
HAL Id: inria-00565860
https://hal.inria.fr/inria-00565860v2

Submitted on 24 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composition and Formal Validation in Reactive
Adaptive Middleware

Annie Ressouche, Jean-Yves Tigli, Carillo Oscar

To cite this version:
Annie Ressouche, Jean-Yves Tigli, Carillo Oscar. Composition and Formal Validation in Reactive
Adaptive Middleware. [Research Report] RR-7541, INRIA. 2011, pp.27. �inria-00565860v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50010662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00565860v2
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
75

41
--

FR
+E

N
G

Perception, Cognition, Interaction

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Composition and Formal Validation in Reactive
Adaptive Middleware

Annie Ressouche — Jean-Yves Tigli — Oscar Carrillo

N° 7541

February 2011

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Composition and Formal Validation in Reactive
Adaptive Middleware

Annie Ressouche∗ , Jean-Yves Tigli† , Oscar Carrillo‡

Domain : Perception, Cognition, Interaction
Équipe-Projet Pulsar

Rapport de recherche n° 7541 — February 2011 — 27 pages

Abstract: Nowadays, adaptive middleware plays an important role in the
design of applications in ubiquitous and ambient computing. Currently most
of these systems manage the adaptation at the middleware intermediary layer.
Dynamic adaptive middleware are then decomposed into two levels : a first
one to simplify the development of distributed systems using devices, a sec-
ond one to perform dynamic adaptations within the first level. In this report
we consider component-based middleware and a corresponding compositional
adaptation. Indeed, the composition often involves conflicts between concurrent
adaptations. Thus we study how to maintain consistency of the application in
spite of changes of critical components and conflicts that may appear when we
compose some component assemblies. Relying on formal methods, we provide
a well defined representation of component behaviors. In such a setting, model
checking techniques are applied to ensure that concurrent access does not violate
expected and acceptable behaviors of critical components.

Key-words: service oriented middleware, event-based composition, reliabil-
ity, formal methods, synchronous modelling, validation

∗ Inria Sophia-Antipolis Méditerranée
† I3S Laboratory and CNRS (Rainbow)
‡ Inria Sophia-Antipolis Méditerranée

Composition et vérification formelle dans les
middlewares réactifs et adaptatifs

Résumé : De nos jours, les middlewares adaptatifs et réactifs jouent un role
important dans la conception d’applications dans le domaine de l’informatique
ubiquitaire et ambiante. Généralement, ces systèmes réalisent cette adaptation
au niveau intermédiaire du middleware. Ainsi, les middlewares adaptatifs sont
décomposés en deux parties : une première partie qui permet un développement
simplifié des systèmes distribués utilisant des dispositifs, une seconde qui réalise
les adaptations dynamiques de la première partie. Dans ce rapport nous con-
sidérons des middlewares à base de composants et une adaptation composition-
nelle. Mais souvent lors d’une composition certaines adaptations concurrentes
s’avèrent conflictuelles. Pour résoudre ce probème, nous étudions comment
préserver la consistence d’une application lors de changements concernant cer-
tains composants critiques, avec des conflits qui peuvent apparâıtre quand on
compose des assemblages de composants. Nous utilisons des méthodes formelles
pour modéliser le comportement des composants afin de bénéficier des tech-
niques de vérification par model checking et ainsi prouver que des accès concur-
rents respectent les comportements acceptables des composants critiques.

Mots-clés : middleware orientés services, composition par évènements,
sûreté de fonctionnement, méthodes formelles, modèles synchrones, validation

Composition and Formal Validation in Reactive Adaptive Middleware 3

Contents

1 Introduction 3
1.1 Component-based Adaptive and Reactive Middleware 4
1.2 Need for Validation . 4
1.3 Our proposal . 5

2 Component-based Middleware Use 5

3 Components with Validated Behaviors 6
3.1 Component Behavior Modelling. 6

3.1.1 Component Behavior as Synchronous Models 6
3.1.2 Synchronous Monitors . 7

3.2 Component Behavior Validation 8
3.2.1 Verification context . 8
3.2.2 Properties Definition . 9

4 Synchronous Model Composition 11
4.1 Multiple Access to Components. 11
4.2 Composition and Validation. 13

4.2.1 Approximations for Synchronous Monitors 13
4.3 Approximation and Property Preservation 15

4.3.1 ∀CTL∗ Property Preservation 15
4.3.2 Properties Preservation for Synchronous Monitors 17

5 Practical Issues 17
5.1 Our Reactive Adaptive Middleware 18
5.2 Extending WComp . 19
5.3 Use Case Implementation . 20

6 Related Works 23

7 Conclusion and Future Works 24

1 Introduction

Ubiquitous computing follows an evolution of computer science introduced by
Weiser [23] two decades ago. A major consequence is the arrival of applications
more and more opened on every day environment relying on objects supposedly
communicating and intelligent. Devices managed in ubiquitous computing are
nowadays heterogeneous, variable, and interacting with a physical environment.
Moreover, applications in this domain must often face some variability during
execution time. Moving with a mobile user, such applications have not always
access to the same devices. Thus, it turns out that the appearance and disap-
pearance of these latter need a dynamic evolution of the application. Hence,
evolving in a real environment, ubiquitous applications must be able to react to
changes in the surrounding physical environment.

Then, it is a real challenge to address these constraints for middleware.
Indeed, now they must support a stable applicative model in spite of a het-
erogeneous and variable software infrastructure. Actually, middleware must be

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 4

reactive (they must react to context change) and adaptive (they must adapt
themselves continuously to context changes).

1.1 Component-based Adaptive and Reactive Middleware

Historically, [20] defines two extremes in the range of strategies for adapta-
tion. At one extreme, adaptation is entirely the responsibility of individual
applications. The other extreme of application-transparent adaptation places
entire responsibility for adaptation on the system. Currently most of the work
converge to manage the adaptation at the middleware intermediary layer [1].
In this last case dynamic adaptive middleware are then decomposed into two
levels [7]. The primary level of middleware is to simplify the development of
distributed systems [11]. The second level performs dynamic adaptations within
middleware.

Because ubiquitous computing is based on preexisting devices, middleware
must manage legacy of black-box of software pieces. Three kinds of approaches
are well suited to manage such constraints : component oriented middleware,
service oriented middleware and more recently new popular approaches using
components assembly to compose preexisting services like, SCA or SLCA ([21]).

The second level of adaptive middleware manage dynamic modifications of
the first one to perform adaptation. According to [15] we can distinguish two
main approaches to implement software adaptation. The first one is parameter
adaptation. For component based middleware this approach consists in modi-
fying components variables that determine their behavior. The second one is
compositional adaptation. This approach allows component-based middleware
to change dynamically components with others in response to changes in its ex-
ecution environment. In this paper we study how to maintain consistency of the
application in spite of critical components changes and conflicts that may ap-
pear when we superpose component assemblies in mechanisms for compositional
adaptation. Indeed in such cases, we need to use verification techniques to check
safety and various other correctness properties of the evolving application.

