
HAL Id: inria-00566898
https://hal.inria.fr/inria-00566898

Submitted on 17 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded Evolutionary Robotics: The
(1+1)-Restart-Online Adaptation Algorithm

Jean-Marc Montanier, Nicolas Bredeche

To cite this version:
Jean-Marc Montanier, Nicolas Bredeche. Embedded Evolutionary Robotics: The (1+1)-Restart-
Online Adaptation Algorithm. Springer Series: Studies in Computational Intelligence. New Horizons
in Evolutionary Robotics, Springer, pp.155-169, 2011. �inria-00566898�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50012703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00566898
https://hal.archives-ouvertes.fr

Chapter 11
Embedded Evolutionary Robotics: The
(1+1)-Restart-Online Adaptation Algorithm

Jean-Marc Montanier and Nicolas Bredeche

Abstract. This paper deals with online onboard behavior optimization for a
autonomous mobile robot in the scope of the European FP7 Symbrion Project. The
work presented here extends the (1+1)-onlinealgorithm introduced in [4]. The (1+1)-
online algorithm has a limitation regarding the ability to perform global search when-
ever a local optimum is reached. Our new implementation of the algorithm, termed
(1+1)-restart-online algorithm, addresses this issue and has been successfully exper-
imented using a Cortex M3 microcontroller connected to a realistic robot simulator
as well as within an autonomous robot based on an Atmel ATmega128 microcon-
troller. Results from the experiments show that the new algorithm is able to escape
local optima and to perform behavior optimization in a complete autonomous fash-
ion. As a consequence, it is able to converge faster and provides a richer set of relevant
controllers compared to the previous implementation.

11.1 Introduction

Let’s imagine an autonomous mobile robot tailored for exploration. This robot could
be dropped in a wide variety of unknown environments, from a dense tropical forest
to an exhausted gold mine abandoned 100 years ago. Even before starting to explore
its environment, this kind of robot would need to be able to adapt to its immediate
surrounding (i.e. figuring out what shape and/or what behavior is most fitted to sus-
tain its energy level). In this set-up, the robot control architecture is first driven by
the specific, unpredictable, properties of the environment.

This paper focuses on the design of a control architecture for an autonomous
mobile robot in an unknown environment. For this type of set-up, design approaches
can range from hand-crafted reactive behavior [3] to optimal control approaches [9].

Jean-Marc Montanier · Nicolas Bredeche
TAO - Univ. Paris-Sud, INRIA, CNRS
LRI, Bat. 490, F-91405 Orsay, France
e-mail: forname.name@lri.fr

S. Doncieux et al. (Eds.): New Horizons in Evolutionary Robotics, SCI 341, pp. 155–169.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

156 J.-M. Montanier and N. Bredeche

The chosen approach depend on the problem to be solved. In the aforementionned
situation, it is difficult, if not impossible, to a priori specify the environment and
the task at hand. This implies that most of the existing approaches are not fitted.
This is a typical problem in Robotics that may be addressed with learning and
optimization[10, 21]. Moreover, we address the problem where little is known about
the objective function. This means that the task is poorly described as a single ef-
ficiency measure (e.g. minimize energy consumption, maximize exploration, etc.),
which is often delayed and noisy.

In this scope, Evolutionary Robotics provides optimization algorithms based on
Evolutionary Algorithms. Evolutionary Robotics [9, 16] (”ER”) takes inspiration
from nature by combining two partly antagonist mechanisms. On the one hand, se-
lection of the most fitted individuals tends to ensure convergence of the algorithm
toward the most fitted solution. On the other hand, variation over the properties
of selected individuals through mutation and recombination tends to provide new
original solutions. The general framework of these algorithms, termed Evolutionary
Algorithms (”EA”), has been applied to a wide variety of problems [6]. In Evolu-
tionary Robotics, EA is used as an optimizer for Artificial Neural Network archi-
tectures. Artificial Neural Network are used to control autonomous robots in a wide
variety of task, from navigation (non-linear task) to swarm coordination (coopera-
tion task)1.

