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DRAWING SOLUTION CURVE OF DIFFERENTIAL EQUATION ∗†

Farida Benmakrouha, Christiane Hespel, and Edouard Monnier

Abstract. We develop a method for drawing solution curves of
differential equations. This method is based on the juxtaposition of
local approximating curves on successive intervals [ti, ti+1]0≤i≤n−1.
The differential equation, considered as a dynamical system, is de-
scribed by its state equations and its initial value at time t0.
A generic expression of its generating series Gt truncated at any
order k, of the output and its derivatives y(j)(t) expanded at any
order k, can be calculated. The output and its derivatives y(j)(t)
are expressed in terms of the coefficients of the series Gt and of the
Chen series.
At the initial point ti of every interval, we specify the expressions
of Gt and y(j)(t). Then we obtain an approximated output y(t) at
order k in every interval [ti, ti+1]0≤i≤n−1.
We have developed a Maple package corresponding to the creation
of the generic expression of Gt and y(j)(t) at order k and to the
drawing of the local curves on every interval [ti, ti+1]0≤i≤n−1.
For stable systems with oscillating output, or for unstable systems
near the instability points, our method provides a suitable result
when a Runge-Kutta method is wrong.

Keywords. Curve drawing, differential equation, symbolic al-
gorithm, generating series, dynamical system, oscillating output

1 Introduction

The usual methods for drawing curves of differential equations con-
sist in an iterative construction of isolated points (Runge-Kutta).
Rather than calculate numerous successive approximate points
y(ti)i∈I , it can be interesting to provide some few successive lo-
cal curves {y(t)}t∈[ti,ti+1]0≤1≤n−1

.

Moreover, the computing of these local curves can be kept partly
generic since a generic expression of the generating series Gti

of the
system can be provided in terms of ti. The expression of the local
curves {y(t)}t∈[ti,ti+1] is only a specification for t = ti at order k
of the formula given in the proposition of section 3.
We consider a differential equation

y(N)(t) = φ(t, y(t), · · · , y(N−1)(t)) (1)

with initial conditions

y(0) = y0,0, · · · , y
(N−1)(0) = y0,N−1

We assume that φ(t, y(t), · · · , y(N−1)(t)) is polynomial in
y, · · · , y(N−1).
Then this differential equation can be viewed as an affine single
input dynamical system.

2 Preliminaries

2.1 Affine system, Generating series

We consider the nonlinear analytical system affine in the input:

(Σ)



q̇ = f0(q) +
Pm

j=1 fj(q)uj(t)

y(t) = g(q(t))
(2)
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• (fj)0≤j≤m being some analytical vector fields in a neighbor-
hood of q(0)

• g being the observation function analytical in a neighborhood
of q(0)

Its initial state is q(0) at t = 0. The generating series G0 is built
on the alphabet Z = {z0, z1, · · · , zm}, z0 coding the drift and zj

coding the input uj(t). Generally G0 is expressed as a formal sum
G0 =

P

w∈Z∗ 〈G0|w〉w where 〈G0|zj0 · · · zjl
〉 = fj0 · · · fjl

g(q)|q(0)

depends on q(0).

2.2 Fliess’s formula and iterated integrals

The output y(t) is given by the Fliess’s equation ([2]):

y(t) =
X

w∈Z∗

〈G0|w〉

Z t

0
δ(w) (3)

where G0 is the generating series of (Σ) at t = 0:

G0 =
P

w∈Z∗ 〈G0|w〉w
= g(q)|q(0)+

P

l≥0

Pm
ji=0 fj0 · · · fjl

g(q)|q(0)zj0 · · · zjl

(4)

and
R t

0 δ(w) is the iterated integral associated with the word w ∈
Z∗ = {z0, z1, · · · , zm}∗.

The iterated integral
R t

0 δ(w) of the word w for the input u is defined
by

8

<

:

R t

0 δ(ǫ) = 1
R t

0 δ(vzi) =
R t

0

`R τ

0 δ(v)
´

ui(τ)dτ
∀zi ∈ Z ∀v ∈ Z∗.