1.2 Need for Validation

Then, the main motivation appears when we introduce new requirements for
ubiquitous applications such as safety. Indeed, few research works in ubiquitous
computing address some partly critical applications. For example, many ubiq-
uitous applications address health care domain without validating some critical
functionalities. Anyway, safety is an important concern in adaptive middle-
ware. Applications may intervene in critical systems (i.e. system whose failure
or malfunction may result in death or serious injury to people, or loss or severe
damage to equipment or environmental harm). Components may have to satisfy
stringent constraints related to security and should be submitted to formal ver-
ification and validation. Moreover, context change adaptation should preserve
safety rules. Then key problems are : (1) how to specify and validate the be-
havior of one assembly connected to a critical component (Cf. section 3), (2) in
case of multiple assemblies sharing some critical components, how to compose
them and validate properties of the overall application (Cf. section 4).

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 5

1.3 Our proposal

The major contribution of this work is to show that formal methods (and partic-
ularly synchronous modelling framework) offer means to automatically validate
critical component behaviors and to prove safety property preservation through
a sound composition operation useful to perform context adaptation. Thus we
extend our component-based adaptive middleware with specific tools to allow
validation of local composition on critical devices and services, using model
checking techniques.

The report is organized as follows: next section (2) briefly describes the
component-based middleware use we consider and introduces the example we
rely on all along the report to illustrate our approach. It is extracted from a use
case in the domain of health care for elderly. Then section 3 presents our solu-
tion which introduces synchronous monitors to model critical devices expected
behaviors. They support formal validation. In section 4 we introduce a compo-
sition operation between synchronous monitors preserving validated properties.
Such an approach allows us to offer a deterministic solution to multiple access
to critical devices. We discuss the practical issues of our work in section 5. We
introduce our reactive adaptive middleware for ubiquitous computing, named
WComp and also its extension with verification facilities. Then we describe the
implementation of the example in our middleware. In section 6 we compare
our approach with different works which address the problem of reliability of
middleware for ubiquitous computing. Finally, section 7 concludes and opens
the way for future works.

2 Component-based Middleware Use

In this work, we consider middleware where communication means are event-
based. Of course event-driven systems are not suitable for very complex design,
but adequate for reactivity, dynamicity and high adaptability. In our approach
such components are often proxies for services for device and then must reflect
the device behavior. Some of them are critical and we want to validate their
usage within some middleware assemblies.

We illustrate our approach with the design of (a small part of) an application
in the domain of health care for elderly. The purpose is to monitor old adult
in an instrumented home, using sensing technology. There are different kinds
of sensors in the environment: video cameras, contact sensors to indicate closed
or opened status of equipment, wearable sensors, etc. In this framework, we are
deep in the domain where reactive and adaptive middleware solutions apply,
since some sensors can appear and disappear (particularly wearable ones). In
this example, we show the design of a small part of a project dedicated to
observe activities of daily living (ADLs) in an equipped home 1. We consider
the recognition of activities related to kitchen usage. The goal is to send several
kinds of alarms depending on sensor observation results. Component proxies are
associated to four sensors: a contact sensor on the fridge which indicates the
state of the door (opened or closed); a timer which sends a minute information;
a camera which locates a person; a posture sensor which tells if the person

1http://gerhome.cstb.fr/

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 6

is standing, sitting or lying. This latter is a wearable device composed by
accelerometers.

In this application, an Alarm component proxy receives three kinds of alarms:
warning, weak alarm and strong alarm. It is linked with assemblies of compo-
nents for fridge and timer sensors, camera sensor and posture sensor. This
Alarm component is critical and we will ensure that it raises the appropriate
alarm in the designed application. To this aim, we offer a mean to ensure that
each output event coming from one of the assemblies for sensors is correctly sent.
Indeed, we supply a new component reflecting the behaviors of (assemblies of)
components and checking these behaviors we can ensure that these components
are used out of harm’s way (see section 3.1.2). Moreover, it is not sufficient to
individually prove that each new component outputs are not misconnected. We
also must ensure that the combination of two output events coming from two
different assemblies and linked with the same input event of Alarm component
works correctly. Thus we introduce a safe composition between components (see
section 4.1).

3 Components with Validated Behaviors

To validation purpose, we introduce models to describe the behavior of appli-
cation components. Finite automata are well adapted to the representation
of device behaviors and moreover provide a lot of verification tools based on
efficient model-checking techniques to verify properties.

3.1 Component Behavior Modelling.

3.1.1 Component Behavior as Synchronous Models

The aim is to define means to represent component behavior. These components
listen to events coming from other components or from an input environment
and will provide output events in reaction. They have to satisfy stringent con-
straints (correctness, response time) and they should be submitted to formal
verification and validation as they may intervene in a critical decision. Thus de-
terminism would be an important advantage. A way of reducing the complexity
of behavior description is to consider them evolve through successive phases.
During one phase, only the external events which were present at the beginning
of the phase and the internal events that occurred as a consequence of the first
ones are considered. The phase ends when some stability (fixed-point) has been
achieved (or when an external clock decides that it is over). We call such a
phase an instant. Indeed, during such an instant, time seems to be suspended
(the external events are frozen). Such an instant-based representation will be
called a synchronous model. In such models, a reaction has no duration because
its real duration is delayed to the next clock cycle or next instant of the system.
This issue characterizes the synchronous hypothesis on which all synchronous
models rely. A significant way well suited to validation is to express them as
Mealy machines [16]. Mealy machines are both finite automata and synchronous
models. Indeed a transition in Mealy machines corresponds to a reaction or an
instant of the system.

The Mealy machines we consider are 5-uple of the shape:
< Q, qinit, I, O, T , λ >. where Q is a finite set of states; qinit ∈ Q is the initial

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 7

warning

weak_alarm

strong_alarm

alarm

posture

monitor
from

synchronous

lying

standing
sitting warning3

weak_alarm3

Figure 1: A synchronous monitor to manage the access to a
critical alarm proxy component from an assembly of components
related to a posture sensor.

standing and sitting and lyingq_init

lying and not sitting and not standing/weak_alarm3

or not standing and not sitting and not lying
standing and not sitting and lying or not standing and sitting and lying

(standing or sitting) and not lying/
warning3

Figure 2: The posture monitor is a Mealy machine(< Q3, q
init
3 , I3, O3, T3,

λ3 >) with an only state and two transitions.

state. I (resp. O) is a finite set of input (resp. output) events; T ⊆ Q × Q
is the transition relation. λ is a labeling function: λ : T × IB 7→ 2O ∪ {ε}
where IB is the set of Boolean expressions over I 2. It is a Boolean algebra
with standard interpretation for true, false, ·,+ and ¬ 3. Finally, ε represents

an undefined event 4. In short, q
i/o−−→ q′ will denote a transition with the

agreement: (q, q′) ∈ T and λ((q, q′), i) = o. Furthermore, according to the
synchronous hypothesis, we want our model deterministic and reactive:

1. q
i/o1−−−→ q1 and q

i/o2−−−→ q2 ∈ T ⇒ q1 = q2 and o1 = o2 (determinism)

2. ∀i ∈ IB ,∀q ∈ Q,∃q i/o−−→ q′ ∈ T (reactivity)

3.1.2 Synchronous Monitors

Critical components will provide a synchronous model of their behavior and
some additional properties (constraints) checked when component is used. This
model is designed as a Mealy machine where each output is connected with an
input event of the critical component. Indeed, let us consider a synchronous
monitor specified as the Mealy machine M =< Q, qinit, I, O, T , λ > and con-
nected to a critical component with IC as input event set. There must exist an
injective mapping : in : O 7→ IC .

