
HAL Id: hal-00567889
https://hal.archives-ouvertes.fr/hal-00567889

Preprint submitted on 22 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of cycle enumeration using Zeons
René Schott, Stacey Staples

To cite this version:
René Schott, Stacey Staples. On the complexity of cycle enumeration using Zeons. 2010. �hal-
00567889�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50011821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00567889
https://hal.archives-ouvertes.fr

On the Complexity of Cycle Enumeration using

Zeons

René Schott∗, G. Stacey Staples†

Abstract

Nilpotent adjacency matrix methods are employed to enumerate
k-cycles in simple graphs on n vertices for any k ≤ n. The worst-case
time complexity of counting k-cycles in an n-vertex simple graph is
shown to be O(nα+12n), where α ≤ 3 is the exponent representing
the complexity of matrix multiplication. The average case time com-
plexity of counting k-cycles in an n-vertex simple random graph with
equiprobable edges of probability p is found to be O(nα+1(1 + p)n).
When k is fixed, the enumeration of all k-cycles in an n-vertex graph
is of time complexity O(nα+k−1). The storage complexity of our ap-
proach is O(n22n). Experimental results detailing computation times
(in seconds) are compared with algorithms based on the approaches of
Bax and Tarjan.

AMS subject classification: 68Q25, 60B99, 05C38, 05C85
Keywords: cycles, enumeration, complexity, zeons

1 Introduction

In earlier theoretical work, the current authors have shown that the com-
plexity of a number of NP-class problems from graph theory require only
a polynomial number of operations in a 2n-dimensional commutative alge-
bra denoted by Cℓn

nil, and referred to herein as a “zeon algebra” [6]. In
particular, the problem of enumerating k-cycles in any graph on n vertices
requires O(nα log k) Cℓn

nil operations, or “Cℓops,” where α ≤ 3 denotes

∗IECN and LORIA Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-lès-

Nancy, France, email: schott@loria.fr
†Department of Mathematics and Statistics, Southern Illinois University Edwardsville,

Edwardsville, IL 62026-1653, email: sstaple@siue.edu

1

the exponent associated with matrix multiplication. The authors have ap-
plied nilpotent adjacency methods to the study of random graphs [4] and
explored connections between nilpotent adjacency matrices and quantum
random variables [5].

In the current work, computational complexity is studied in greater detail
by counting algebraic operations at the basis blade level. While counting
the number of basis blade operations in Cℓn

nil performed by an algorithm
may be a natural measure of complexity if one assumes the existence of a
computer architecture capable of naturally dealing algebraic elements, it is
not natural in the context of classical computing.

The zeon algebra does however lend itself to convenient symbolic com-
putations. The current work illustrates these symbolic computations and
considers some practical advantages for doing so. In particular, experimen-
tal comparisons between the zeon approach and other classical algorithms
are presented.

Examples generated with Mathematica were computed on a 2.4 GHz
MacBook Pro with 4 GB of 667 MHz DDR2 SDRAM running Mathematica
6 for MAC OS X with the Combinatorica package. Cycle enumeration is ac-
complished using the nilpotent adjacency matrix approach, Bax’s approach,
and the HamiltonianCycle procedure found in the Mathematica package
Combinatorica. Time plots comparing the three approaches are included.
Mathematica code used to generate examples can be found online through
the second-named author’s web page, http://www.siue.edu/~sstaple.

2 Theoretical Considerations

A graph G = (V,E) is a collection of vertices V and a set E of unordered
pairs of vertices called edges. Two vertices vi, vj ∈ V are said to be adjacent

if there exists an edge eij = {vi, vj} ∈ E. In this case, the vertices vi and vj

are said to be incident with eij .
A k-walk {v0, . . . , vk} in a graph G is a sequence of vertices in G with ini-

tial vertex v0 and terminal vertex vk such that there exists an edge (vj , vj+1) ∈
E for each 0 ≤ j ≤ k−1. A k-walk contains k edges. A k-path is a k-walk in
which no vertex appears more than once. A closed k-walk is a k-walk whose
initial vertex is also its terminal vertex. A k-cycle is a closed k-path with
v0 = vk. It is well-known that the problem of enumerating a graph’s cycles
is known to be NP-complete [3].