(5)

where ǫ is the empty word, u0 ≡ 1 is the drift and ui∈[1..m] is the
ith input.
We define the Chen’s series as follows ([1])

Cu(t) =
X

w∈Z∗

Z t

0
δ(w) (6)

We set

ξi,1(t) =

Z t

0
ui(τ)dτ (7)

From the previous definitions, we obtain the following expression:

y(t) =
X

w∈Z∗

〈G0|w〉〈Cu(t)|w〉 (8)

2.3 Iterated derivatives y(n)(0) of the out-

put

G0 being the generating series of the system, the ith derivative of
y(t) is

y(i)(t) = 〈G0|C
(i)
u (t)〉 (9)

We prove the following lemma ([5]) based on the Picart-Vessiot
theory ([3])

Lemma :

Let be
P

0≤j≤m uj .zj = A. Then the derivative of the

Chen’s series is d
dt
Cu = Cu.A

1
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From it, results the following recurrence relation:

C
(i)
u = CuAi, A1 = A, Ai+1 = AAi +DtAi (10)

Dt being the operator of time derivation.

Since Cu(0) = 1 and C
(i)
u (0) = Ai(0) then

y(i)(0) =
X

w∈Z∗

〈G0|w〉〈C
(i)
u (0)|w〉 = 〈G0|Ai(0)〉 (11)

Let us remark that the successive derivatives
y(0), y(1)(0), · · · , y(k)(0) are obtained from the coefficients
〈G0|w〉 associated with the words whose length is ≤ k.
It results that the Taylor expansion of y(t) up to order k only
depends on the coefficients of G0 truncated at order k.
For instance, for a single input u(t) with drift u0(t) ≡ 1, the
derivatives are the following

y(0) = 〈G0|ǫ〉

y(1)(0) = 〈G0|z0〉 + 〈G0|z1〉u(0)

y(2)(0) = 〈G0|z20〉 + (〈G0|z0z1〉 + 〈G0|z1z0〉)u(0)+

〈G0|z21〉u(0)
2 + 〈G0|z1〉u(1)(0)

· · · = · · ·

(12)

This method allows us to compute recursively the successive deriva-
tives of y(t) at t = 0.

3 Main results

3.1 Approximate value of y(n)(t)
The Fliess’s formula can be written

y(t) = 〈G0|ǫ〉 +
X

w∈Z∗−{ǫ}

〈G0|w〉〈Cu(t)|w〉 (13)

An approximate function yk(t) de y(t) up to order k in a neighbor-
hood of t = 0 is obtained by expanding this expression up to the
same order k. Then we have

|y(t) − yk(t)| = O(tk+1) (14)

For instance, at order k = 1, y(t) has the following approximate
expression for a single input with drift

y1(t) = 〈G0|ǫ〉 + 〈G0|z0〉t+ 〈G0|z1〉ξ1(t) (15)

where ξk(t) denotes the kth primitive of u(t).
This computing can be generalized to the successive derivatives of
y(t).

Proposition

Given the expression of y(n)(0) in terms of the coefficients

of G0 and of the derivatives of order ≤ n − 1 of the input

u(t)t=0 obtained recursively according to the previous sec-

tion, we can deduce the expression of y(n)(t) by executing

in y(n)(0) the following transformations

1. We substitute u(i)(t) to u(i)(0) for 0 ≤ i ≤ n− 1

2. For every occurrence of a coefficient 〈G0|v〉 where v ∈
Z∗, we add the following corrective term

X

w 6=ǫ

〈G0|wv〉〈Cu(t)|w〉

The proof is based on the following properties


d
dt
〈Cu(t)|vzi〉 = 〈Cu(t)|v〉ui(t)

〈Cu(t)|ǫ〉 = 1
(16)

