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Abstract In this paper, we use duality arguments ”à la Michel Pierre” to establish global
existence of classic solutions for a class of parabolic reaction-diffusion systems modeling, for
instance, the evolution of reversible chemical reactions.

1 Introduction

This paper is motivated by the general question of global existence in time of solutions to
the following reaction-diffusion system

(S)















































ut − d1∆u = wγ − uαvβ (0,+∞) ×Ω, (E1)
vt − d2∆v = wγ − uαvβ (0,+∞) ×Ω, (E2)
wt − d3∆w = −wγ + uαvβ (0,+∞) ×Ω, (E3)
∂u

∂n
(t, x) =

∂v

∂n
(t, x) =

∂w

∂n
(t, x) = 0 (0,+∞) × ∂Ω,

u(0, x) = u0(x) ≥ 0 x ∈ Ω,
v(0, x) = v0(x) ≥ 0 x ∈ Ω,
w(0, x) = w0(x) ≥ 0 x ∈ Ω,

where Ω is a bounded regular open subset of RN , (d1, d2, d3, α, β, γ) ∈ (0,+∞)3 × [1,+∞)3.

Note that the system (S) satisfies two main properties, namely :
(P ) the nonnegativity of solutions of (S) is preserved for all time ;
(M) the total mass of the components u, v, w is a priori bounded on all finite intervals (0, t).

If α, β and γ are positive integers, system (S) is intended to describe for example the evolution
of a reversible chemical reaction of type

αU + βV ⇋ γW

where u, v, w stand for the density of U , V and W respectively.
This chemical reaction is typical of general reversible reactions and contains the major difficulties
encountered in a large class of similar problems as regards global existence of solutions.
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Let us make precise what we mean by solution.

By classical solution to (S) on QT = (0, T )× Ω, we mean that, at least
(i) (u, v, w) ∈ C([0, T );L1(Ω)3) ∩ L∞([0, τ ] × Ω)3,∀τ ∈ (0, T ) ;
(ii) ∀k, ℓ = 1 . . . N , ∀p ∈ (1,+∞)

∂tu, ∂tv, ∂tw, ∂xk
u, ∂xk

v, ∂xk
w, ∂xkxℓ

u, ∂xkxℓ
v, ∂xkxℓ

w, u, v, w ∈ Lp((0, T ) × Ω) ;

(iii) equations in (S) are satisfied a.e (almost everywhere).

By weak solution to (S) on QT = (0, T ) × Ω, we essentially mean solution in the sense of
distributions or, equivalently here, solution in the sens of the variation of constants formula with
the corresponding semigroups. More precisely

u(t) = Sd1(t)u0 +

∫

0
Sd1(t− s)(wγ(s)− uα(s)vβ(s)) ds

v(t) = Sd2(t)v0 +

∫

0
Sd2(t− s)(wγ(s)− uα(s)vβ(s)) ds

w(t) = Sd3(t)u0 +

∫

0
Sd3(t− s)(−wγ(s) + uα(s)vβ(s)) ds

where Sdi(.) is the semigroup generated in L1(Ω) by −di∆ with homogeneous Neumann boun-
dary condition, 1 ≤ i ≤ 3.

By just integrating the sum (E1) + (E2) + 2(E3) in space and time, and taking into account

the boundary conditions

(
∫

Ω
∆(d1u+ d2v + d3w) = 0

)

, we obtain

∫

Ω
u(t) + v(t) + 2w(t) =

∫

Ω
u0 + v0 + 2w0 t ≥ 0. (1)

Together with the nonnegativity of u, v and w, estimate (1) implies that

∀t ≥ 0 , ‖u(t)‖L1(Ω), ‖v(t)‖L1(Ω), ‖w(t)‖L1(Ω) ≤ ‖u0 + v0 + 2w0‖L1(Ω). (2)

In other words, the total mass of three components does not blow up ; u(t), v(t) and w(t) rest
bounded in L1(Ω) uniformly in time.

Although one has uniform L1-bound in time, classical solutions may not globally exist for
diffusion coefficients d1, d2, d3 which are not equal (global existence obviously holds if d1 = d2 =
d3). As surprisingly proved in [12] and [16], it may indeed happen that, under assumptions (P )
and (M), solutions blow up in finite time in L∞ ! In particular, classical bounded solutions do
not exist globally in time.