Bax’s approach to cycle enumeration uses powers of a graph’s adjacency
matrix with the principle of inclusion-exclusion to count all Hamiltonian

2

cycles in O(2npoly(n)) time O(poly(n)) storage. [1]. Enumerating only those
cycles of length k is accomplished by applying Bax’s algorithm to all k-
vertex subgraphs. Consequently, the complexity for counting k-cycles is
O
((

n
k

)

2k poly(k)
)

. For fixed k, this is O(poly(n)), since
(

n
k

)

≤ nk for all

n ≥ k. For k increasing with n however, this is O
(

(

n
n/2

)

2n/2poly(n)
)

=

O
(

23n/2poly(n)
)

.
Tarjan’s algorithm enumerates all cycles in a graph on n vertices with

time complexity O((n + |E|)(C + 1)) when applied to a graph with C cy-
cles [8]. The storage complexity is O(n+ |E|+S), where S is the sum of the
lengths of all cycles. Note that the number of cycles on a k-vertex subgraph
is potentially of order k!, while the number of such subgraphs is of order
(

n
k

)

.
A convenient and practical Tarjan-type implementation is the Hamilto-

nianCycle procedure found in the Mathematica package Combinatorica. The
algorithm uses backtracking and look-ahead to enumerate all Hamiltonian
cycles in a graph on n vertices. The implementation utilized for the exam-
ples in this paper enumerates cycles of length k in an n-vertex graph G by
applying HamiltonianCycle to all k-vertex subgraphs of G. Implementations
of this Tarjan-like approach are referred to henceforth as “CombiTarjan.”

2.1 Nilpotent adjacency matrices

Definition 2.1. The n-particle zeon algebra, denoted by Cℓn
nil, is defined

as the real abelian algebra generated by the collection {ζi} (1 ≤ i ≤ n) along
with the scalar 1 = ζ0 subject to the following multiplication rules:

ζi ζj = ζj ζi for i 6= j, and (2.1)

ζi
2 = 0 for 1 ≤ i ≤ n. (2.2)

It is evident that a general element u ∈ Cℓn
nil can be expanded as

u =
∑

I∈2[n]

uI ζI , (2.3)

where I ∈ 2[n] is a subset of [n] = {1, 2, . . . , n} used as a multi-index, uI ∈ R,

and ζI =
∏

ι∈I

ζι.

Remark 2.2. The zeon algebra Cℓn
nil can be realized as a commutative sub-

algebra of the Grassmann algebra
∧

V over a 2n-dimensional vector space
V with orthonormal basis {γi} by defining ζi = γiγn+i for each 1 ≤ i ≤ n.

3

A canonical basis element ζI is referred to as a blade. The number of
elements in the multi-index I is referred to as the grade of the blade ζI .

The scalar sum evaluation of an element u ∈ Cℓn
nil is defined by

〈〈

∑

I∈2[n]

uI ζI

〉〉

=
∑

I∈2[n]

uI . (2.4)

Definition 2.3. A blade operation in Cℓn
nil is defined as computing the sum

or product of two basis blades. In particular, for multi-indices I and J , each
of the following computations is regarded as a blade operation:

(aζI)(bζJ) =

{

0 if I ∩ J 6= ∅,

(ab) ζI∪J otherwise;
(2.5)

aζI + bζJ =

{

(a + b)ζI if I = J,

aζI + bζJ otherwise.
(2.6)

Recalling the correlation between subsets of [n] and bit strings of length
n, each basis blade ζI is uniquely associated with a binary string I. Letting
Sn denote the set of all length-n bit strings with bitwise logical operators
and defining

I ⊖ J :=

{

0 if I AND J 6= ∅,

I OR J otherwise,
(2.7)

the pair (Sn,⊖) is seen to be an Abelian semigroup. The group algebra RSn

is then isomorphic to Cℓn
nil.

Note that blade addition in RSn is made explicit by

aI + bJ =

{

(a + b)I if I XOR J = ∅,

aI + bJ otherwise.
(2.8)

The cost of a basis blade multiplication in Cℓn
nil is then equal to that

of computing first the bitwise AND and then the bitwise OR of two n-
bit words, which is known to be O(n). Summing a pair of basis blades is
similarly O(n).

Given arbitrary elements u, v ∈ Cℓn
nil, let νu and νv denote the respective

numbers of nonzero coefficients in the canonical zeon expansions of u and v.
The number of blade products involved when computing uv is then O(νuνb),
and the number of blade sums is similarly O(νuνv). Taking the costs of blade

4

operations into consideration, the complexity of expanding the product uv
is seen to be O(n νuνv).

This complexity is implicit in proofs throughout the remainder of the
paper.

Remark 2.4. The Mathematica implementation of Cℓn
nil used in the ex-

amples contained herein is based on subset operations rather than binary
representations of subsets and bit operations. The additional overhead is
offset by the relatively low dimensions of the examples.

Definition 2.5. Let G be a graph on n vertices, either simple or directed
with no multiple edges, and let {ζi}, 1 ≤ i ≤ n denote the nilpotent gen-
erators of Cℓn

nil. Define the nilpotent adjacency matrix associated with G
by

Aij =

{

ζj if (vi, vj) ∈ E(G)

0 otherwise.
(2.9)

Letting the vertices V = {v1, . . . , vn} be associated with the standard
basis of R

n and recalling Dirac notation, the ith row of A is conveniently
denoted by 〈vi| A, while the jth column is denoted by A |vj〉.