In ER, in order to compute the quality (or fitness) of a given genotype, the cor-
responding phenotype is created (e.g. an artificial neural network for robot control
with optimized weights). This phenotype is evaluated in the environment to assess
the performance of the resulting robot behavior. This evaluation methodology, is
used on a population of genotypes. The (usually) better genotypes are selected and
go through a variation process so as to renew the population. This process is then it-
erated until a termination criterion is matched (e.g. maximum number of evaluation,
performance, etc.). This approach is usually referred as off-line ER.

While off-line ER can be used to address non-linear control problems (or poorly
defined objective function), it fails to provide a continuous autonomous optimization
process. This is because control over the initial conditions for genome evaluation is
required. Therefore, either costly human interventation or the use of simulation [13]
is needed. Moreover, evaluation of a genome requires reliability, ie. the fact that one
evaluation session must be relevant with regards to the problem at hand.

Embodied ER, introduced in [8], is a sub-field of ER that precisely addresses the
problem of changing environments without constant human manutention. In this set-
up, the Evolutionary Algorithm runs within the robot (or group of robots), acting as
an embedded optimization algorithm. Embedded is defined as both online (the adap-
tation/learning process never stops) and onboard (the optimization algorithm and
evaluation process are part of the control loop). To date, only few, but promising,
works have adressed this topic: [7, 11, 12, 14, 15, 17, 20, 23, 24, 25, 26]. Run-
ning an embedded EA within a single robot provides strong advantages regarding

1 See [10] for an introduction.

11 Embedded Evolutionary Robotics 157

continuous adaptation and autonomy with regards to a human supervisor. However,
this also emphasizes some specific issues:

• Unknown fitness landscape: the typical fitness landscape in ER is both multi-
modal (many local minima) and partly neutral (many close genotype perform in
a similar way). One reliable assumption (named Strong Causality) is that small
variations in the genotypic space implies small variations in the fitness value [18].
A direct consequence is that any reliable algorithm should be able to perform
both local search (to exploit this strong causality property) and global search (to
avoid the pitfall of multi-modality);

• Evaluation reliability: the environmental condition vary over time depending on
the robot location. Therefore, performance assessment (ie. fitness) of one genome
might be completely different from one starting location to another (e.g. starting
in a narrow bridge or starting in the middle of an empty arena). This is the prob-
lem of noisy fitness evaluation. A great number of independant evaluation are
required to assess for the ”true” performance of one genome;

The (1+1)-online adaptation algorithm described in [4] has been shown to address
these issues. Its ability to perform continuous adaptation efficiently has been demon-
strated in the same paper2 The (1+1)-online algorithm is described as a genetic
algorithm based on the (1+1)ES [19]. This algorithm uses only two genomes: a
champion and a challenger. Some specific properties are employed so as to address
online adaptation:

• Local and global search : A mutation operator is used to produce a child from
a parent. This mutation operator is able to do both local and global search. A
gaussian distribution N(0,σ) is used. The switching between local and global
search is done by modifying the value of σ . If this value is low, few modifications
will be done to the genome, and the search will remain local. If the value of σ is
high, the genome will be strongly modified, and the research will go global. On
one hand, the value of σ is set to a low value when a new champion is found.
This ensure a local search around a known good to solution in order to improve
it. On the other hand, the value of σ is increased when the challenger is assessed
worst than the current champion. This second mechanism ensure that the search
will go more global if the current champion is in a local optima.

• Re-evaluation : Individuals may get lucky or unlucky during evaluation depend-
ing on the envrionment at hand. This is a typical problem related to fitness noise.
An efficient solution is to reevaluate individuals, as proposed by Beyer [2].The
reevaluated fitness overwrites the fitness of the champion. This is done to pro-
mote individuals with a low variance in their performances. One of the drawback
of the overwriting method is that good individuals could be replaced by inferior
but lucky individuals. If an individual is lucky during its first evaluation but has
a low mean fitness it will not survive next-reevaluations. As a consequence, the
evolutionary algorithm won’t be stuck with bad individuals.