If u0, v0, w0 ∈ L∞(Ω), local existence and uniqueness of nonnegative and uniformly bounded
solution to (S) are known (see e.g. [13]). More precisely, there exists T > 0 and a unique classical
solution (u, v, w) of (S) on [0, T ). If Tmax denotes the greatest of these T’s, then

(

Tmax < +∞
)

=⇒ lim
tրTmax

(

‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω) + ‖w(t)‖L∞(Ω)

)

= +∞. (3)

To prove global existence (i.e. Tmax = +∞), it is sufficient to obtain an a priori estimate of the
form

∀t ∈ [0, Tmax), ‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω) + ‖w(t)‖L∞(Ω) ≤ H(t), (4)
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where H : [0,+∞) → [0,+∞) is a nondecreasing and continuous function.

This type of estimates is far of being obvious for our system except the case where diffusion
coefficients d1, d2, d3 are equal i.e d1 = d2 = d3 = d. Indeed, Z = u+ v + 2w satisfies

(E)











Zt − d∆Z = 0 (0,+∞)× Ω,
∂Z

∂n
= 0 (0,+∞)× ∂Ω,

Z(0, x) = Z0(x) x ∈ Ω,

where Z0(x) = u0(x) + v0(x) + 2w0(x).
In particular, we deduce by maximum principle that

‖u(t) + v(t) + 2w(t)‖L∞(Ω) ≤ ‖u0 + v0 + 2w0‖L∞(Ω), t ≥ 0.

Together with nonnegativity, this implies

‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω) + ‖w(t)‖L∞(Ω) ≤ ‖u0 + v0 + 2w0‖L∞(Ω), t ≥ 0.

In other words, u(t), v(t) and w(t) stay uniformly bounded in L∞(Ω) and therefore Tmax = +∞.

In the case where the diffusion coefficients are different from each other, global existence is
considerably more complicated. It has been studied by several authors in the following cases.
First case α = β = γ = 1.

In this case, global existence of classical solutions has been obtained by Rothe [13] for di-
mension N ≤ 5. Later, it has first been proved by Pierre [10] for all dimensions N and then by
Morgan [9].

The exponentiel decay towards equilibrium has been studied by Desvillettes-Fellner [2] in
the case of one space dimension.

The global existence of weak solutions has been proved by Laamri [7] for initial data u0, v0
and w0 only in L1(Ω).
Second case γ = 1 regardless of α and β.

In this case, global existence of classical solutions has been obtained by Feng [4] in all
dimensions N and more general boundary conditions.
Third case α+ β ≤ 2 or γ ≤ 2.

In this case, Pierre [11] has proved global existence of weak solutions for initial data u0, v0
and w0 only in L2(Ω).

Our paper mainly completes the investigations of [[4], [9], [10], [13]] and [[7], [11]]. As far as

we know, our results are new either when α+β < γ, or when 1 < γ <
N + 6

N + 2
regardless of α and

β. For the sake of clarity, we decided to focus in this work on the question of global existence in
time of solutions in the case of homogeneous Neumann boundary conditions. So, we shall prove
global existence of classical solutions to system (S) in the following cases :
* α+ β < γ ;
* (d1 = d3 or d2 = d3) and for any (α, β, γ) ;
* d1 = d2 and for any (α, β, γ) such that α+ β 6= γ ;

* 1 < γ <
N + 6

N + 2
and for any (α, β).

For the sake of completeness and for the reader’s convenience, we shall also give a direct
proof different from that of Feng [4] in the special case γ = 1.
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Notation : Throughout this study, we denote by Ci’s various positive numbers depending only
on the data and for p ∈ [1,+∞[

‖u(t)‖p =

(
∫

Ω
|u(t, x)|p dx

)1/p

, ‖u‖Lp(QT ) =

(
∫ T

0

∫

Ω
|u(t, x)|p dtdx

)1/p

,

‖u(t)‖∞ = esse supx∈Ω|u(t, x)|, ‖u‖L∞(QT ) = esse sup(t,x)∈QT
|u(t, x)|.