Theorem 2.6. Let A be the nilpotent adjacency matrix of an n-vertex graph

G. For any k > 1 and 1 ≤ i, j ≤ n,
〈

vi|A
k|vj

〉

=
∑

(w1,...,wk)∈V k

(wk=vj)∧(m6=ℓ⇒wm 6=wℓ)

ζ{w1,...,wk} =
∑

I⊆V
|I|=k

ωIζI , (2.10)

where ωI denotes the number of k-step walks from vi to vj visiting each

vertex in I exactly once when initial vertex vi /∈ I, and revisiting vi exactly

once when vi ∈ I. In particular, for any k ≥ 3 and 1 ≤ i ≤ n,
〈

vi|A
k|vi

〉

=
∑

I⊆V
|I|=k

ωIζI , (2.11)

where ωI denotes the number of k-cycles on vertex set I based at vi ∈ I.

Proof. Because the generators of Cℓn
nil square to zero, a straightforward

inductive argument shows that the nonzero terms of
〈

vi|A
k|vj

〉

are multi-
vectors corresponding to two types of k-walks from vi to vj : self-avoiding
walks (i.e., walks with no repeated vertices) and walks in which vi is re-
peated exactly once at some step but are otherwise self-avoiding. Walks of
the second type are zeroed in the kth step when the walk is closed. Hence,
terms of

〈

vi|A
k|vi

〉

represent the collection of k-cycles based at vi.

5

In light of this theorem, the name “nilpotent adjacency matrix” is justi-
fied by the following corollary.

Corollary 2.7. Let A be the nilpotent adjacency matrix of a simple graph on

n vertices. For any positive integer k ≤ n, the entries of Ak are homogeneous

elements of grade k in Cℓn
nil. Moreover, Ak = 0 for all k > n.

Another immediate corollary is that

〈〈

tr
(

Ak
)〉〉

= k |{k-cycles in G}| , (2.12)

since each k-cycle appears with k choices of base point along the main di-
agonal of Ak.

Note that the complexity of computing Ak may vary depending on vari-
ous methods of computing powers. The iterated method requires k−1 matrix
products to compute

Ak :=

{

A if k = 1,

Ak−1A otherwise.
(2.13)

Given the binary representation of positive integer k, the successive squares

method requires ⌊log2 k⌋ matrix products and matrix sums to compute. In
particular, letting k be a set of nonnegative integers such that k =

∑

ℓ∈k 2ℓ,
then

Ak =
∑

ℓ∈k

A2ℓ

(2.14)

While the successive squares method is generally more efficient than
the iterated method, the application to nilpotent adjacency matrices is not
straightforward. The next result is based on the iterated method.

First, define the following useful notation for positive integers n and
k ≤ n:

τn
k :=

k
∑

ℓ=1

(

n

k

)

. (2.15)

Theorem 2.8. The average-case complexity for enumerating cycles of ar-

bitrary length in a homogeneous random graph on n vertices with edge prob-

ability p using the nilpotent adjacency matrix method is O
(

nα+1(1 + p)n
)

.

Moreover, for k ≤ n the average-case complexity of enumerating k-cycles is

Ω
(

nα+1τn−1
k−1

)

.

6

Proof. In light of Theorem 2.6, for any k ≤ n, computing Ak+1 = (Ak)A
requires computing

〈

vi|A
k+1|vj

〉

=

n
∑

ℓ=1

〈

vi|A
k|vℓ

〉

〈vℓ|A|vj〉 (2.16)

for all 1 ≤ i, j ≤ n. Entries of Ak are homogeneous grade-k elements of
Zn. Thus, the average number of blade products computed is the product
of the expected numbers of nonzero coefficients in the canonical expansions
of
〈

vi|A
k|vℓ

〉

and 〈vℓ|A|vj〉.
Claim. Let n ≥ 3 and 2 < k ≤ n. For any 1 ≤ i, j ≤ n, the expected number
of nonzero coefficients in the canonical expansion of

〈

vi|A
k|vj

〉

satisfies the
following inequality:

pk

(

n − 1

k − 1

)

≤ E(♯ {nonzero coefficients}) ≤ pk−1

(

n − 1

k − 1

)

. (2.17)

Moreover, in the case k = 2 < n,

p2(n − 2) ≤ E(♯ {nonzero coefficients}) ≤ p(n − 1). (2.18)

Proof of claim. By Theorem 2.6, the expected number of nonzero coefficients
in the canonical zeon expansion of

〈

vi|A
k|vj

〉

is equal to the expected number
of k-vertex subsets I ⊆ V such that there exists a k-step walk from vi to
vj ∈ I visiting each vertex of I exactly once when vi /∈ I and revisiting vi

exactly once when vi ∈ I.
The expected number of vertex sets I on which k-walks vi → vj exist is

determined by partitioning the collection of walks into three classes: walks
with no repeated vertices, walks that repeat vi on the second step–and there-
fore repeat an edge, and walks that revisit vi on some step other than the
second.