2 The demonstration was done on a single e-puck robot in Player/Stage, running a Cortex
M3 micro-controller.

158 J.-M. Montanier and N. Bredeche

• Recovery : This work assumes the evolutionary algorithm should run without
human intervention. It implies no repositioning of the robot after each evalua-
tion of one individual. For example, a genome may be evaluated starting from
completely different initial conditions, such as in front of a wall or in a tight
corner. To avoid penalization of good genomes, a recovery period is introduced.
During this time, the robot behavior is not considered for evaluation (ie. ”free
of charge”), which favors genomes that display good performance whatever the
starting position.

In this paper, we present an analysis of the global search feature of this algorithm.
From this analysis, we identify a problem that negatively impacts the search. The
basic idea is that the previous implementation of the (1+1)-online algorithm re-
strains, possibly drastically, the search space considered. This imply a limitation in
the efficiency of the global search mechanism. This problem is described and a new
algorithm, termed (1+1)-restart-online is devised. Preliminary experiments in sim-
ulation are described and show that the new algorithm actually performs a larger
global search. Therefore the new algorithm, avoid the pitfall of getting stuck in a
local optima for a long time. Moreover, this paper describes the implementation and
successful evaluation of this new algorithm on a real robotic hardware set-up, a four
wheels Bioloid mobile robot.

11.2 Extending the (1+1)-Online EA

This section shed some light on an intrinsic limitation of the (1+1)-online algo-
rithm. Under very specific conditions (multi-modal objective function with few or
no amount of noise), the adaptation process is slowed down. Then, an extension
of the previous algorithm is described. This extension retains the properties of the
original algorithm, and addresses the problem identified.

11.2.1 Limits of (1+1)-Online

In [4], the efficiency of the (1+1)-online algorithm has been shown. One of its main
properties is to rely on a tunable gaussian mutation operator σ to switch between
local and global search (see section 11.1). The update scheme of σ seems to be rele-
vant in most cases, but it has a major drawback : only regions with better performing
genomes can be considered. Figure 11.1 illustrates the shrinking effect of the search
region considered. On this figure the fitness values of all genomes is shown (for the
sake of simplicity, we assume this is a minimization task for a one dimension only
problem). In this example, the current champion may be replaced only by a chal-
lenger which is under the dashed line. This holds for both local and global search.
In this typical set-up, this isn’t a relevant strategy as the probability to randomly
jump to the relevant region is very low. In comparison, it is more appealing to pick
a genome from which local search may slowly but surely, lead to the best genome.

11 Embedded Evolutionary Robotics 159

current
champion

t
ne

ss
 v

al
ue

tness landscape (1D)

Fig. 11.1 Deceiving fitness landscape (minimization task).

The modification of σ is a good candidate to find new individuals. When it is
increasing the search goes more global. But at some point the search area is too
constrained. It becomes more interesting to simply restart the whole optimization
process in order to obtain an unconstrained global search. To some extent, this prob-
lem may not occur in all situations. Firstly, this problem would never occur when
optimizing a convex objective funtion, which is unfortunately quite scarce in this
set-up. Secondly, a very noisy objective function may cope with this problem. That
is because any good performing individual may eventually be re-evaluated with a
low fitness value. Therefore the whole search space will be considered all over again
– this was indeed the case in the experiments shown in [4].

11.2.2 The (1+1)-Restart-Online Algorithm

Escape from local minimum is a classical problem for the global search algorithms,
and has been studied in different fields. A popular method is the restart strategy as
used in some state of the art Evolution Strategies algorithm [1]. With this approach,
the algorithm is restarted, either with similar or different parameters, whenever the
search is identified as stalled. This approach provides interesting results on multi-
modal problems as it ensures global convergence (ie. the algorithm tends to explore
the whole search space through random search, as it is exactly what restarting is
about).