Figure 1 illustrates such a situation. It shows a part of the application
introduced in section 2. In this latter, there is an assembly related to the

2 Its elements are built according to the following grammar: e := true | false | I | e ·e | e+
e |¬e.

3 We will consider usual Boolean algebra rules to infer equality between two elements of
IB .

4 For short, we will denote X ∪ {ε} as Xε.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 8

posture sensor and connected to the Alarm component. Thus, we will define
a synchronous monitor to describe the behavior of the assembly. This posture
monitor listens to I3 = {sitting, standing, lying} input event set. Its output
event set is O3 = {warning3, weak alarm3}. It emits a warning3 event when
the person is sitting or standing and a weak alarm3 event when he(she) is lying
5 . This monitor is detailed in figure 2.

Finally, the critical Alarm proxy component has
IA = {warning, weak alarm, strong alarm} as input event set and there is an

injection in3 : O3 7→ IA:
{
in3(warning3) = warning
in3(weak alarm3) = weak alarm

A synchronous model becomes a monitor component beyond the unsafe
proxy component. Then, safety and liveness properties concerning critical com-
ponent usage can be verified using model-checking tools.

3.2 Component Behavior Validation

Among others validation techniques, the model-checking approach [5, 14] re-
quires a model of systems against which formulas are checked for satisfaction.
The model must express all the possible behaviors of the system, the formulas
depict required properties of such behaviors. Synchronous Mealy machines are
well suited to express these behaviors and they are relevant models to apply
model checking techniques.

The properties may be formalized as formulas of a formal logic interpreted
over automata. A popular logic is CTL* (computation tree logic see [14]). It
contains universal and existential quantification over model paths, as well as
temporal operators expressing that a property holds in the next state, or in every
state (safety properties), or in some state (liveness properties). Nowadays, a lot
of tools [4, 10, 19] check CTL* properties against automata models. The logic is
interpreted over Kripke structures (see 3.2.1) in order to express model checking
algorithms and satisfaction of a state formula is defined in a natural inductive
way (see [14] for complete definitions). A Mealy machine can be mapped to a
Kripke structure, which is also a state machine.

3.2.1 Verification context

In this section, we formally introduce the temporal logic we consider and its
Kripke structure model.

Kripke Structures

Kripke structures are verification models against which model-checking algo-
rithms are defined.

A Kripke structure K is a tuple: K =< Q,Q0, A,R, L > where:

1. Q is a finite set of states

2. Q0 ⊆ Q is the set of initial states

3. A is a finite set of atomic propositions
5it is a weak alarm since lying posture is not dangerous in all contexts.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 9

4. R ⊆ Q × Q is a transition relation that must be total: for every state
q ∈ Q, there is a state q′ such that R(q, q′)

5. L : S 7→ 2A is a labeling function that labels each state by the set of
atomic propositions true in that state.

Let K be a Kripke structure, a path in K is an infinite sequence of states:
π = q0, q1, q2, such that ∀i ∈ N, R(qi, qi+1). Moreover, πn = qn, qn+1,

From Mealy Machine to Kripke structures

Let M =< Q, qinit, I, O, T , λ > be a Mealy machine, the Kripke structure K(M)
associated with M is defined as follows: K(M) =< QK , QK0 , A

K , RK , LK >
where

1. QK ⊆ Q×2A
K

: QK = {(q, v)| ∃(q i/o−−→ q′ ∈ T and {i}∪o = v}∪{(q, ∅)|q ∈
Q}.

2. QK0 = ({qinit} × 2A
K

) ∩QK

3. AK = IB ∪Oε

4. LK(s, v) = v

5. ((q, v), (q′, v′)) ∈ RK iff ∃q i/o−−→ q′ and v = {i} ∪ o and (q′, v′) ∈ QK and
((q, ∅), (q, ∅)) ∈ RK for q ∈ Q.

3.2.2 Properties Definition

The logic (∀CTL∗) we consider to express properties is a formal language where
assertions related to behavior are easily expressed. It is based on first-order
logic but, in order to be efficient when deciding whether a formula is true, the
existential path quantifier has been eliminated. It offers temporal operators
that make it possible to express properties holding for a given state, for the
next state (operator X), eventually for a future state (F), for all future states
(G), or that a property remains true until some condition (U). We can also
express that a property holds for all the paths starting in a given state (∀).

Formally, the logic ∀CTL∗ we consider is the set of state formulas defined
as follows:

� The constants true and false are state formulas.

� If p ∈ A, p and ¬p are a state formulas (A being the alphabet of the
Kripke structure we consider).

� If ψ and φ are state formulas, then ψ ∨ φ and ψ ∧ φ are state formulas.

� If φ is a path formula then ∀(φ) is a state formula.

� If φ is a state formula then φ is also a path formula.

� If ψ and φ are path formulas, then ψ ∨ φ and ψ ∧ φ are path formulas.

� If ψ and φ are path formulas, then so are : Xφ; φ U ψ; Fφ and Gφ.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 10

q_init

!in_kitchen + !close_fridge in_kitchen.close_fridge/warning1

in_kitchen.close_fridge/warning1

!in_kitchen + !close_fridge

Figure 3: Mealy machine representing the synchronous monitor from
camera (called camera). The camera monitor is a Mealy machine with
{in kitchen, close fridge} as input set, {warning1} as output set. When
both of its inputs are present, warning1 is emitted.

Satisfaction of formulas

Now, we introduce the notion of “satisfaction of a formula”. Given a Kripke
structure K (K =< Q,Q0, A,R, L >), the satisfaction of a state formula (φ) by
a state q of K (denoted q |= φ) or of a path formula ψ by a path π (denoted
π |= ψ) is inductively defined as follows:

� q |= true, q 6|= false, q |= p iff p ∈ L(q) and q |= ¬p iff p 6∈ L(q).

� q |= ψ ∨ φ iff q |= ψ or q |= φ, q |= ψ ∧ φ iff q |= ψ and q |= φ.

� q |= ∀(φ) iff for every path π starting at q, π |= φ.