Class I: When a collection of k-walks vi → vj exists on k independent
equiprobable edges with no revisited vertices,

E(♯{I : ∃k-walk on I}) =
E(k-walks vi → vj on I)

(k − 1)!

=
pk(n − 2)!/(n − k − 1)!

(k − 1)!
= pk

(

n − 2

k − 1

)

, (2.19)

since vi is excluded and the walk must terminate at vj .

7

Class II: Given a collection of k-walks vi → vj on k − 1 independent
equiprobable edges, revisiting only vi exactly once in the second step,

E(♯{I : ∃k-walk on I}) =
E(k-walks vi → vj on I)

(k − 2)!

=
pk−1(n − 2)!/((n − 2) − (k − 2))!

(k − 2)!
= pk−1

(

n − 2

k − 2

)

. (2.20)

Class III: Given a collection of k-walks vi → vj on k independent equiprob-
able edges, revisiting vi exactly once in some step other than the second,

E(♯{I : ∃k-walk on I}) =
E(k-walks vi → vj on I)

(k − 1)!

=
pk(n − 2)!/((n − 2) − (k − 1))!

(k − 1)!
= pk

(

n − 2

k − 1

)

. (2.21)

While the walks themselves are partitioned into these classes, the vertex
sets corresponding to the walks are partitioned into sets V1 containing vi and
V2 not containing vi. Note that a single vertex set I ∈ V1 may correspond
to walks revisiting vi on the second step as well as walks revisiting vi on
different steps.

The lower bound on the expected number of nonzero coefficients is ob-
tained by summing expected numbers of vertex sets corresponding to walks
of Classes I and III. Using Pascal’s Identity, the lower bound on the expected
number of nonzero coefficients is then given by

pk

(

n − 2

k − 1

)

+ pk

(

n − 2

k − 2

)

= pk

(

n − 1

k − 1

)

.

The upper bound is similarly found by summing expected numbers of
vertex sets corresponding to walks of classes I and II:

pk

(

n − 2

k − 1

)

+ pk−1

(

n − 2

k − 2

)

= pk−1

(

p

(

n − 2

k − 1

)

+

(

n − 2

k − 2

))

≤ pk−1

((

n − 2

k − 1

)

+

(

n − 2

k − 2

))

= pk−1

(

n − 1

k − 1

)

.

In the special case k = 2, it becomes evident that the expected number
of nonzero coefficients in the canonical expansion of

〈

vi|A
2|vj

〉

is equal to
the expected degree of vi when i = j, and equal to the expected number of
two step walks on distinct vertices vi → vℓ → vj when i 6= j; i.e.,

E(♯{nonzero coefficients}) =

{

p(n − 1) i = j,

p2(n − 2) otherwise.
(2.22)

8

Hence, when k = 2, the lower bound on the expected number of nonzero
coefficients is of the form pk

(

n−1
k−1

)

− pk, while the upper bound is the same
as in the more general case. This completes the proof of the claim.

For 1 ≤ k ≤ n, the expected number of blade multiplications is bounded
above by

n
∑

ℓ=1

pk−2

(

n − 1

k − 2

)

p = npk−1

(

n − 1

k − 2

)

. (2.23)

Hence, the expected number of blade multiplications in the matrix product

Ak−1A is bounded above by nα+1pk−1

(

n − 1

k − 2

)

. Applying this result recur-

sively, the average number of blade multiplications required to compute Ak

is found to be bounded above by

nα+1
k
∑

ℓ=2

pℓ−1

(

n − 1

ℓ − 2

)

. (2.24)

Observing that

k
∑

ℓ=2

pℓ−1

(

n − 1

ℓ − 2

)

=
k−2
∑

ℓ=0

pℓ+1

(

n − 1

ℓ

)

= p
k−2
∑

ℓ=0

pℓ

(

n − 1

ℓ

)

≤ p

n−1
∑

ℓ=0

pℓ

(

n − 1

ℓ

)

= p(1 + p)n−1, (2.25)

cycle enumeration is of average-case complexity O(nα+1(1 + p)n).
When k > 3, the expected number of blade multiplications performed

when computing
〈

vi|A
k−1A|vj

〉

is bounded below by

n
∑

ℓ=1

pk−1

(

n − 1

k − 2

)

p = npk

(

n − 1

k − 2

)

. (2.26)

