·
6: for l = 1 to |Γ′| do

7: C = C + Cl

8: end for

9: if condition (10) is satisfied, i.e. C ≤ g then

10: Copy the task τk from Γ to Γ′.

11: else

12: Copy the task τk from Γ to Γ′′.

13: end if

14: end for

15: Let m = |Γ′|.
16: Let g = GCD(τi, ∀τi ∈ Γ′)

17: Let C ′ = g −
m

∑

1

Ci

18: Let i = 1
19: while Γ′ 6= ∅ and i ≤ n − m do

20: Let C=0

21: Let i=1

22: for j = 1 to m do

23: if Timod(Tj) · (Timod(2g) + Tjmod(2g)) = 0
then

24: C = C + Cj

25: Move the task τj from Γ′ to Γ′′′

26: end if

27: end for

28: if Ti · mod(g) = 0 then

29: C ′′ = C ′

30: else

31: C ′′ = 0
32: end if

33: if condition (13) is satisfied, i.e. C ′′ + C ≥ Ci

then

34: Move the task τi from Γ′′ to Γs

35: Move the tasks of Γ′′′ to Γs

36: end if

37: increment i

38: end while

39: if Γ′ ∪ Γs = Γ then

40: Γ is schedulable.

41: else

42: Γ is not schedulable.

43: Γ′ ∪ Γs is schedulable.

44: end if

The figure 6 shows the result obtained with our

scheduling heuristic for the set of tasks Γ. This result is

displayed using the software SAS [19].

0 48 96 144 192 240 288 336 384 432 480

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

4 28 52 76 100 124 148 172 196 220 244 268 292 316 340 364 388 412 436 460 484

5 45 85 125 165 205 245 285 325 365 405 445 485

facteur d’utilisation classique :
 87/240 = 0.3625

facteur exact permanent d’utilisation :
 87/240 = 0.3625

coût exact permanent de la préemption :
 0/240 = 0.0000

tâche émission durée PTR période
 t1 0 1 1 12
 t2 1 3 3 16
 t3 4 1 1 24
 t4 5 2 2 40

priorité : monotone par échéance (DM)
coût d’une préemption : 0
contraintes du système :
- périodicité stricte

ORDONNANÇABLE

Figure 6: Scheduling of four tasks using the heuristic

5 Conclusion and further work

In this paper we present a schedulability analysis in the

case of non-preemptive tasks with strict periods. We start

by giving a schedulability condition for two tasks then we

give the schedulability condition for a set of more than two

tasks. We finally propose a scheduling heuristic which is

based on this schedulability condition, where a set of tasks

is already scheduled and a new task is to be scheduled.

Further work will propose a more general schedulabil-

ity analysis in the case where the deadline is different from

the period, since in this paper we addressed a schedula-

bility analysis in the case where the period is equal to the

deadline. Also, we plan to study the schedulability of non-

preemptive tasks with strict and non-strict period.

References

[1] C. L.Liu and J. W. Layland. Scheduling algorithms

for multiprogramming in a hard-real-time environ-

ment. Journal of the ACM, 1973.

[2] H. Ramaprasad and F. Mueller. Tightening the

bounds on feasible preemption points. In RTSS ’06:

Proceedings of the 27th IEEE International Real-

Time Systems Symposium, pages 212–224, Washing-

ton, DC, USA, 2006. IEEE Computer Society.

[3] H. Ramaprasad and F. Mueller. Bounding worst-case

response time for tasks with non-preemptive regions.

In RTAS ’08: Proceedings of the 2008 IEEE Real-

Time and Embedded Technology and Applications

Symposium, pages 58–67, Washington, DC, USA,

2008. IEEE Computer Society.

[4] P. Meumeu Yomsi and Y. Sorel. Extending rate

monotonic analysis with exact cost of preemptions

for hard real-time systems. In Proceedings of

19th Euromicro Conference on Real-Time Systems,

ECRTS’07, Pisa, Italy, July 2007.

[5] G. Buttazzo and A. Cervin. Comparative assess-

ment and evaluation of jitter control methods. In

Proc. 15th International Conference on Real-Time

and Network Systems, Nancy, France, March 2007.

[6] K. Jeffay, D. F. Stanat, and C. U. Martel. On

non-preemptive scheduling of period and sporadic

tasks. In Proceedings of the 12 th IEEE Symposium

on Real-Time Systems, pages 129–139, December

1991.

[7] F. Balarin, L. Lavagno, P. Murthy, and

A. Sangiovanni-vincentelli. Scheduling for

embedded real-time systems. IEEE Design and Test

of Computers, 15(1):71–82, 1998.

[8] L. Cucu, R. Kocik, and Y. Sorel. Real-time schedul-

ing for systems with precedence, periodicity and la-

tency constraints. In Proceedings of 10th Real-Time

Systems Conference, RTS’02, Paris, France, March

2002.

[9] K. Danne and M. Platzner. A heuristic approach to

schedule periodic real-time tasks on reconfigurable

hardware. In Proceedings of the International Con-

ference on Field Programmable Logic and Applica-

tions, pages 568–573, August 2005.

[10] L. George, N. Rivierre, and M. Spuri. Preemp-

tive and Non-Preemptive Real-Time UniProcessor

Scheduling. Research Report RR-2966, INRIA,

1996. Projet REFLECS.

[11] S.K. Baruah and S. Chakraborty. Schedulability

analysis of non-preemptive recurring real-time tasks.

Parallel and Distributed Processing Symposium, In-

ternational, 0:149, 2006.

[12] L. Cucu and Y. Sorel. Schedulability condition for

systems with precedence and periodicity constraints

without preemption. In Proceedings of 11th Real-

Time Systems Conference, RTS’03, Paris, March

2003.

[13] L. Cucu, N. Pernet, and Y. Sorel. Periodic real-time

scheduling: from deadline-based model to latency-

based model. Annals of Operations Research, 2007.

[14] L. Cucu-Grosjean and Y. Sorel. A schedulability test

for real-time dependant periodic task systems with

latency constraints. In Proceedings of conference

Models and Algorithms for Planning and Scheduling

Problems, MAPSP’09, Abbey Rolduc, The Nether-

lands, July 2009.

[15] O. Kermia and Y. Sorel. Schedulability analysis for

non-preemptive tasks under strict periodicity con-

straints. In Proceedings of 14th International Con-

ference on Real-Time Computing Systems and Ap-

plications, RTCSA’08, Kaohsiung, Taiwan, August

2008.

[16] Friedrich Eisenbrand, Nicolai Hhnle, Martin

Niemeier, Martin Skutella, Jos Verschae, and

Andreas Wiese. Scheduling periodic tasks in a

hard real-time environment. In 37th International

Colloquium on Automata, Languages and Program-

ming (ICALP2010), volume 37, pages 299–311.

Springer-Verlag, 2010.

[17] D. Kirby. On bezout’s theorem. The Quarterly Jour-

nal of Mathematics, Dec 1988.

[18] P. Meumeu Yomsi and Y. Sorel. Non-schedulability

conditions for off-line scheduling of real-time sys-

tems subject to precedence and strict periodicity

constraints. In Proceedings of 11th IEEE Inter-

national Conference on Emerging technologies and

Factory Automation, ETFA’06, WIP, Prague, Czech

Republic, September 2006.

[19] P. Meumeu Yomsi, L. George, Y. Sorel, and

D. de Rauglaudre. Improving the quality of con-

trol of periodic tasks scheduled by fp with an asyn-

chronous approach. International Journal on Ad-

vances in Systems and Measurements, 2(2), 2009.