In order to implement restart in the (1 + 1)− restart − online algorithm, the
restart criterion has to be considered. Options are mostly limited to the two
following:

• Monitoring the value of σ : If σ reaches a maximal predefined value, a local
minimum has been attained and the search is going global. To be sure that the
algorithm will never be blocked in a local minimum, it can be restarted as soon
as σ reaches its maximal value.

160 J.-M. Montanier and N. Bredeche

• Limiting the number of champion reevaluations: Whenever a champion
isn’t replaced, no better individuals have been found in its neighborhood. Thus,
surviving many re-evaluations assesses the robustness of the champion with
regards to both other challenger genomes and to the environment. Therefore, a
high number of re-evaluations can be used to detect a good performing genome,
but also that the search is stalled.

However, some issues remain to be addressed. On the one side, relying on the value
of σ alone to restart the algorithm is too constraining: the maximum value for σ
may be reached even if the champion was not reevaluated yet (ie. the champion
may be unreliable). Moreover, even if the current champion has been successfully
reevaluated while σ was increasing, it may still be improved by mutations. On the
other side, if the champion survives many reevaluations, it is a good and reliable
individual that will be hard to replace.

As a consequence, our implementation is to consider the number of reevaluations
as a restart criterion in the (1+1)-restart-online algorithm described by algorithm 1.
Hence, whenever restart is triggered, the algorithm is re-initialized, storing the cur-
rent champion in a hall-of-fame archive, and setting a random genome as the new
starting point. In the long term, this tends to converge towards a uniform sampling
of the genotypic space.

11.3 Experiments and Results

This section presents the experimental set-up used to evaluate the performance of
the (1+1)-restart-online algorithm. Results and preliminary experiments are also
described and discussed.

11.3.1 Hardware Set-Up

The experimental evaluation has been conducted using a popular robotic microcon-
troller: a Cortex M3 board with 256 kb memory. The Cortex board runs a robot
simulated by Symbricator3D, a physics-based 3D simulator developped within the
Symbrion project and based on delta3d3 (An Open Source game engine which can
be used for physics-based simulations). After N time-steps, the evaluation of the cur-
rent controller is complete. The controller parameters are replaced with values from
a new genome. As described in the previous section, the new genome is evaluated
from the location the previous controller left it in.

Figure 11.2 illustrates the experimental set-up with a Cortex board connected to
the computer running the simulator based on delta3d. The simulated robot is equiped
with two screws and 8 distance sensors (two per side). Details of the shape of the
robot can be seen in figure 11.3. The maze environment and the cortex board are
shown in figure 11.2.

3 http://www.delta3d.org/

11 Embedded Evolutionary Robotics 161

Algorithm 1. The (1+1)-RESTART-ONLINE evolutionary algorithm.
for evaluation = 0 to N do

if random() < Preevaluate then
if reevaluationcount < reevaluationmax then

Recover(Champion)
FitnessChampion = RunAndEvaluate(Champion)
reevaluationcount = reevaluationcount +1

else
σ = σmin
Champion = RandomGenome()
FitnessChampion = 0
Challenger = RandomGenome()
FitnessChallenger = 0
reevaluationcount = 0

end if
else

Challenger = Champion + N(0,σ) {Gaussian mutation}
Recover(Challenger)
FitnessChallenger = RunAndEvaluate(Challenger)
if FitnessChallenger > FitnessChampion then

Champion = Challenger
FitnessChampion = FitnessChallenger
σ = σmin

else
σ = σ ·2

end if
end if

end for

The robot is controlled by a simple perceptron with 9 input neurons (8 IR distance
sensor values and one bias neuron) and 2 output neurons (translational and rotational
velocities, which are combined to give actual actuator values).

Fig. 11.2 The experimental set-up: the Cortex M3 board connected to Symbricator3d. The
numbers show the reference starting positions for validating the Hall of Fame.