2 The main results

One of the main ingredients for the proof of our results is the following lemma which is
based on the regularizing effects of the heat equation. This lemma has been introduced by
Hollis-Martin-Pierre in [5].

Lemma 1 Let T > 0 and (φ,ψ) the classical solution of











































φt − d1∆φ = f(φ,ψ) (t, x) ∈ (0, T )× Ω
ψt − d2∆ψ = g(φ,ψ) (t, x) ∈ (0, T )× Ω
∂φ

∂n
(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω

∂ψ

∂n
(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω

φ(0, x) = φ0(x) x ∈ Ω
ψ(0, x) = ψ0(x) x ∈ Ω.

Assume that f + g = 0, then for each p ∈ (1,+∞), there exists C such that for all t ∈ (0, T )

‖ψ‖Lp(Qt) ≤ C
[

‖φ‖Lp(Qt) + 1
]

. (5)

A more general version of this lemma can be founded in [11, lemma 3.4]. �

2.1 The case α + β < γ

Theorem 1 Assume that 0 ≤ u0, v0, w0 ≤M where M is a positive real.
If α+ β < γ, then the system (S) admits a global classical solution.

Proof :
• Let T ∈ (0, Tmax) and let t ∈ (0, T ]. Thanks to the nonnegativity of u, v and w, we deduce
from the equation (E1) that u is bounded from above by the solution U of

(P1)











Ut − d1∆U = wγ (t, x) ∈ (0, T )× Ω
∂U

∂n
(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω

U(0, x) = u0(x) x ∈ Ω,

and we deduce from the equation (E2) that v is bounded from above by the solution V of

(P2)











Vt − d2∆V = wγ (t, x) ∈ (0, T ) ×Ω
∂V

∂n
(t, x) = 0 (t, x) ∈ (0, T ) × ∂Ω

V (0, x) = v0(x) x ∈ Ω.
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Therefore it is sufficient to show that w ∈ Lp(QT ) for p large enough.
• Let q > 1. Multiplying the equation (E3) by w

q and integrating over QT , we get

1

q + 1

∫

Ω
wq+1(T ) + qd3

∫ ∫

QT

|∇w|2wq−1 +

∫ ∫

QT

wq+γ =

∫ ∫

QT

uαvβwq +K0 (6)

where

K0 =
1

q + 1

∫

Ω
wq+1
0 .

Thanks to Hölder’s inequality, we have
∫ ∫

QT

uαvβwq ≤ ‖u‖αLαr(QT )‖v‖
β
Lβs(QT )

‖w‖q
Lγ+q(QT )

(7)

where
1

r
+

1

s
+

q

q + γ
= 1.

Since α+ β < γ, we can choose r such that rα ≤ q+ γ and s such that sβ ≤ q+ γ. To convince

oneself, it is enough to draw the straight line with cartesian equation x + y =
γ

q + γ
and to

identify the points with coordinates (
α

q + γ
, 0) and (0,

β

q + γ
).

Then Lq+γ(QT ) ⊂ Lαr(QT ) and L
q+γ(QT ) ⊂ Lβs(QT ). Consequently, there exists C1 such that

∫ ∫

QT

uαvβwq ≤ C1‖u‖
α
Lγ+q(QT )‖v‖

β
Lγ+q(QT )

‖w‖q
Lγ+q(QT )

. (8)

By virtue of lemma 1, there exists C2 such that

‖u‖Lγ+q(QT ) ≤ C2(1 + ‖w‖Lγ+q(QT )) (9)

and there exists C3 such that

‖v‖Lγ+q(QT ) ≤ C3(1 + ‖w‖Lγ+q(QT )). (10)

Thanks to (9) and (10), estimate (8) can be written
∫ ∫

QT

uαvβwq ≤ C4

(

1 + ‖w‖Lγ+q(QT )

)α (
1 + ‖w‖Lγ+q(QT )

)β (
1 + ‖w‖Lγ+q(QT )

)q
. (11)

If ‖w‖Lγ+q(QT ) ≤ 1 then the proof ends up. Otherwise, there exists C5 such that

∫ ∫

QT

uαvβwq ≤ C5‖w‖
q+α+β
Lγ+q(QT )