When k = 3, the lower bound is

n
∑

ℓ=1

p2(n − 2)p = np3(n − 2), (2.27)

while k = 2 gives lower bound

n
∑

ℓ=1

p2 = np2. (2.28)

9

Combining (2.26), (2.27), and (2.28), a lower bound on the expected
number of blade multiplications performed in computing Ak for k ≥ 2 by
the iterative method is

nα

(

np2 + np3(n − 2) +

k−1
∑

ℓ=4

npℓ

(

n − 1

ℓ − 2

)

)

= nα+1

(

p2 + p3(n − 2) +

k−1
∑

ℓ=4

pℓ

(

n − 1

ℓ − 2

)

)

≥ nα+1pk−1

(

n − 1 +
k−1
∑

ℓ=4

(

n − 1

ℓ − 2

)

)

= nα+1pk−1

(

n − 1 +
k−3
∑

ℓ=2

(

n − 1

ℓ

)

)

= nα+1pk−1
k−1
∑

ℓ=1

(

n − 1

ℓ

)

= nα+1pk−1τn−1
k−1 . (2.29)

I.e., the average-case complexity of enumerating k-cycles is Ω
(

nα+1pk−1τn−1
k−1

)

.

Example 2.9. Computation times of enumerating ⌊n/2⌋-cycles in random
graphs are depicted in Figures 1, 2, and 3.

The worst-case complexity of cycle enumeration is established by setting
p = 1 in the statement of Theorem 2.8.

Corollary 2.10. The worst-case time complexity for enumerating k-cycles

in a graph on n vertices using the nilpotent adjacency matrix method is

O
(

nα+12n
)

.

Example 2.11. The average-case complexity of enumerating 3-cycles in a
homogeneous random graph on n vertices with edge probability p using the
iterated nilpotent adjacency matrix method is Θ(nα+2).

As the next theorem shows, the fixed cycle length case is very well-
behaved in terms of complexity.

Theorem 2.12. For fixed k ∈ N, the complexity of enumerating k-cycles in

an n-vertex graph is O(nα+k−1).

10

* *
*

*

*

*

*

*

7 8 9 10 11 12 13
vertices

0.2

0.4

0.6

0.8

1.0

1.2

seconds

Figure 1: Mean run times of zeon method over 100 trials of counting ⌊n/2⌋-
cycles in n-vertex graphs with edge probability p = 0.3. Plotted with as-
terisks are values cn4(1 + p)n where c = 1.26707 ∗ 10−6, obtained by least
squares method.

Proof. The case k = 3 is clear from the special case in the proof of Theorem
2.8. When k > 3, the maximum number of nonzero coefficients in the
canonical zeon expansion of

〈

vi|A
k−1|vj

〉

is
(

n−1
k−2

)

. Asymptotically,
(

n−1
k−2

)

≈
(n−1)k−2

(k−2)! = O(nk). Hence, computing Ak requires computing at most

nα
k−2
∑

ℓ=0

(

n − 1

ℓ

)

= O(nαnk−2) = O(nk+(α−2)). (2.30)

blade products.

Example 2.13. Computation times of enumerating 5-cycles in random
graphs appear in Figures 4, 5, and 6.

2.2 Lower bounds

We turn now to considerations of lower bounds on complexity using the
iterated method. In particular, a lower bound on complexity of counting
kn-cycles where kn increases with n.

Proposition 2.14. Let (kn) be a sequence in N. If ∃M ∈ N such that

kn > ⌈n/2⌉ for all n ≥ M , then the average-case complexity of enumerating

kn-cycles in a homogeneous random graph on n vertices with edge probability

p using the iterated nilpotent adjacency matrix method is Θ
(

nα+1(1 + p)n
)

.

11

n p Zeon Time Graph Bax Time CombiTarjan time cycle size ð8k-cycles<

6 0.3 0.041951 0.014575 0.009360 3 2

7 0.3 0.005449 0.017005 0.017279 3 4

8 0.3 0.002638 0.071668 0.028735 4 0

9 0.3 0.006998 0.128964 0.101792 4 2

10 0.3 0.017523 0.695656 0.271784 5 6

11 0.3 0.047338 1.294477 0.736030 5 12

12 0.3 0.304311 6.504564 2.635960 6 80

13 0.3 0.378919 12.118591 3.452875 6 98

14 0.3 1.086447 69.379095 7.004031 7 22

15 0.3 3.681130 130.205070 24.613884 7 404

Figure 2: Times (in secs) required to enumerate ⌊n/2⌋-cycles in randomly
generated n-vertex graphs having equiprobable edges (p = 0.3).

12

B B B B B B
B

B

B

B

C C C C C C C C
C

C

8 10 12 14
vertices

20

40

60

80

100

120

seconds

Figure 3: Mean run times over twenty trials of counting ⌊n/2⌋-cycles in
n-vertex graphs with edge probability p = 0.25. Plotmarkers: B–Bax, C–
Combi-Tarjan, *–Zeon.