162 J.-M. Montanier and N. Bredeche

Fig. 11.3 Details of the Symbricator robot. (a) robot design (b) position of distance sensors
(from above).

11.3.2 Experimental Set-Up

The objective function used is inspired from a well-known and classic fitness func-
tion first described in [16]:

f itness(x) =
n

∑
t=0

Vt ∗ (1−Vr)∗ (1−DM)

where Vt is the translational speed, Vr is the rotational speed, and DM the value of the
most active distance sensor. All values are normalized between 0 and 1. More details
about the parameters setting are given in appendix I. Distance sensors returns higher
value when they are close to a wall. Therefore, individuals achieve high fitness value
while moving fast and forward and avoiding walls.

The (1+1)-restart-online algorithm has been evaluated with a restart parameter
fixed at 7 reevaluations. In order to compare the true performances of individuals
obtained with (1+1)-online and (1+1)-restart-online, one Hall-of-Fame per experi-
ment is computed from the results of the simulations. A Hall-of-Fame contains the
best individuals (ie. the genome champions) from a given experiment. Champion
genomes are ranked thanks to the sum of the re-evaluated fitness obtained dur-
ing the experiments (ie. the larger the fitness value and the larger the number of
re-evaluations, the better genome).

As the adaptation process could go on forever, the maximal number of evalu-
ations is fixed to 600 for both experiments. Afterwards, the following experimen-
tal protocol is used to compare the best individuals from the Hall-of-Fames: every
champions from the two Hall-of-Fames are evaluated from 6 predefined starting
positions4 shown in figure 11.2 and each evaluation lasts 120 time steps (ie. long
enough to evaluate the quality of behaviors in a wide range of situations). The mo-
tivation of this validation protocol is to provide fair comparison between genomes.

4 The starting position number 4 is an extreme case where the robot is tested in a hard
environment never seen before.

11 Embedded Evolutionary Robotics 163

11.3.3 Experimental Results

Figure 11.4 shows the course of evolution during a critical run of the (1+1)-online
algorithm. Evaluations are denoted on the x-axis. The y-axis is divided in two parts.
The top half shows the fitness of the current champion in green dashed line. The
bottom half shows the number of re-evaluations of the current champion (down-
wards; the lower the line, the higher the number of re-evaluations). The red vertical
markers near the x-axis indicate whenever a new champion is employed, i.e., when
the challenger outperforms the current champion. During this run a good champion
has been found at evaluation 180, and hasn’t been replaced until evaluation 538 (af-
ter 64 reevaluation). Due to the use of another simulator this problem hasn’t been
detected in [4]. Differences between the two simulators are important with regards
to noise between evaluations. This is a typical illustration of the problem identified
in this paper with the original (1+1)-online algorithm: a less noisy set-up is prooved
to be deceitful for the original algorithm.

Figure 11.5 shows evolution dynamics of a run of the (1+1)-restart-online algo-
rithm. On this run the two main features of this algorithm – reevaluation and restart
– are displayed. The reevaluation procedure is used at evaluation 132 on a lucky
individual found at evaluation 126. After this reevaluation the champion obtain a
low fitness and is soon replaced. In this run the restart procedure is used at eval-
uation 368, to replace a robust champion. According to preliminary experiments,
the champion of evaluation 368 could still be improved. This imply that the restart
strategy could be triggered later.

Fig. 11.4 Evolutionary dynamics of a critical run of the (1+1)-online algorithm.

164 J.-M. Montanier and N. Bredeche

Fig. 11.5 Evolutionary dynamics of a run of the (1+1)-restart-online algorithm.