For instance, for a single input with drift, we compute from

y(1)(0) = 〈G0|z0〉 + 〈G0|z1〉u(0)

the expression of y(1)(t) :

y(1)(t) = 〈G0|z0〉 +
P

w 6=ǫ 〈G0|wz0〉〈Cu(t)|w〉+

(〈G0|z1〉 +
P

w 6=ǫ 〈G0|wz1〉〈Cu(t)|w〉)u(t)
(17)

By restricting the sums to the words w whose length |w| satisfies

1 ≤ |w| ≤ k, we obtain a function y
(n)
k

(t) approximating y(n)(t) up
to order k. And then

|y
(n)
k

(t) − y(n)(t)| = O(tk+1) (18)

3.2 Generalization at time t = ti

For a single input with drift, the system (Σ) can be written at t = ti:


q̇(ti + h) = f0(q(ti + h)) + f1(q(ti + h))u(ti + h)
y(ti + h) = g(q(ti + h))

(19)
By setting

8

<

:

Ui(h) = u(ti + h)
Yi(h) = y(ti + h)
Qi(h) = q(ti + h)

(20)

we obtain the following system

(Σi)



Q̇i(h) = f0(Qi(h)) + f1(Qi(h)Ui(h)
Yi(h) = g(Qi(h))

(21)

And Gi is the generating series of (Σi).
By setting ψi,k(h) = ξk(ti + h), then ψi,k(h) is the kth primitive
of u(ti + h) or the kth primitive of Ui(h).

We have the equalities

ξ1(ti + h) =

Z ti+h

ti

u(τ)dτ =

Z h

0
Ui(t)dt = ψi,1(h) (22)

And then, we can prove recursively that the Chen’s integral
R ti+h

ti
δ(w) can be computed as an integral

R t

0 δ(W ) by considering

Ui(t) instead of u(ti + t).

4 Application to curves drawing

We present an application to the curve drawing of the solution of
differential equations. We consider a differential equation

y(N)(t) = φ(t, y(t), · · · , y(N−1)(t)) (23)

with initial conditions

y(0) = y0,0, · · · , y
(N)(0) = y0,N

It can be written for y = q1:
8

>

>

>

<

>

>

>

:

q
(1)
1 = q2

q
(1)
2 = q3
· · · = · · ·

q
(1)
N

= φ(t, q1, · · · , qN )

(24)

We assume that

φ(t, q1, · · · , qN ) = P0(q1, · · · , qN ) +

m
X

j=1

Pj(q1, · · · , qN )uj(t)

for P0, P1, · · · , PN polynomials in commutative variables
q1, · · · , qN .

For an analytical affine single input system (Σ) then m = 1
and the vector fields are f0, f1, corresponding to P0, P1.

We propose a curve drawing of the output y(t) of this sys-
tem in [0, T ] =

S

[ti, ti+1]0≤i≤n−1 according to the following
algorithm:
Firstly, we compute a generic expression of the generating series
Gt.
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• Initial point t0 = 0: y(0) = q1(0), · · · , y(N−1)(0) = qN (0) are
given.
The vector fields f0, f1 applied to g(q) evaluated in t0 provide
〈G0|w〉 for |w| ≤ k

• Step i: Knowing y(ti−1) = q1(ti−1), · · · , y(N−1)(ti−1) =
qN (ti−1) and 〈Gi−1|w〉. for |w| ≤ k, we compute
y(ti), · · · , y

(N−1)(ti) according to section 3 and 〈Gi|w〉 for
|w| ≤ k by applying the vector fields f0, f1 to g(q) at q(ti).
We draw the local curve of the function ti−1+dt→ y(ti−1+dt)
on the interval [ti−1, ti].

• Final point t = T = tn: stop at i = n.

4.1 Genericity of the method

The computing of the coefficients

〈Gi|zj0 · · · zjl
〉 = fj0 · · · fjl

g(q)|q(ti)

is generic.
The computing of the expressions of

Yi(h) = y(ti + h) = y(ti) +
X

|w|≤k

〈Gi|w〉〈CUi
(h)|w〉

and of

Y
(1)
i (h) = 〈Gi|z0〉 +

P

1≤|w|≤k 〈Gi|wz0〉〈CUi
(h)|w〉+

(〈Gi|z1〉 +
P

1≤|w|≤k 〈Gi|wz1〉〈CUi
(h)|w〉)Ui(h)

(25)
are generic too.
We use the previous algorithm by specifying ti at every step in the
previous expressions.