* * * *
*

*

*

*

*

*

*

6 8 10 12 14
vertices

0.2

0.4

0.6

seconds

Figure 4: Mean run times of zeon method over 100 trials of counting 5-cycles
in n-vertex graphs with edge probability p = 0.3. Plotted with asterisks are
values c n7 where c = 4.38386 ∗ 10−9, obtained by least squares method.

13

B B B B
B

B

B

B

B

B

C C C C C
C

C C

C

C

8 10 12 14
vertices

2

4

6

8

seconds

Figure 5: Average run times over twenty trials of counting 5-cycles in n-
vertex graphs with edge probability p = 0.3. Plotmarkers: B–Bax, C–
Combi-Tarjan, *–Zeon.

Proof. By Theorem 2.8, the average time complexity of enumerating kn-
cycles is O(nα+1(1 + p)n). It remains to establish that (in the iterated
method) the average complexity is also Ω(nα+1(1 + p)n).

Observe that the proof of Theorem 2.8 implies that the expected num-
ber of nonzero coefficients in the canonical zeon expansion of

〈

vi|A
k|vj

〉

is

bounded below by pk
(

n−2
k−1

)

for 1 ≤ k ≤ n− 1, even in the special case k = 2.
Suppose (kn) and M satisfy the conditions stated in the proposition.

Given 0 ≤ p ≤ 1, it is clear from symmetry of binomial coefficients that
pℓ
(

n−1
ℓ

)

≥ p(n−1)−ℓ
(

n−1
n−ℓ

)

for 0 ≤ ℓ ≤ kn. An immediate consequence is that
in the case kn ≥ n/2 + 1 for even n ≥ M ,

kn−2
∑

ℓ=0

pℓ

(

n − 2

ℓ

)

≥

n/2−1
∑

ℓ=0

pℓ

(

n − 2

ℓ

)

≥
1

2

n−2
∑

ℓ=0

pℓ

(

n − 2

ℓ

)

=
1

2
(1 + p)n−2.

(2.31)
For odd n ≥ M , kn ≥ n+1

2 + 1 implies

kn−2
∑

ℓ=0

pℓ

(

n − 2

ℓ

)

≥

(n−1)/2
∑

ℓ=0

pℓ

(

n − 2

ℓ

)

>
1

2

n−2
∑

ℓ=0

pℓ

(

n − 2

ℓ

)

=
1

2
(1 + p)n−2.

(2.32)

14

n p Zeon Time Graph Bax Time Combinatorica time cycle size ð8k-cycles<

6 0.3 0.001911 0.017523 0.005827 5 0

7 0.3 0.003465 0.061099 0.013855 5 0

8 0.3 0.007210 0.157496 0.070600 5 2

9 0.3 0.011970 0.353054 0.139510 5 2

10 0.3 0.051886 0.702653 0.448507 5 22

11 0.3 0.016244 1.290107 0.367940 5 0

12 0.3 0.066979 2.209488 0.917483 5 16

13 0.3 0.732873 3.596704 3.470682 5 254

14 0.3 0.179088 5.584722 2.569243 5 60

15 0.3 1.305130 8.399761 5.819182 5 298

Figure 6: Times (in secs) required to enumerate 5-cycles in randomly gen-
erated n-vertex graphs.

15

2.3 Computing powers by successive-squares

While the successive squares method is more efficient than the iterated
method for ordinary matrix multiplication; i.e., O(nα log n) vs. O(nα+1),
such is not necessarily the case for nilpotent adjacency matrices.

Lemma 2.15. The average-case complexity for enumerating k-cycles in a

homogeneous random graph on n vertices with edge probability p using the

successive-squares nilpotent adjacency matrix method is

O

nα+1

log2 k
∑

ℓ=0

p2ℓ

(

n − 1

2ℓ − 1

)2

 .

Proof. As in the proof of Theorem 2.8, the expected number of nonzero
terms in the canonical zeon expansion of

〈

vi|A
k|vj

〉

is bounded above by

pk−1
(

n−1
k−1

)

. Hence, the expected number of blade multiplications performed

in computing an entry of the squared matrix
〈

vi|A
2k|vj

〉

is bounded above by

n

p2
p2k

(

n − 1

k − 1

)2

. Summing over successive squares then gives the result.

The next proposition reveals inefficiencies in the successive-squares method
of computing powers of nilpotent adjacency matrices.