11.3.4 Hall-of-Fame Analysis

As described in section 11.3.2, two Hall-of-Fames were extracted from the results of
the experiments. Each Hall-of-Fame is computed out of 14 independant runs of 600
evaluations. There are 1691 individuals in the Hall-of-Fame obtained by running the
(1+1)-online algorithm. In comparison, 2158 individuals are in the Hall-of-Fame
obtained by running the (1+1)-restart-online algorithm. This difference is a desired
effect of the (1+1)-restart-online algorithm. The restart feature favors exploration by
saving unnecessary reevaluations of champions whenever the algorithm is stalled.
As a consequence, the (1+1)− restart −online provides faster (in term of number
of evaluation) the same number of Hall-of-Fame indivudals.

Performances of the best individuals generated by the (1+1)-restart-online al-
gorithm and by the (1+1)-online algorithm are compared. As described in section
11.3.2, every individuals from the Hall-of-Fames are evaluated from six pre-defined
positions (i.e. to provide comparable test cases). For each individual the mean per-
formance obtained from those 6 positions has been computed. The figure 11.6 re-
ports the distribution of individuals with respect to their fitness. The x-axis shows
the different fitness obtained during the validation of the 628 best individuals of each
Hall-of-Fame. The y-axis shows the number of individuals with the same fitness. It
is clear that there is no loss of efficiency with the (1+1)-restart-online algorithm.

Therefore, the (1 + 1)− restart−online algorithm is as reliable as the (1 + 1)−
online and faster - which is a key feature whenever ressources are limited.

11 Embedded Evolutionary Robotics 165

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

restart
no restart

Fig. 11.6 Fitness density of the best individuals produced by the (1+1)-online algorithm, and
the (1+1)-restart-online algorithm.

11.3.5 Real Robot Experiment

The (1+1)-restart-online has been tested on an autonomous four-wheels Bioloid
robot. The Bioloid kit provides robotic parts and an ATmega128 microcontroller
with 128Kb of memory5. Figure 11.7 shows the robot used in this work. It is equiped
with 4 motors, and 7 distance sensors. The 7 red arrows in figure 11.7 shows the ori-
entations of the distance sensors. The controller of the robot is a feedforward neural
network with 8 inputs (7 distance sensors and 1 bias) and 2 outputs (left and right
motor velocities). The two left wheel velocities are controled by the same output
neuron, and the two right wheel velocities by the other output neuron. The fitness
function used is the same as the one described in section 11.3.2. Each individual
is recovering during 60 time step (7 seconds) and is evaluated during the 60 fol-
lowing time step (7 seconds). As in section 11.3.2 the restart threshold is fixed to
7 re-evaluations. The whole experiment lasted 1 hour and 10 minutes, which was
more than sufficient to get examples of robust behaviors.

Figure 11.7 (b) shows the experimental set-up.
The algorithm provides similar results to what has been already shown in the

previous experiment. The behavioral traces of the first two best evolved controllers
from the Hall-of-Fame are illustrated in figures 11.8 and 11.9. These two control
architectures efficiently avoid walls with simple yet efficient behaviors. The best
controller (figure 11.8) is faster when moving in straight line, and displays sharper

5 http://www.atmel.com/dyn/products/
product card.asp?part id=2018

166 J.-M. Montanier and N. Bredeche

Fig. 11.7 (a) The robot and the directions of the 7 distance sensors, (b) the environment.

Fig. 11.8 Example of behavior for the best evolved controller.

Fig. 11.9 Example of behavior for the 2nd best evolved controller.

turn trajectories. Other genomes have been empirically evaluated (not shown here)
and display the same kind of behaviors as these two, with minor differences con-
cerning the sharpness of the turn and/or the speed of the robot.

An important feature of our algorithm is also demonstrated here : the online na-
ture of the algorithm makes it possible to easily avoid the reality gap [13]. Indeed,
the algorithm needed exactly the same amount of work from the experimenter in
simulation and reality. Moreover, neither human intervention nor external remote
control was ever needed during the whole experiment with the real robot. Of course,
this assumption must be taken with care as the fitness considered here is a rather
simple one, chosen to focus on the validation of the algorithm features rather than
on its ability to solve a complex problem.