� π |= φ where φ is a state formula, iff the first state of π satisfies φ.

� π |= ψ ∨ φ iff π |= ψ or π |= φ, π |= ψ ∧ φ iff π |= ψ and π |= φ.

� If ψ and φ are path formulas:

– π |= Xφ iff π1 |= φ.

– π |= φ U ψ iff ∃n ∈ N such that πn |= ψ and ∀i ≤ n, πi |= φ.

– π |= Fφ iff ∃k ∈ N such that πk |= φ

– π |= Gφ iff ∀i ∈ N πi |= φ

Definition 1:
We say that a Kripke structure K satisfies a state formula ψ (K |= ψ) if property
ψ is true for every initial state of K. This definition is extended to Mealy
machines: M |= ψ iff K(M) |= ψ.

In our approach, several synchronous monitors can drive the same proxy
component, corresponding to several sub assemblies respectively managing dif-
ferent concerns, all of them related to the critical component. For instance, in
the application introduced in section 2, there is another assembly associated
with a camera sensor also connected to the warning entry of the Alarm compo-
nent. Thus, we will define another synchronous monitor telling the behavior of
this assembly (see figure 3). The output event warning1 of this camera moni-
tor is connected to the warning entry of the Alarm component. Thus, we must
specify how we compose the posture monitor and the camera monitor to have
the expected behavior of the Alarm component when it receives both warning1
and warning3.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 11

q_init !fridge_opened

fridge_opened.one_minute/
weak_alarm2

fridge_opened.!one_minute/
warning2

Figure 4: Mealy machine representing the synchronous monitor from fridge
(called fridge). The fridge monitor reacts to {fridge opened, one minute}
input events and sends a warning2 event when the fridge door is opened
and a weak alarm2 event when it is opened for more than one minute.

warning
in_kitchen from

sitting

lying posture

monitor
from

camera

warning1synchronous
monitorclose_fridge

fridge

fridge_opened

one_minute

standing
warning3

weak_alarm3

weak_alarm

strong_alarm

alarm

synchronous

synchronous
monitor
from

weak_alarm2

warning2

Figure 5: Multiple access to
alarm proxy component

warning

weak_alarm

strong_alarm

alarm

synchronous

from posture
monitor

fridgefrom

synchronous

monitor
from camera

monitor

synchronous

ζ

sitting

lying

standing

one_minute

fridge_opened

in_kitchen

close_fridge

Figure 6: Composition of multiple access
to connect the alarm proxy component

4 Synchronous Model Composition

4.1 Multiple Access to Components.

When a critical component has multiple synchronous monitors corresponding
to several concern managements in the application, we want to build an only
synchronous model component which agrees with all these primitive synchronous
monitors and whose output event set is related to the input event set of the
critical component by an injection. We continue to rely on our use case (see
section 2) to illustrate such a situation.

In this use case, there are three sub-assemblies linked to the critical Alarm
component. Thus, we introduce three synchronous monitors in this assembly.
The first synchronous monitor describes the behavior of Alarm component with
respect to the sub assembly managing the camera device; the second is defined
with respect to the sub assembly related to the door fridge and timer sensors;
and the third tells the behavior of Alarm when it is related to a sub assembly
managing a posture detection sensor. camera monitor has been described in
section 3.2.2 while posture monitor was in section 3.1.2. The fridge monitor is
detailed in figure 4. Then, we get the assembly described in figure 5. We can
see that warning and weak alarm entries have multiple access. Our method

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 12

will replace these three components by a single component : camera⊗fridge⊗
posture |ζ (see figure 6).

Now we introduce useful definitions to formally specify our composition op-
eration.

Definition 2:
The synchronous product of two Mealy machines (M1⊗M2) is defined as follows:
assume that
M1 =< Q1, q

init
1 , I1, O1, T1, λ1 > and M2 =< Q2, q

init
2 , I2, O2, T2, λ2 >,

then M1 ⊗M2 = < Q1 ×Q2, (qinit1 , qinit2), I1 ∪ I2, O1 ∪O2, T , λ > where
T = {((q1, q2), (q′1, q

′
2)) | (q1, q′1) ∈ T1, (q2, q′2) ∈ T2} and

∀(q1, q′1) ∈ T1 | λ1((q1, q′1), i1) = o1 and ∀(q2, q′2) ∈ T2 | λ2((q2, q′2), i2) = o2
then λ(((q1, q2), (q′1, q

′
2), i1 · i2) = o1 ∪ o2.

The synchronous product considers all the combinations of states, taking into
account the simultaneity of events according to our synchronous approach. As
already mentioned, in the composition operation we consider only synchronous
monitors driving the same proxy component. On one hand, the synchronous
product allows to agree with each synchronous monitor. On the other hand, it
introduces transitions whose output label carry events belonging to the union
of the respective output event sets of M1(O1) and M2(O2). But we want that
the relationship between the output event set of the composition and the input
set of the critical component will be at least an injection. Thus, we apply to the
synchronous product a “constraint function” defined according to the respective
injections in1 : O1 7→ IC and in2 : O2 7→ IC . First, we introduce a new output
event set O and an injection in : O 7→ IC . Second, we define a surjective
function γ : O1 ∪O2 ∪O1 ×O2 7→ Oε such that:

1. ∀o1 ∈ O1, γ(o1) = o and in(o) = in1(o1)

2. ∀o2 ∈ O2, γ(o2) = o and in(o) = in2(o2)

From these definitions, a “constraint” function ζ : 2O1∪O2 7→ 2O is deduced:
∀o ∈ 2O1∪O2 , if ∃o1, o2 ∈ o such that γ(o1, o2) 6= ε then γ(o1, o2) ∈ ζ(o); else
γ(o1) ∈ ζ(o) and γ(o2) ∈ ζ(o).

This constraint function is applied to the output label sets of of the syn-
chronous product:

Definition 3:
Assume that M1⊗M2 = < Q1×Q2, (qinit1 , qinit2), I1 ∪ I2, O1 ∪O2, T , λ > , then
M1⊗ |ζ M2 =< Q1 ×Q2, (qinit1 , qinit2), I1 ∪ I2, O, Tζ , λζ > where Tζ = T and λζ
is defined as follows:
λζ(((q1, q2), (q′1, q

′
2)), i) = o iff λ(((q1, q2), (q′1, q

′
2)), i) = o1∪o2 and ζ(o1∪o2) = o

(assuming that λ is the labeling function of M1 ⊗M2).
The synchronous product of two Mealy machines yields a Mealy machine.

It is a well known result of the synchronous framework. Constraint function
application modifies only output event sets of labels and thus our composition
operation constructs a Mealy machine.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 13

4.2 Composition and Validation.

Our composition operation allows to solve the multiple access to a given proxy
component problem. As previously mentioned, we aim at validating critical
component behavior. The result of composition operation is a Mealy machine
against which model-checking techniques apply as for any synchronous monitor
(see 3.2). Moreover, we also want the preservation of properties under composi-
tion: if M1 verifies an ∀CTL∗ formula Φ (M1 |= Φ) then this latter also holds for
a composition where M1 is part of (M1⊗ |ζ M2 |= Φ). To prove such a feature,
we show that K(M1) can be viewed as an “approximation” of K(M1⊗ |ζ M2).