Proposition 2.16. Let A denote the nilpotent adjacency matrix of a ho-

mogeneous random graph on n vertices with equiprobable edges of probability

p, and let 3 ≤ k ≤ n/2. Let N
(

(Ak)2
)

denote the number of blade multipli-

cations performed in squaring Ak resulting in zero, i.e., the number of null
blade multiplications performed. Then,

E

(

N
(

(Ak)2
))

= Θ

(

n3p2k

[

(

n − 1

k − 1

)2

−

(

n − 2

k − 1

)(

n − k

k − 1

)

])

. (2.33)

Proof. Given a fixed k-blade ζI , the number of k-blades indexed by sets
nontrivially intersecting I is given by

(

n
k

)

−
(

n−k
k

)

. In other words, for fixed
multi-index I,

♯{ζJ ∈ Cℓn
nil : ζIζJ = 0} =

(

n

k

)

−

(

n − k

k

)

. (2.34)

Considering a random graph on n vertices with equiprobable edges of
probability p, the expected number of nonzero coefficients in the canonical

16

zeon expansion of
〈

vi|A
k|vj

〉

is between pk
(

n−1
k−1

)

and pk−1
(

n−1
k−1

)

. We con-
sider now the expected number of null products occurring when computing
〈

vi|A
2k|vj

〉

by squaring Ak.
Recall that

〈

vi|A
2k|vj

〉

=

n
∑

ℓ=1

〈

vi|A
k|vℓ

〉〈

vℓ|A
k|vj

〉

. (2.35)

Because each term in the canonical zeon expansion of
〈

vi|A
k|vℓ

〉

is of
the form αIζI\{ℓ}ζℓ,

(ℓ = j) ⇒
〈

vi|A
k|vℓ

〉〈

vℓ|A
k|vj

〉

= 0. (2.36)

The expected number of null products computed when ℓ = j is thus the
product of the expected numbers of nonzero coefficients in the respective
canonical zeon expansions. Hence, the lower and upper bounds on expected
numbers of null blade products are squares of the lower and upper bounds
on the expected numbers of nonzero coefficients, i.e., when k 6= 2,

p2k

(

n − 1

k − 1

)2

≤ E (♯{null blade products when ℓ = j}) ≤ p2(k−1)

(

n − 1

k − 1

)2

.

(2.37)
On the other hand, when ℓ 6= j, we consider blades indexed by sets

containing j and sets not containing j. Let Xj denote the number of nonzero
coefficients indexed by sets containing vj in

〈

vi|A
k|vℓ

〉

. Employing reasoning
from the proof of Theorem 2.8, the expected value of Xj satisfies

pk

(

n − 2

k − 2

)

≤ E(Xj) ≤ pk−1

(

n − 2

k − 2

)

,

since vj and vℓ must be included in any k-walks represented.
Letting X̃j denote the number of nonzero coefficients indexed by sets not

containing vj in
〈

vi|A
k|vℓ

〉

, similar reasoning gives

pk

(

n − 2

k − 1

)

≤ E(X̃j) ≤ pk−1

(

n − 2

k − 1

)

.

For arbitrary basis blade indexed by a set I not containing vj , let Ỹj

denote the number of nonzero coefficients in the expansion of
〈

vℓ|A
k|vj

〉

whose index sets nontrivially intersect I. Then,

pk

((

n − 1

k − 1

)

−

(

n − k

k − 1

))

≤ E(Ỹj) ≤ pk−1

((

n − 1

k − 1

)

−

(

n − k

k − 1

))

.

(2.38)

17

When vj ∈ I, letting Yj denote the number of nonzero coefficients in the
expansion of

〈

vℓ|A
k|vj

〉

whose index sets nontrivially intersect I gives

pk

(

n − 1

k − 1

)

≤ E(Yj) ≤ pk−1

(

n − 1

k − 1

)

. (2.39)

The expected number of null blade products occurring in the multipli-
cation

〈

vi|A
k|vℓ

〉 〈

vℓ|A
k|vj

〉

when ℓ 6= j is then given by

E (♯{null blade products when ℓ 6= j}) = E(X̃j Ỹj + XjYj).

With all these considerations in mind,

pk

(

n − 2

k − 1

)

pk

((

n − 1

k − 1

)

−

(

n − k

k − 1

))

+ pk

(

n − 2

k − 2

)

pk

(

n − 1

k − 1

)

= p2k

[

(

n − 1

k − 1

)2

−

(

n − 2

k − 1

)(

n − k

k − 1

)

]

≤ E (♯{null blade products when ℓ 6= j})

≤ p2(k−1)

[

(

n − 1

k − 1

)2

−

(

n − 2

k − 1

)(

n − k

k − 1

)

]

= pk−1

(

n − 2

k − 1

)

pk−1

((

n − 1

k − 1

)

−

(

n − k

k − 1

))

+pk−1

(

n − 2

k − 2

)

pk−1

(

n − 1

k − 1

)

.