. (12)

So we deduce from (6)
∫ ∫

QT

wq+γ ≤ C5‖w‖
q+α+β
Lγ+q(QT )

+K0. (13)

With the notation R :=

∫ ∫

QT

wq+γ , estimate (13) can be written

R ≤ C5R
q+α+β
q+γ +K0. (14)
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Since q + α+ β < q + γ, by applying Young’s inequality to (14), we obtain

(1− ε)R ≤ K0 + C6. (15)

Then, for ε ∈ (0, 1), we have the desired estimate

‖w‖Lq+γ (QT ) ≤ C7. (16)

Going back to (P1) and (P2), we have, by choosing q such that
q + γ

γ
>
N + 2

2
and thanks to

the Lp-regularity theory for the heat operator (see [6]),

‖u‖L∞(QT ) ≤ C8 (17)

‖v‖L∞(QT ) ≤ C9. (18)

Now going back to (E3), we deduce from (17) and (18) that there exists C10 such that

‖w‖L∞(QT ) ≤ C10. (19)

This implies that Tmax = +∞. �

Remark This method seems to be specific to the case α+β < γ. It fails when α+β ≥ γ since
some restrictions on the parameters α, β, γ and on the diffusion coefficients will appear.

2.2 Case where d1 = d3 or d2 = d3 or d1 = d2.

Theorem 2 Assume that 0 ≤ u0, v0, w0 ≤M .
(i) If d1 = d3 or d2 = d3, then system (S) admits a global classical solution for any (α, β, γ).
(ii) If d1 = d2, then the system (S) admits a global classical solution for any (α, β, γ) such that
α+ β 6= γ.

Proof :
(i) Assume that d1 = d3 = d, we have

(u+ w)t − d∆(u+ w) = 0 ;
∂(u+ w)

∂n
= 0 ; (u+ w)(0, x) = u0(x) + w0(x).

We deduce by maximum principle

‖u(t) + w(t)‖∞ ≤ ‖u0 + w0‖∞. (20)

Together with the nonnegativity of u et w, this implies that u(t) and w(t) are uniformly bounded
in L∞(Ω).
By going back to (E2) and thanks to the Lp-regularity theory for the heat operator (see [6]), we
conclude that ‖v(t)‖∞ is uniformly bounded in L∞(Ω) on all interval [0, T ] so that Tmax = +∞.
(ii) Assume that d1 = d2 = d. The case α + β < γ was already handled in the theorem 1, so
it remains only to tackle the case γ < α + β. Moreover, one can assume that u0 6= v0 since if
u0 = v0 the result is obvious.
Since d1 = d2 = d, we have

(u− v)t − d∆(u− v) = 0 ;
∂(u− v)

∂n
= 0 ; (u− v)(0, x) = u0(x)− v0(x).
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The maximum principle then implies ‖u(t)− v(t)‖∞ ≤ ‖u0 − v0‖∞ = C. Hence we have

uα+β = uαvβ + uα(uβ − vβ)

= uαvβ + uαβ(θu+ (1− θ)v)β−1(u− v) where θ ∈]0, 1[

≤ uαvβ + uαβ2β−1C(uβ−1 + vβ−1).

Thanks to Young’s inequality, there exists C11 > 0 and C12 > 0 such that

C11u
α+β ≤ uαvβ + C12. (21)

By virtue of (21), equation (E1) implies that

ut − d1∆u+ C11u
α+β ≤ wγ + C12. (22)

Let q > 1. Multiplying (22) by uq and integrating over QT , we obtain

1

q + 1

∫

Ω
uq+1(T )+qd2

∫ ∫

QT

|∇u|2uq−1+C11

∫ ∫

QT

uq+α+β ≤

∫ ∫

QT

wγuq+C12

∫ ∫

QT

uq+K1

(23)
where

K1 =
1

q + 1

∫

Ω
uq+1
0 .

Thanks to Hölder’s inequality, we have

∫ ∫

QT

wγuq ≤

(
∫ ∫

QT

wγr

)1/r (∫ ∫

QT

uqs
)1/s

(24)

where r =
α+ β + q

γ
and s =

α+ β + q

q + α+ β − γ
.