Definition 4:
Let K1 = < Q1, Q

0
1, A1, R1, L1 > and K2 = < Q2, Q

0
2, A2, R2, L2 > be two

kripke structures and ha a surjection from A1 to A2. We say that K2 approxi-
mates K1 (denoted K1 vh K2) when

1. It exists a surjection h : Q1 7→ Q2 such that: h(q1) = q2 ⇒ ∀a2 ∈
L2(q2),∃a1 ∈ L1(q1) and ha(a1) = a2.

2. ∀q2 ∈ Q0
2,∃q1 ∈ Q0

1 and h(q1) = q2; and

3. ∃q1, q′1(h(q1) = q2, h(q′1) = q′2 and R1(q1, q′1)⇒ R2(q2, q′2)).

For short, we will denote M1⊗ |ζ M2 as Mζ . To benefit from results con-
cerning the preservation of ∀CTL∗ properties through approximations, we want
to show that K(M1) is an approximation of K(Mζ).

4.2.1 Approximations for Synchronous Monitors

K(M1) = < KQ1, Q
0
1, A1, L1, R1 > and K(Mζ) = < KQζ , Q0

ζ , Aζ , Lζ , Rζ > are
built according to the translation operation described in 3.2.1. Our goal is to
define a surjective mapping ĥ : KQζ 7→ KQ1 and to show that it agrees with
the definition of approximation (definition4).

We first define a surjective mapping ĥa from Aζ to A1. The alphabets
of Kripke structures associated with Mealy machines are composed of (1) the
Boolean expressions built from inputs and (2) the outputs. Thus, ĥa must be
defined on both.

To ease the definition of ĥa, we start by defining a projection function pI1
from (I1 ∪ I2)B to IB1 . Each element i in (I1 ∪ I2)B has a normal form and can
be written as

∑
j

∏
i

ωi where each ωi is an atom; i.e either an element of I1∪I2

or the negation of an element of I1 ∪ I2. pI1 is defined structurally:

pI1(ω) = ω if ω is an atom in I1;

pI1(ω) = true if ω is an atom in I2;

pI1(
∏
i

ωi) =
∏
i

pI1(ωi)

pI1(
∑
j

prodj) =
∑
j

pI1(prodj)

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 14

Lemma 1:
For each element of (I1 ∪ I2)B of the form i1.i2 with i1 (resp i2) in IB1 (resp.
IB2), pI1(i1.i2) = i1.

Proof. i1 =
∑
k

∏
i

ωi where ωi are atoms in I1 and i2 =
∑
l

∏
j

αj where αj are

atoms in I2.
pI1(i1.i2) = pI1(

∑
k

∏
i

ωi.
∑
l

∏
j

αj) = pI1(
∑
k

∏
i

ωi).pI1(
∑
l

∏
j

αj).

pI1(i1.i2) =
∑
k

∏
i

pI1(ωi).
∑
l

∏
j

pI1(αj).

But pI1(αj) = true by definition of the projection function, since αj is an atom
in I2 and pI1(ωi) = ωi since ωi is an atom in I1.
Thus

∑
l

∏
j

pI1(αj) = true and pI1(i1.i2) =
∑
k

∏
i

ωi = i1.

According to the translation operation from Mealy machine to Kripke struc-
ture, KQζ ⊆ Qζ × 2Aζ and Aζ = (I1 ∪ I2)B ∪Oε.
More precisely, KQζ = {{(q1, q2), v}|∃(q1, q2)

i/o−−→ (q′1, q
′
2) ∈ Tζ and v = {i} ∪

o} ∪ {{(q1, q2), ∅}|(q1, q2) ∈ Qζ}.
Similarly, KQ1 = {{q1, v1}|∃q1

i1/o1−−−→ q′1 ∈ T1 and v = {i1}∪o1}}∪{{q1, ∅}|q1 ∈
Q1}.

First, we define a surjection ĥaAζ 7→ A1 as follows: ∀i ∈ (I1 ∪ I2)B , ĥa(i) =
pI1(i). ∀o ∈ Oε, ĥa(o) = o1 if o = γ(o1) and ĥa(ε) = ε.

To easily express the surjective mapping from KQζ to KQ1, we introduce a
function pO1 : 2O 7→ 2O1 :
pO1(o) = {o1|∃o2 ∈ O2 and γ(o1, o2) ∈ o} ∪ {o1| 6 ∃o2 ∈ O2 and γ(o1, o2) ∈ o
and γ(o1) ∈ o} Notice that according to the definition of ζ, pO1(ζ(o1 ∪ o2)) =
o1. Indeed, from pO1 definition, ∀o ∈ o1 either there is o′ ∈ o2 such that
γ(o, o′) ∈ ζ(o1 ∪ o2) then o ∈ pO1(ζ(o1 ∪ o2)); or γ(o) ∈ ζ(o1 ∪ o2) and then
o ∈ pO1(ζ(o1 ∪ o2)).

Lemma 2:
K(Mζ) vĥ K(M1)

Proof. We prove that the three conditions of definition 4 are satisfied.
(1) The mapping ĥ : KQζ 7→ KQ1 is defined as follows:
ĥ((q1, q2), v) = (q1, v1) with v1 = {pI1(i)|i ∈ 2(I1∪I2)B ∩ v} ∪ pO1(v ∩ Oε); ĥ
verifies the required property for surjection: if ĥ((q1, q2), v) = (q1, v1) then
∀a1 ∈ L1(q1, v1),∃aζ ∈ Lζ(((q1, q2), v) such that ĥa(aζ) = a1. By definition,
L1(q1, v1) = v1. If a1 ∈ v1, then either a1 = i1 ∈ IB1 or a1 = o1 ⊆ O1. Assume
a1 = i1, then by definition of ĥ, there is i ∈ (I1 ∪ I2)B such that pI1(i) = i1
and by definition also ĥa(i) = i1 and i ∈ v thus i ∈ Lζ(((q1, q2), v). Otherwise,
a1 ∈ o1 ⊆ O1 and from the definition of ĥ , a1 ∈ pO1(v ∩ Oε). Thus, from
the definition of pO1 , either there is a2 ∈ O2 such that γ(a1, a2) ∈ v ∩ Oε and
then ĥa(γ(a1, a2) = a1 either there is not such a2 and then γ(a1) ∈ v ∩Oε and
ĥa(γ(a1) = a1.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 15

(2) ∀{q1, v1} ∈ Q0
1,∃{(q1, q2), v} ∈ Q0

ζ and ĥ({(q1, q2), v}) = {q1, v1}. But

{q1, v1} ∈ Q0
1 means that q1 = qinit1 and ∃qinit1

i1/o1−−−→ q′1 ∈ T1 and v1 = {i1}∪o1.