11 Embedded Evolutionary Robotics 167

11.4 Conclusion and Perspectives

In this paper, the problem of online onboard behavior adaptation for a single au-
tonomous mobile robot has been adressed. Precisely, the (1+1)-online adaptation
algorithm presented in [4] is studied. A limitation of this algorithm is identified and
analysed regarding its ability to perform global search in the space of possible so-
lutions. A new algorithm is described, termed (1+1)-restart-online. It is shown to
efficiently address the trade-off between local and global search, by relying on a
restart procedure whenever the algorithm is stuck in a local optimum. This restart
procedure makes it possible to address a previous design flaw by relaxing some of
the required constraints over the search space considered.

This algorithm has been evaluated both with real robotic hardware connected to
a robot simulation as well as with a real robot. Results obtained have demonstrated
that this new algorithm is actually able to provide a wider exploration of the search
space, making it possible to visit many more local optima than previous implemen-
tation. Therefore, the probability to end up in a global optimum is increased, but also
the diversity of obtained candidate solutions is increased. Moreover, this algorithm
can be straight-forwardly used within a real robot in a complete autonomous fash-
ion, providing a key-feature to relieve the expert from unnecessary and fastidious
control over the experiment.

Perspectives from this work first concerns a careful study of the experimental
parameters and have already been started in [5]. Also, an in-depth analysis of the
distribution of the performance from all individuals in the Hall-of-Fame should be
conducted. Moreover, the new restart feature in the algorithm must be carefully
studied as there exists a possible trade-off in balancing the previous global search
strategy and the new restart strategy. This trade-off can be reformulated as favoring
global search over avoiding re-convergence towards already visited local optima.
As a consequence, choosing between the two strategies clearly depends on both the
shape of the fitness landscape and the actual local minimum.

Future works will also address the problem of noisy fitness evaluation by extend-
ing the (1 + 1) stragegy into a variation of more complex strategies, from build-
ing challenger genomes out of family of successful genomes or distribution-based
estimation of the relevant genotypic regions to explore (as in estimation of distri-
bution algorithms). This roughly means that a reservoir, or a distribution, of cham-
pion genomes will be considered rather than only a single champion genome in
order to build new candidate genome to be evaluated. Also, the extension towards
multi-robots is an interesting perspective: one may consider the current adaptation
algorithm to act within one island of a distributed evolutionary algorithm. In this
set-up, each robot/island runs an embodied evolutionary adaptation algorithm. Ad-
ditionally, the best genomes may be exchanged from one island to another, as in the
well-known GA island model [22].

168 J.-M. Montanier and N. Bredeche

Acknowledgments

This work was made possible by the European Union FET Proactive Intiative:
Pervasive Adaptation funding the Symbrion project under grant agreement 216342.

References

1. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size.
In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005 (2005)

2. Beyer, H.G.: Evolutionary algorithms in noisy environments: Theoretical issues and
guidelines for practice. In: Computer Methods in Applied Mechanics and Engineering,
pp. 239–267 (1998)

3. Braintenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge
(1986)

4. Bredeche, N., Haasdijk, E., Eiben, A.: On-line, on-board evolution of robot controllers.
In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009.
LNCS, vol. 5975, pp. 110–121. Springer, Heidelberg (2010)

5. Eiben, A., Haasdijk, E., Bredeche, N.: Symbiotic Multi-Robot Organisms: Reliability,
Adaptability, Evolution. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organ-
isms. Cognitive Systems Monographs, vol. 7, pp. 361–382. Springer, Heidelberg (2010)

6. Eiben, A.E., Michalewicz, Z. (eds.): Evolutionary Computation. IOS Press, Amsterdam
(1998)

7. Elfwing, S.: Embodied Evolution of Learning Ability. PhD thesis, KTH School of Com-
puter Science and Communication, SE-100 44 Stockholm, Sweden (November 2007)

8. Ficici, S., Watson, R., Pollack, J.: Embodied evolution: A response to challenges in
evolutionary robotics. In: Wyatt, J.L., Demiris, J. (eds.) EWLR 1999. LNCS (LNAI),
vol. 1812, pp. 14–22. Springer, Heidelberg (2000)

9. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Khatib, O.
(eds.) Handbook of Robotics, pp. 1423–1451. Springer, Heidelberg (2008)

10. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and
Technologies. In: Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge
(2008)

11. Floreano, D., Schoeni, N., Caprari, G., Blynel, J.: Evolutionary Bits’n’Spikes. In: Stan-
dish, R.K., Beadau, M.A., Abbass, H.A. (eds.) 8th International Conference on the Sim-
ulation and Synthesis of Living Systems (Alife 8). MIT Press, Cambridge (2002)

12. Haroun Mahdavi, S., Bentley, P.J.: Innately adaptive robotics through embodied evolu-
tion. Auton. Robots 20(2), 149–163 (2006)

13. Jakobi, N., Husband, P., Harvey, I.: Noise and the reality gap: The use of simulation in
evolutionary robotics. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL
1995. LNCS, vol. 929, Springer, Heidelberg (1995)

14. Koenig, L., Jebens, K., Kernbach, S., Levi, P.: Stability of on-line and on-board evolving
of adaptive collective behavior. In: European Robotics Symposium 2008. Springer Tracts
in Advanced Robotics, vol. 44, pp. 293–302. Springer, Heidelberg (2008)

15. Nehmzow, U.: Physically embedded genetic algorithm learning in multi-robot scenar-
ios: The pega algorithm. In: Prince, C., Demiris, Y., Marom, Y., Kozima, H., Balkenius,
C. (eds.) Proceedings of The Second International Workshop on Epigenetic Robotics:
Modeling Cognitive Development in Robotic Systems, LUCS, Edinburgh, UK, vol. 94
(August 2002)

11 Embedded Evolutionary Robotics 169

16. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technol-
ogy of Self-Organizing Machines. MIT Press/Bradford Books, Cambridge, MA (2000)

17. Perez, A.L.F., Bittencourt, G., Roisenberg, M.: Embodied evolution with a new genetic
programming variation algorithm. In: ICAS, pp. 118–123 (2008)

18. Rechenberg, I.: Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des
Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart (1973)

19. Schwefel, H.-P.: Numerical Optimisation of Computer Models. Wiley, New York (1981)
20. Simões, E.D.V., Dimond, K.R.: Embedding a distributed evolutionary system into pop-

ulation of autonomous mobile robots. In: Proceedings of the 2001 IEEE Systems, Man,
and Cybernetics Conference (2001)

21. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
22. Tomassini, M.: Spatially structured evolutionary algorithms: Artificial evolution in space

and time. In: Natural Computing Series (2005)
23. Usui, Y., Arita, T.: Situated and embodied evolution in collective evolutionary robotics.

In: Proceedings of the 8th International Symposium on Artificial Life and Robotics, pp.
212–215 (2003)

24. Walker, J.H., Garrett, S.M., Wilson, M.S.: The balance between initial training and life-
long adaptation in evolving robot controllers. IEEE Transactions on Systems, Man, and
Cybernetics, Part B 36(2), 423–432 (2006)

25. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an evolution-
ary algorithm in a population of robots. Robotics and Autonomous Systems 39(1), 1–18
(2002)

26. Wischmann, S., Stamm, K., Wörgötter, F.: Embodied evolution and learning: The ne-
glected timing of maturation. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey,
I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 284–293. Springer,
Heidelberg (2007)

Implementation Details of the (1+1)-Online Algorithm

• Each individual runned during 120 time step (60 time step of recovering and 60
time step of evaluation).

• 600 evaluations per experiments.
• 14 runs with (1+1)-online algorithm and 14 runs with restart (1+1)-online algo-

rithm.
• random individual at a random position, at the beginning of a run.
• Preevaluate is set to 0.2.
• σ initial value is set to 1 and may range from 0.01 to 4.
• genes value in [-4,+4].