Lemma 1 implies that there exists C13 such that

(
∫ ∫

QT

wγr

)1/r

= ‖w‖γ
Lq+α+β(QT )

≤ Cγ
13

(

1 + ‖u‖Lq+α+β(QT )

)γ
.

If ‖u‖Lq+α+β(QT ) ≤ 1 then the proof ends up. Otherwise, there exists C14 such that

(
∫ ∫

QT

wγr

)1/r

≤ C14‖u‖
γ
Lq+α+β(QT )

. (25)

Since qs < q + α+ β, we have Lq+α+β(QT ) ⊂ Lqs(QT ), then there exists C15 such that

(
∫ ∫

QT

uqs
)1/s

≤ C15‖u‖
q
Lq+α+β(QT )

. (26)

Denote S :=

∫ ∫

QT

uq+α+β . Estimates (25) and (26) imply that

∫ ∫

QT

wγuq ≤ C16S
q+γ

q+α+β . (27)
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Moreover, since Lq+α+β(QT ) ⊂ Lq(QT ), there exists C17 such that

C12

∫ ∫

QT

uq ≤ C17S
q

q+α+β . (28)

Since γ < α+ β, by applying Young’s inequality, there exists C18 such that

C16S
q+γ

q+α+β ≤
ε

2
S + C18. (29)

Applying again Young’s inequality, there exists C19 such that

C17S
q

q+α+β ≤
ε

2
S + C19. (30)

Consequently, estimate (23) implies

(C11 − ε)S ≤ C18 + C19 +K1. (31)

By choosing ε < C11 in (31), there exists C20 such that

‖u‖Lq+α+β(QT ) ≤ C20. (32)

Thanks to lemma 1 and estimate (32) there exists C21 such that

‖w‖Lq+α+β (QT ) ≤ C21. (33)

By going back to (P1) and (P2), we have by choosing q such that
q + α+ β

γ
>
N + 2

2
and thanks

to the Lp-regularity theory for the heat operator (see [6])

‖u‖L∞(QT ) ≤ C22 (34)

‖v‖L∞(QT ) ≤ C23. (35)

Now let’s go back to (E3), we deduce from (34) and (35) that there exists C24 such that

‖w‖L∞(QT ) ≤ C24. (36)

This implies that Tmax = +∞. �
Remark Even in the last case i.e d1 = d2, global existence or blow-up in the limit case α+β = γ
remain an open problem. �

2.3 Case 1 ≤ γ <
N + 6

N + 2
regardless of α and β.

Theorem 3 Assume that 0 ≤ u0, v0, w0 ≤M where M > 0. If 1 ≤ γ <
N + 6

N + 2
, then the system

(S) admits a global classical solution for any (α, β) ∈ [1,+∞)2.
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Proof :
Let T ∈ (0, Tmax) and let t ∈ (0, T ]. Thanks to the nonnegativity of u, v and w, we deduce from
the equation (E1) that u is bounded from above by the solution U of

(P1)











Ut − d1∆U = wγ (t, x) ∈ (0, T )× Ω
∂U

∂n
(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω

U(0, x) = u0(x) x ∈ Ω.

Therefore it is sufficient to show that w ∈ Lp(QT ) for p large enough. For this we have to
distinguish the case γ = 1 and the case γ > 1.
• Case γ = 1 and α, β ≥ 1.

Let us recall that global existence of classical solutions for (S) when α = β = γ = 1 has been
studied by several authors. It has been obtained by Rothe [13] for dimension N ≤ 5. Later, it
has first been proved by Pierre [10] for all dimensions N and then by Morgan [9].
Independantly, Feng [4] has proved global existence in the case γ = 1 regardless of α and β and
more general boundary conditions.
For the sake of completeness and for the reader’s convenience, we give here a simple and direct
proof in the last case (γ = 1 regardless of α and β). In our proof, we use an idea introduced by
Pierre in [10] and applied in [8].