1. If there is a transition qinit2

i2/o2−−−→ q′2 ∈ T2, then by construction there is a

transition (qinit1 , qinit2)
i1.i2/ζ(o1∪o2)−−−−−−−−−→ (q′1, q

′
2) in Tζ .

Thus, {(qinit1 , qinit2), {i1.i2} ∪ ζ(o1 ∪ o2) is a state of KQζ and an initial
state in Q0

ζ .
By definition, ĥ({(qinit1 , qinit2), {i1.i2} ∪ ζ(o1 ∪ o2) = (qinit1 , {pI1(i1.i2)} ∪
pO1(ζ(o1∪ o2)). According to lemma 1, pI1(i1.i2) = i1 and we defined pO1

such that pO1(ζ(o1 ∪ o2)) = o1. Thus, ĥ({(qinit1 , qinit2), {i1.i2} ∪ ζ(o1 ∪ o2)
= (qinit1 , v1).

2. If there is no transition qinit2

i2/o2−−−→ q′2 ∈ T2, then there is a transition

(qinit1 , qinit2)
i1/ζ(o1)−−−−−→ (q′1, q

init
2) in Tζ . In this last case, the result is obvious.

(3) Consider two states in KQζ , {(q1, q2), v} and {(q′1, q′2), v′} belonging to the
transition relation of K(Mζ) and ĥ({(q1, q2), v} = (q1, v1) and
ĥ({(q′1, q′2), v′} = (q′1, v

′
1). We want to prove that (q1, v1) and (q′1, v

′
1) belong

to the transition relation of K(M1). But, there is a transition (q1, q2)
i/o−−→

(q′1, q
′2) ∈ Qζ and v = {i} ∪ o. Once again, that means that ∃q1

i1/o1−−−→ q′1 ∈ T1
and ∃q2

i2/o2−−−→ q′2 ∈ T2 and i = i1.i2 and o = ζ(o1 ∪ o2). Then, v1 = {i1} ∪ o1
and by definition ((q1, v1), (q′1, v

′
1) ∈ R1.

4.3 Approximation and Property Preservation

Now we make more precise what does mean ∀CTL∗ properties are preserved
through our composition operation. In [13], Clarke and all show that ∀CTL∗
formulas are preserved for transition system approximations. We use the same
method to prove that ∀CTL∗ formulas are preserved through Kripke structure
approximations.

4.3.1 ∀CTL∗ Property Preservation

Let K1 and K2 be two Kripke structures and ha : A1 7→ A2 a surjective mapping
such that there is a surjection h from Q1 to Q2 and K1 vh K2. The method
consists in (1) defining a translation (τ) from formulas expressing properties in
K2 and formulas expressing properties in K1 and to prove that if a property φ
holds for K2, τ(φ) holds for K1.

Definition 5:
The translation τ between formulas in K2 and formulas in K1 is defined as
follows:

� τ(true) = true, τ(false) = false;

� ∀a2 ∈ A2, τ(a2) =
∨
{a1 ∈ A1 such that ha(a1) = a2};

� if φ and ψ are state formulas, then τ(φ∨ψ) = τ(φ)∨ τ(ψ) and τ(φ∧ψ) =
τ(φ) ∧ τ(ψ);

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 16

� if φ is a path formula, then τ(∀φ) = ∀(τ(φ));

� if φ and ψ are path formulas, then τ(φ∨ψ) = τ(φ)∨ τ(ψ) and τ(φ∧ψ) =
τ(φ) ∧ τ(ψ);

� if φ and ψ are path formulas, then τ(Xφ) = Xτ(φ) , τ(φ U ψ) =
τ(φ) U τ(ψ), τ(Fφ) = Fτ(φ) and τ(Gφ) = Gτ(φ).

We now turn to the preservation result. First, we express a straightforward
lemma that says that paths in K1 are projected in K2(see [13]).

Lemma 3:
If π = π1, ..., πn, .. is a path in K1, then h(π) = h(π1), ..., h(πn), .. is a path in
K2.

Relying on this lemma, we prove the preservation theorem:

Theorem 1:
Let K1 and K2 two Kripke structures such that K1 vh K2:

1. for all ∀CTL∗ state formula φ in K2 and for all state q1 of K1, h(q1) |=
φ⇒ q1 |= τ(φ)

2. for all ∀CTL∗ path formula φ in K2 and for every path π in K1, h(π) |=
φ⇒ π |= τ(φ)

Proof. The proof is an induction on the structure of the formula.

1. if φ = true(resp false) the result is obvious;

2. if φ ∈ L2(h(q1)), by definition,∃a1 ∈ L1(q1) such that ha(a1) = φ. Thus
q1 |= a1 and then q1 |=

∨
{a1 ∈ A1 such that ha(a1) = φ}. Thus q1 |= τ(φ);

3. if φ = φ1 ∨ φ2: h(q1) |= φ1 or h(q1) |= φ2. By induction, we know that
q1 |= τ(φ1) or q1 |= τ(φ2). Thus q1 |= τ(φ1) ∨ τ(φ2) and q1 |= τ(φ). The
proof for ∧ is similar;

4. assume φ = ∀ψ, we want to prove that q1 |= τ(∀ψ). This means that for
every path π starting from q1 π |= ψ. From lemma 3, we know that h(π) is
a path in K2 starting from h(q1). Since h(q1) |= ∀ψ, h(π) |= ψ. Applying
the induction hypothesis, we deduce that π |= τ(ψ);

5. if φ is a state formula and h(π) |= φ. If the initial state of π is q1, then the
initial state of h(π) is h(q1). Assume that h(q1) |= φ, then by induction
q1 |= τ(φ) and thus π |= τ(φ);

6. the proofs for ∨ and ∧ of path formulas are similar to case (3);

7. if h(π) |= Xψ then h(π)1 |= ψ. By induction, π1 |= τ(ψ) thus π |= Xτ(ψ)
and π |= τ(Xψ);

8. if h(π) |= φUψ, there is n ∈ N such that h(π)n |= ψ and ∀i < n, h(π)i |= φ.
Using the induction hypothesis, we can infer that πn |= τ(ψ) and ∀i <
n, πi |= τ(φ). Thus π |= φUψ.

9. if h(π) |= Fψ, there is k ∈ N such that h(π)k |= ψ. By induction, we know
that πk |= τ(ψ) and then π |= Fτ(ψ) = τ(Fψ).

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 17

10. if h(π) |= Gψ, then ∀i ∈ N h(π)i |= ψ. By induction, we know that ∀i ∈ N
πi |= τ(ψ) and π |= Gτ(ψ) = τ(Gψ).