4.2 Example 1: Duffing equation

Its equation is the following:

y(2)(t) + ay(1)(t) + by(t) + cy3(t) = u(t)
y(0) = y0,

y(1)(0) = y1,0

(26)

It can be written as a first order differential system

8

>

>

>

>

<

>

>

>

>

:

q
(1)
1 (t) = q2(t)

q
(1)
2 (t) = −aq2(t) − bq1(t) − cq31(t) + u(t)

= F (q(t)) + u(t)
y(t) = q1(t) = g(q)
q1(0) = y0, q2,0 = y1,0

(27)

The vector fields are

f0(q1, q2) = q2
∂

∂q1
− (aq2 + bq1 + cq31) ∂

∂q2

= q2
∂

∂q1
+ F (q) ∂

∂q2

f1(q1, q2) = ∂
∂q2

1. We write generic equations describing the generating series Gi

at t = ti :

∀ti 〈Gi|zj1 · · · zjl
〉 = (fj1 · · · fjl

g(q))|q(ti)

Let us remark that

〈Gi|wz1〉 = 0 ∀w ∈ Z∗, 〈Gi|wz1z0〉 = 0 ∀w ∈ Z+

For instance, for order k = 3, we have only to compute 6
coefficients of Gi instead of 15 coefficients.

〈Gi|ǫ〉 = q1(ti)
〈Gi|z0〉 = q2(ti)
〈Gi|z

2
0〉 = F (q(ti))

〈Gi|z1z0〉 = 1

〈Gi|z
3
0〉 = (q2

∂
∂q1

F (q) + F (q) ∂
∂q2

F (q))q(ti)

〈Gi|z1z
2
0〉 = −a

(28)

2. We write generic approximate expression of the output y(ti+1)
and its derivative y(1)(ti+1) for every t = ti+1 = ti+h at order
k:

y(ti+1) = 〈Gi|ǫ〉 +
P

1≤|w|≤k 〈Gi|w〉〈CUi
(h)|w〉

y(1)(ti+1) = 〈Gi|z0〉+
P

1≤|w|≤k 〈Gi|wz0〉〈CUi
(h)|w〉+

(〈Gi|z1〉 +
P

1≤|w|≤k 〈Gi|wz1〉〈CUi
(h)|w〉)Ui(h)

(29)

For instance, for order k = 3

Yi(h) = y(ti + h)
= y(ti) + 〈Gi|z0〉h+ 〈Gi|z

2
0〉h

2/2+
〈Gi|z1z0〉ψi,2(h) + 〈Gi|z

3
0〉h

3/(3!)+
〈Gi|z1z

2
0〉ψi,3(h)

(30)

and

Y
(1)
i (h) = y(1)(ti + h)

= 〈Gi|z0〉 + 〈Gi|z
2
0〉h+

〈Gi|z1z0〉ψi,1(h) + 〈Gi|z
3
0〉h

2/2+
〈Gi|z1z

2
0〉ψi,2(h)

(31)

3. And we use the algorithm of section 4 by specifying ti at every
step. So we obtain the drawing of y(t).

4.3 Example 2: Electric equation

y(1)(t) + k1y(t) + k2y2(t) = u(t)
y(0) = y0,

(32)

It can be written as a first order differential system

8

<

:

q(1)(t) = −k1q(t) − k2q2(t) + u(t)
= a(q(t)) + u(t)

y(t) = q(t), q(0) = y0

(33)