For any p ≥ 1, we deduce from (P1) and the semigroup property

‖u(t)‖p ≤ ‖u0‖p +

∫ t

0
‖w(s)‖p ds. (37)

By applying Hölder’s inequality for p > 1 and thanks to (5), we obtain

∫ t

0
‖w(s)‖p ds ≤ t1/p

′

(
∫ t

0

∫

Ω
wp dsdx

)1/p

≤ t1/p
′

C25

[

1 +

(
∫ t

0

∫

Ω
up dsdx

)1/p
]

(38)

where p′ =
p

p− 1
.

For t ∈ (0, T ], let us set h(t) :=

∫

Ω
|u(t, x)|p dx. Inequality (37) can be written

h(t)1/p ≤ C26 + C27

(
∫ t

0
h(s) ds

)1/p

. (39)

Taking the pth power of (39) we obtain

h(t) ≤ 2p−1Cp
26 + 2p−1Cp

27

∫ t

0
h(s) ds. (40)

But, inequality (40) is a linear Gronwall’s inequality, then

‖u‖Lp(QT ) ≤ C28. (41)

Repeating the method above with v instead of u, we obtain

‖v‖Lp(QT ) ≤ C29. (42)
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Estimates (41) and (42) imply that for some q >
N + 2

2

‖uαvβ‖Lq(QT ) ≤ C30. (43)

Going back to equation (E3) we have, thanks to the Lq-regularity theory for the heat operator,

‖w‖L∞(QT ) ≤ C31. (44)

This concludes the proof for the case γ = 1 regardless of α and β. �

• Case 1 < γ <
N + 6

N + 2
.

The proof in this case is based on lemma 1 and these two following lemmas.

Lemma 2 (Michel Pierre) Let T > 0 and let Z the solution of











Zt −∆(A(t, x)Z) ≤ 0 (t, x) ∈ (0, T )× Ω,
∂Z

∂n
(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω,

Z(0, x) = Z0(x) x ∈ Ω.

Assume that 0 < d < A(t, x) < D where (d,D) ∈ (0,+∞)2. Then, there exists C = C(T, d,D,Ω)
such that

‖Z‖L2(QT ) ≤ C‖Z0‖L2(Ω).

For a general version of this lemma, see [11, proposition 6.1] or [3, theorem 3.1]. �

Lemma 3 Let (p, q) such that 1 ≤ p ≤ q ≤ +∞, d > 0 and Sd(t) the semigroup generated in
Lp(Ω) by −d∆ with homogeneous Neumann boundary condition. Then

‖Sd(t)Y ‖q ≤ (C(Ω)m(t))
−N
2

( 1
p
− 1

q
) ‖Y ‖p, for all Y ∈ Lp(Ω), t > 0 (45)

where m(t) = min(1, t).

For a proof of this lemma see for instance [13, Lemma 3, p. 25] or [1, Theorem 3.2.9, p. 90]. �

We now go back to the proof of theorem 3.

By applying lemma 2 to the system (S) where Z = u+ v + 2w and A =
d1u+ d2v + 2d3w

u+ v + 2w
,

we have u, v, w ∈ L2(QT ). More precisely, there exists C32 such that

‖u‖L2(QT ), ‖v‖L2(QT ), ‖w‖L2(QT ) ≤ C32. (46)

Now, we have thanks to the estimate (45) with p > 1 and q = +∞

‖u(t)‖∞ ≤ ‖u0‖∞ + C33

∫ t

0
(t− s)

−N
2p ‖wγ(s)‖p ds. (47)

By applying Hölder’s inequality, we obtain

∫ t

0
(t− s)

−N
2p ‖w(s)γ‖p ds ≤

(
∫ t

0
(t− s)

−Np′

2p ds

)1/p′ (∫ t

0
‖wγ(s)‖pp ds

)1/p

. (48)

10



We first remark that the integral

∫ t

0
(t− s)

−N
2(p−1) ds converges when p >

N + 2

2
and we have

∫ t

0
(t− s)

−Np′

2p ds = t1−N/(2(p−1))

∫ 1

0
(1− y)

−N
2(p−1) dy

≤ C(T )p/(p−1) = T 1−N/(2(p−1))

∫ 1

0
(1− y)

−N
2(p−1) dy.