4.3.2 Properties Preservation for Synchronous Monitors

Now , we apply these preservation results to synchronous monitors. We recall
that we want to prove that if a Mealy machine M1 satisfies a ∀CTL∗ formula,
then the property holds also in a composition where M1 is an argument. To this
aim, relying on theorem 1, we will show that if K(M1) |= φ, a ∀CTL∗ property,
then K(Mζ) |= τζ(φ), τζ being a translation function from formulas related to
K(M1) to formulas related to K(Mζ).

Definition 6:
The translation mapping τζ between formulas related to K(Mζ) and those re-
lated to K(M1) is defined as follows:

� τζ(true) = true, τζ(false) = false;

� ∀a1 ∈ A1, τζ(a1) =
∨
{aζ ∈ Aζ such that ĥa(a1) = aζ};

� if φ and ψ are state formulas, then τζ(φ∨ψ) = τζ(φ)∨τζ(ψ) and τζ(φ∧ψ) =
τζ(φ) ∧ τζ(ψ);

� if φ is a path formula, then τζ(∀φ) = ∀(τζ(φ));

� if φ and ψ are path formulas, then τζ(φ∨ψ) = τζ(φ)∨τζ(ψ) and τζ(φ∧ψ) =
τζ(φ) ∧ τζ(ψ);

� if φ and ψ are path formulas, then τζ(Xφ) = Xτζ(φ), τζ(φ U ψ) =
τζ(φ) U τζ(ψ), τζ(Fφ) = Fτζ(φ) and τζ(Gφ) = Gτζ(φ)

Now we can express the preservation theorem for synchronous monitors:

Corollary 1:
Let M1 and M2 be two Mealy machines and φ a ∀CTL∗ formula related to M1,
then M1 |= φ⇒M1⊗ |ζ M2 |= τζ(φ)

Proof. By definition, we say that M1 |= φ iff qinit1 |= φ and then iff (qinit1 , v1) |= φ
for each initial states of K(M1). In section 4.2.1, we have defined a surjective
mapping ĥ : KQζ 7→ KQ1 and we have proved that K(Mζ) vĥ K(M1). Let us
consider the state {(qinit1 , qinit2), v} such that ĥ({(qinit1 , qinit2), v}) = (qinit1 , v1),
we have ĥ({(qinit1 , qinit2), v}) |= φ as initial hypothesis. Thus, according to the-
orem 1, we know that {(qinit1 , qinit2), v} |= τζ(φ). Hence, Mζ |= τζ(φ).

5 Practical Issues

Relying on this theoretical approach, we improve our WComp middleware to
support synchronous component design and validation of behaviors for critical
components.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 18

5.1 Our Reactive Adaptive Middleware

As already mentioned in the introduction, we propose a middleware approach
called WComp taking into account all the principles for ubiquitous computing
detailed in section 1.1. For that matter, it federates three main paradigms :

1. Event-based services architecture : Our services are event-based. They can
communicate between them using event patterns to transmit as soon as
possible spontaneous information coming from the physical environment.
For example we attach a service to a sensor device that sends regularly
new measures to other services. They are generally Web Services for
Devices like UPnP or DPWS. We distinguish then two kinds of services :
composite services which are services whose implementation calls other
services in the middleware layers. They are opposed to basic services
from the infrastructure, whose implementation is self-contained and does
not invoke any other services. Ubiquitous applications are then a graph of
interactions between event-based services.

2. Lightweight component-based architecture inside composite web services :
A Composite Service is based on an internal lightweight component as-
sembly to manage composition between other event-based web services
through proxies components and to design the interface of a new higher-
level composite service. A Composite Service corresponds to a dynamic
assembly of lightweight WComp components and provides an event-based
service interfaces, like explained previously. Internal assembly of com-
ponents handles the high dynamicity of the model, providing a way to
be structurally modified and adapted. It also addresses reactivity, since
it uses event-based communications between components. A composite
event-based service is dynamically managed using an internal lightweight
components assembly.

3. Adaptation paradigm using the original concept named Aspect of Assembly
(AA): This concept allows to prepare kinds of independent and crosscut-
ting schemes of adaptation dealing with separation of concerns, logically
mergeable in case of conflicts and applicable to every Composite Web
Service of the application, not necessarily known (previously). Aspects
provide adaptation to the model, which is structural, since we modify
the internal component assembly of composite services, without modify-
ing black boxes components. Adaptations as a set of AA, are designed
to modify event-based web services of the application according to the evo-
lution of the infrastructure (appearance and disappearance of devices in
it). They are applied (weaved) to the set of event-based composite web
services of the applications at runtime to implement then required reactive
adaptation

Thus our middleware allows to adopt both ways to dynamically design ubiq-
uitous computing applications. The first implements a classical component-
based compositional approach, using SLCA, to design higher-level composite
web services and then increments the graph of cooperating services for the ap-
plications. This approach is well suited to design the applications in a known,
common and usual way. We call such a compositional approach composition for
higher-level services.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 19

The other way uses a compositional approach for adaptation using AA, par-
ticularly well-adapted to tune a set of event-based web services in reaction to a
particular variation of the context. We call such compositional approach com-
position for reactive adaptation.

5.2 Extending WComp

In section 3, we have shown that the introduction of specific synchronous compo-
nent is an answer to address the multiple access to critical component problem.
These synchronous component we introduce represent the behaviors of critical
components as Mealy machines. These latter are models very well suited to
perform safety property verification, but they are not convenient to deal with.
Due to the synchronous product they can become huge and we must face the
famous “state explosion problem”. To avoid this drawback, we want to benefit
from symbolic representation of Mealy machines. Thus we rely on synchronous
languages [2].

These languages support functional concurrency and they rely on notations
that express concurrency in a user-friendly manner. They also offer simple for-
mal model that makes formal reasoning tractable. In particular, the semantics
for the parallel composition of two processes is clearly defined. Finally, they re-
spect the synchrony hypothesis which divides time into discrete instants. Hence
in a natural way, synchronous programs progress according to successive atomic
reactions. Indeed, Mealy machines are models for these languages and their
compilation involves the construction of these formal models. Moreover, syn-
chrony and concurrency imply that the synchronous product defined section 4
is exactly the semantics of parallel operator of synchronous languages.

Then, to apply our approach, we rely on the Lustre [17] synchronous language
which helps us to define and validate synchronous components. It is a data
flow language offering two main advantages: (1) It is a functional language no
complex side effects. This makes it well adapted to formal verification and safe
program transformation, since functional relations over data flows may be seen
as time invariant properties. Also, reuse is made easier, which is an interesting
feature for reliable programming concerns; (2) it is a parallel model, where
any sequencing and synchronization depends on data dependencies. Thus, the
synchronous product we rely on to perform the composition of synchronous
components under constraints is expressed naturally in the language. Moreover,
constraint functions can be expressed as equations, thanks to the equational
nature of the language.