(2.40)

Returning to the sum (2.35), the expected number of null products com-
puted in calculating

〈

vi|A
2k|vj

〉

by squaring Ak is seen to satisfy

p2k

(

n − 1

k − 1

)2

+ (n − 1)p2k

[

(

n − 1

k − 1

)2

−

(

n − 2

k − 1

)(

n − k

k − 1

)

]

≤ E (♯{null blade products})

≤ p2(k−1)

(

n − 1

k − 1

)2

+ (n − 1)p2(k−1)

[

(

n − 1

k − 1

)2

−

(

n − 2

k − 1

)(

n − k

k − 1

)

]

.

(2.41)

The expected number of null blade products computed in squaring Ak

18

is then obtained by summing over all matrix indices 1 ≤ i, j ≤ n. Hence,

n2p2k

(

n − 1

k − 1

)2

+ (n3 − n2)p2k

[

(

n − 1

k − 1

)2

−

(

n − 2

k − 1

)(

n − k

k − 1

)

]

≤ E

(

N ((Ak)2)
)

≤ n2p2(k−1)

(

n − 1

k − 1

)2

+(n3−n2)p2(k−1)

[

(

n − 1

k − 1

)2

−

(

n − 2

k − 1

)(

n − k

k − 1

)

]

.

(2.42)

The expected number of null blade multiplications is seen to be de-
pendent on p. The inefficiency of squaring varies with graph density, as
illustrated in Example 2.17.

Example 2.17. Let A be the nilpotent adjacency matrix of a randomly-
generated graph on 10 vertices with equiprobable edges of probability p =
0.5. The expected number of null blade products computed in calculating
A10 by squaring A5 is between 15196.3 and 60785.2. On the other hand,
when p = 0.1, the expected number of null blade products in the same
computation is between 0.0015561 and 0.15561.

2.4 Remarks on space complexity

The algorithms presented by Bax have space complexity O(poly(n)). On
the other hand, Tarjan’s algorithm actually lists cycles, which can result in
O(n!) space complexity.

By storing only vertex sets on which cycles exist rather than the cycles
themselves, the space complexity of the nilpotent adjacency matrix method
is less than that of Tarjan’s method.

Lemma 2.18. Enumerating cycles in a simple graph on n vertices using

nilpotent adjacency matrix methods has storage complexity O(n22n).

Proof. The nilpotent matrix method requires construction of n×n matrices
whose entries are elements of a 2n-dimensional algebra; i.e., in the worst case,
O(2n) coefficients must be associated with each matrix entry. Consequently,
the space complexity is O(n22n).

19

3 Conclusion

Given a computing architecture in which one blade multiplication is done in
O(n) time, the average case complexity of enumerating k-cycles in a homo-
geneous random graph on n vertices with equiprobable edges of probability
p is O(nα+1(1 + p)n). This is more efficient than Bax’s algorithm, which
enumerates all cycles in O(2npoly(n)) time. In sparse graphs, Tarjan’s al-
gorithm offers advantages in time complexity, but the zeon approach offers
advantages in space complexity.

In relatively low-dimensional cases, the nilpotent matrix approach to
cycle enumeration offers practical advantages, even when implemented on
a classical computer using Mathematica. To summarize the experimental
results, the nilpotent adjacency matrix method offers practical advantages
over Bax and CombiTarjan when enumerating k-cycles in relatively sparse
n-vertex graphs with k < n. The advantage is most striking in the case k ≈
n/2, since this case maximizes the number of subgraphs being considered in
both the Bax and CombiTarjan methods.

References

[1] E.T. Bax, Algorithms to count paths and cycles, Information Processing Let-

ters, 52 (1994), 249-252.

[2] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progres-
sions, Journal of Symbolic Computation, 9 (1990), 251-280.

[3] R. M. Karp, Reducibility among combinatorial problems, Complexity of Com-

puter Computations, Plenum, New York, 1972, 85-103.

[4] R. Schott, G.S. Staples, Nilpotent adjacency matrices and random graphs, Ars

Comb., To appear.

[5] R. Schott, G.S. Staples, Nilpotent adjacency matrices, random graphs, and
quantum random variables, J. Phys. A: Math. Theor., 41 155205, (2008).

[6] R. Schott, G.S. Staples, Reductions in computational complexity using Clifford
algebras, Advances in Applied Clifford Algebras, 20 (2010), 121-140.

[7] R. Schott, G.S. Staples, Computational complexity reductions using Clifford
algebras, AGACSE 2008, To appear.

[8] R.E. Tarjan, Enumeration of the elementary circuits of a directed graph. SIAM

J. Comput., 2 (1973), 211216.

[9] D. West, Introduction to Graph Theory, Second Ed., Prentice Hall, Upper
Saddle River, 2001.

20