On the other hand, lemma 1 implies that

(
∫ t

0
‖wγ(s)‖ppds

)1/p

= ‖w‖γLpγ (Qt)
≤ Cγ

34

(

1 + ‖u‖Lpγ (Qt)

)γ
. (49)

If ‖u‖Lpγ (Qt) ≤ 1 then the proof ends up. Otherwise there exists C35 such that

(
∫ t

0
‖wγ(s)‖ppds

)1/p

≤ C35‖u‖
γ
Lpγ (QT ). (50)

Since

‖u‖γLpγ (QT ) =

(
∫ ∫

QT

upγ
)1/p

=

(
∫ ∫

QT

upγ−p+ε+p−ε

)1/p

≤ ‖u‖
1−ε/p
L∞(QT )

(
∫ ∫

QT

upγ−p+ε

)1/p

,

it follows that (47) can be written

‖u(t)‖∞ ≤ ‖u0‖∞ + C36‖u‖
1−ε/p
L∞(QT )

(
∫ ∫

QT

upγ−p+ε

)1/p

. (51)

If p(γ−1) < 2, by choosing ε ∈ (0,min(p, 2−p(γ−1)), we deduce from (46) and (51) that there
exists C37 such that

‖u‖L∞(QT ) ≤ C37. (52)

Note that the above condition p(γ − 1) < 2 holds if γ < 1 +
2

p
< 1 +

4

N + 2
=
N + 6

N + 2
.

We establish in the same way that there exists C38 such that

‖v‖L∞(QT ) ≤ C38. (53)

Finally, for (E3), we deduce from (52) and (53) that there exists C39 such that

‖w‖L∞(QT ) ≤ C39. (54)

This concludes the proof in the case 1 < γ <
N + 6

N + 2
. �

Remark : Our conjecture is that γ∗ =
N + 6

N + 2
is not optimal. In fact, when N = 1 one can

prove that the result of theorem 3 still holds for γ∗ = 7/2. �
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3 Conclusion

• All our results are still true if we replace homogeneous Neumann boundary conditions by
homogeneous Dirichlet boundary conditions, it suffices to replace lemma 3 by the following one.

Lemma 4 Let (p, q) such that 1 ≤ p ≤ q ≤ +∞, d > 0 and Sd(t) the semigroup generated in
Lp(Ω) by −d∆ with homogeneous Dirichlet boundary. Then

‖Sd(t)Y ‖q ≤ (4πt)
−N
2

( 1
p
− 1

q
) ‖Y ‖p, for all Y ∈ Lp(Ω), t > 0. (55)

For a proof of this lemma, see for instance [14, Proposition 48.4, p. 441]. �

• In the case where the diffusion coefficients are not equal (i.e. di 6= dj for all 1 ≤ i 6= j ≤ 3),
global existence of classical solutions for (S) or blow-up is still an open question when

N + 6

N + 2
≤ γ ≤ α+ β.

Our guess is that system (S) admits a classical global solution for all
N + 6

N + 2
≤ γ < α + β and

that there is a finite time blow-up when γ = α+ β and the dimension N is large. �
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Références

[1] E.B Davies : Heat Kernels and spectral theory, Cambridge University Press, Cambridge,
(1989).

[2] L. Desvillettes, K. Fellner : Exponential decay toward equilibrium via entropy methods for
reaction-diffusion equations, J. Math. Anal. Appl. 319 (2006), n̊ 1, 157–176.

[3] L.Desvillettes, K. Fellner, M. Pierre, J. Vovelle : About Global existence of quadratic systems
of reaction-diffusion, J. Advanced Nonlinear Studies 7 (2007), 491–511.

[4] W. Feng : Coupled system of reaction-diffusion equations and Applications in carrier faci-
litated diffusion, Nonlinear Analysis, Theory, Methods and Applications 17, n̊ 3 (1991),
285–311.

[5] S.L. Hollis, R.H. Martin, M. Pierre : Global existence and boundedness in reaction-diffusion
systems, SIAM J. Math. Anal. Vol. 18 (1987), 744–761.

[6] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uralceva : Linear and quasilinear equations
of parabolic type, Transl. Math. Monographs, 23, A.M.S., Providence, R.I. 1968.

[7] E.-H. Laamri : Existence globale pour des systèmes de réaction-diffusion dans L1. Thèse.
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