The vector fields are

f0(q) = −(k1q + k2q2) d
dq

= a(q(t)) d
dq

f1(q) = d
dq

1. Generic expression of Gi

Let us remark that

〈Gi|wz1〉 = 0 ∀w ∈ Z+

For instance, for order k = 2

〈Gi|ǫ〉 = q(ti)
〈Gi|z0〉 = a(q(ti))
〈Gi|z1〉 = 1

〈Gi|z
2
0〉 = a(q(t)) d

dq
a(q(t))

〈Gi|z1z0〉 = d
dq
a(q(t))

(34)

2. Generic expression of Yi(h), Y
(1)(h)

for order k = 2

Yi(h) = y(ti + h)
= y(ti) + 〈Gi|z0〉h+ 〈Gi|z1〉ψi,1(h)+

〈Gi|z
2
0〉h

2/2 + 〈Gi|z1z0〉ψi,2(h)
(35)

and

Y
(1)
i (h) = y(1)(ti + h)

= 〈Gi|z0〉 + 〈Gi|z1〉Ui(h)+
〈Gi|z

2
0〉h+ 〈Gi|z1z0〉ψi,1(h)

(36)

3. And we use the algorithm of section 4 by specifying ti at every
step. So we obtain the drawing of y(t) (see the next section).
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4.4 Maple package: some demonstrations

In this section, we produce a demonstration in the following cases

• For stable system (electric equation with positive parame-
ters) for oscillating input u(t) = sin(100t), step=0.01 (Runge-
Kutta vs our method)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Fig.1: Stable system, oscillating input, small step, by
Runge-Kutta or our method

The drawings are similar by both methods (Runge-Kutta or
our method).

• For stable system (electric equation, linear equation) with
oscillating output (Runge-Kutta vs our method vs Exact
Solution)

1. Electric equation with positive parameters for oscillating
input u(t) = sin(100t) , step= 0.5 (Runge-Kutta vs our
method)

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5

Fig.2: Stable system, oscillating input, large step, by
Runge-Kutta (without oscillation) and our method

The oscillations of the output are not described by
Runge-Kutta method when our method diplays a lot
of oscillations.

2. Linear equation for oscillating input u(t) = t2sin(100t),
step= 0.05 (Runge-Kutta vs our method vs Exact Solu-
tion)

-0.002

-0.001

0

0.001

0.002

1 2 3 4 5

Fig.3: Linear equation, oscillating input, small step by
Runge-Kutta

-0.002

-0.001

0

0.001

0.002

1 2 3 4 5

Fig.4: Linear equation, oscillating input, small step by
our method

-0.002

-0.001

0

0.001

0.002

1 2 3 4 5

Fig.5: Linear equation, oscillating input, small step by
exact method

The drawing of the exact solution is similar to the draw-
ing of our method.

• For unstable system (electric equation with negative param-
eters), u(t) = sin(100t), step = 0.01., Runge-Kutta method
notifies an error when our method displays a suitable curve.
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0

50

100

150

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7
t

Fig.6: Unstable system, oscillating input, small step, by our
method

The Runge-Kutta method does not apply to this case when
the drawing of our method displays an infinite branch.

5 Conclusion

We develop a method for drawing a solution curve of a differential
equation, based on the symbolic computing.
The symbolic computing allows us to profit from the genericity: We
propose that one uses the formal expression of the generating series
Gi and of the output y(ti) and its derivative y(1)(ti). Then we re-
place these expressions by their values at every step.
The symbolic computing allows us to profit from the precision: We
can choose any order k for approximating the output and its deriva-
tive. The error is on the order of k + 1.
And then an interest of this method consists in choosing the preci-
sion, not only by the size of the time interval h but by the order of
the approximation.
The quality of any approximation depends on the order, the size
of the interval but also depends on the roughness of the curve and
the stability of the system. From a lot of examples, we express the
following conclusions:
For stable systems with smooth outputs, our method and a Runge-
Kutta method provide similar results.
For unstable systems, our methods allows us to obtain a suitable
result near the instability points, when the Runge-Kutta methods
give an error message.
For stable systems with rough or oscillating outputs, our method
provides a suitable result when a Runge-Kutta method is wrong.
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