To perform safety properties validation we rely on the model-checking tool
Lesar [9], a symbolic, BDD-based model-checker for Lustre. It is based on the
use of synchronous observers [8], to describe both the properties to be checked
and the assumptions on the program environment under which these properties
are intended to hold. An observer of a safety property is a program, taking as
inputs the inputs/outputs of the program under verification, and deciding (e.g.,
by emitting an alarm signal) at each instant whether the property is violated.
Running in parallel with the program, an observer of the desired property,
and an observer of the assumption made about the environment one has just
to check that either the alarm signal is never emitted (property satisfied) or
the alarm signal is emitted (assumption violated), which can be done by a
simple traversal of the reachable states of the compound program. Hence, using

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 20

observer technique allows to express the property in the same language used to
design our synchronous components and avoid to express non intuitive temporal
logic formulas.

5.3 Use Case Implementation

Now we sketch how we implement the use case described in section 2. In our
implementation, a synchronous monitor is expressed as a Lustre program (called
a node). Hence three Lustre nodes implement respectively the three synchronous
monitors of the use case:
node camera(in_kitchen,close_fridge:bool) returns(warning1:bool)

let warning1 = in_kitchen and close_fridge;

tel

node fridge(fridge_opened, one_minute: bool)

returns (warning2, weak_alarm2: bool);

let warning2= fridge_opened and not one_minute;

weak_alarm2= fridge_opened and one_minute;

tel

node posture(sitting, standing,lying:bool)

returns(warning3,weak_alarm3:bool)

let warning3 = (standing or sitting) and not lying;

weak_alarm3 = not standing and not sitting and lying;

tel

Figure 5 shows the assembly weaved to design the application. Let O1 =
{warning1}, O2 = {weak alarm2, warning2} and
O3 = {weak alarm3, warning3} be the respective output sets of camera,
fridge and posture components.
Let IA = {warning, weak alarm, strong alarm} be the input set of the Alarm
component.
For each component, we defined an injection ini : O1 7→ IA(i = 1, 2, 3):{

ini(warningi) = warning(i = 1, 2, 3)
ini(weak alarmi) = weak alarm(i = 2, 3)

We replace these three components by a single component : camera⊗ fridge⊗
posture |ζ , as said in section 4. This composite component is a Mealy ma-
chine, which has for input event set the union of the respective input event sets
of the camera, fridge and posture components i.e {close fridge, in kitchen,
fridge opened, one minute, standing, sitting, lying}. The output set of the com-
posite component we built is O = {warning, weak alarm, strong alarm} and
we define an injection in : O 7→ IA:{

in(warning) = warning
in(weak alarm) = weak alarm

As in is a bijection, we kept the same name for output events in O and input
events in IA, to an easier identification of connections. Now, we must provide a
surjective function γ : O1 ∪O2 ∪O3 ∪ (O1×O2×O3)∪ (O1×O2)∪ (O2×O3)∪
(O1 ×O2) 7→ Oε which agrees with the respective injections ini 7→ IA.

γ(warningi) = warning(i = 1, 2, 3)
γ(weak alarmi) = weak alarm(i = 2, 3)
γ(weak alarm2, weak alarm3) = strong alarm
otherwise γ(o) = ε

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 21

Then we infer a constraint function ζ : 2(O1∪O2∪O3) 7→ 2O and we apply it
to build the composite component camera ⊗ fridge ⊗ posture |ζ . The con-
straint function applies to the output sets borne by transitions of camera,
fridge and posture synchronous product. It maps all combinations of warning1,
warning2 and warning3 to warning event. As soon as either weak alarm2 or
weak alarm3 are emitted, ζ maps the output set to weak alarm and if both
of them belong to an output set, then a strong alarm is sent since that means
that the door of the fridge is opened for more than one minute and the person
kept under watch is lying. Of course, different constraints could be defined. For
instance, instead of considering that a warningi is sufficient to launch a warn-
ing, we could consider that the camera and fridge components must agree and
emit respectively warning1 and warning2. This would yield another composi-
tion result.

To implement the synchronous monitor performing the composition of cam-
era, fridge and posture synchronous monitors, we rely on the natural syn-
chronous parallelism of Lustre. Indeed in this language, the synchronous prod-
uct is implicit and we only have to call the respective nodes implementing the
components to build their synchronous product. Then, to express the constraint
function, we define a set of equations describing the computation of each output
of the composition (showing in violet in the following):

node alarm_comp (close_fridge, fridge_opened, one_minute, standing,

sitting, lying, in_kitchen : bool)

returns (warning, weak_alarm, strong_alarm : bool)

var warning1, warning2, warning3, weak_alarm2, weak_alarm3 : bool;

let warning1 = camera(in_kitchen, close_fridge);

(warning2, weak_alarm2) = fridge(fridge_opened, one_minute);

(warning3, weak_alarm3) = posture(standing, sitting, lying);

warning = warning1 or warning2 or warning3 and not weak_alarm2

and not weak_alarm3;

weak_alarm = weak_alarm2 xor weak_alarm3;

strong_alarm = weak_alarm2 and weak_alarm3;

tel

Now, we want to verify the alarm comp node behavior before introducing
it in the assembly. Thus, we use the observer technique previously described
to prove that if the fridge is opened for more than one minute and the person
is lying, then a strong alarm is sent. To this aim, we define the following verif
node. It listens all the entries the alarm comp node listens and it computes a
Boolean output prop. Then the model checker Lesar verifies that prop is always
true, assuming that standing, sitting and lying are exclusive.

node verif (close_fridge, fridge_opened, one_minute, standing,

sitting, lying, in_kitchen : bool) returns (prop: bool)

var warning, weak_alarm, strong_alarm : bool;

let (warning, weak_alarm, strong_alarm) =

alarm_comp(close_fridge, fridge_opened, one_minute,

standing, sitting, lying, in_kitchen);

assert (not ((standing and lying) or (standing and sitting) or

(lying and sitting)));

prop = if (fridge_opened and one_minute and lying) then strong_alarm

else true;

tel

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 22

Figure 7: Use case final assembly. The component alarm composition has been
automatically generated from alarm comp Lustre node.

On another hand, we just want to touch on the application of property 1.
Assume that with Lesar, we prove that for fridge component, the property:
fridge opened ⇒ warning2 holds. Clearly, from the definition of constraints
in alarm comp, we have τζ(warning2) = warning.
Thus, we can deduce that fridge opened ⇒ warning also holds in alarm comp.

After this verification, we automatically generated WComp input code for
node comp. Thus this new component has been automatically weaved in the
assembly designing the application in WComp. Figure 7 shows the resulting
assembly.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 23

6 Related Works

In this work, we rely on a synchronous modelling to verify the functional cor-
rectness under concurrency of component behavior and component assemblies
in a reactive and adaptive middleware. Other works address the reliability of
middleware. For instance, in [22], the authors propose the TLAM (two-level
actor model) approach for specifying and reasoning about components of open
distributed systems. They show, using the QoS broker MM architecture, how
the TLAM framework can be used to specify and reason about distributed mid-
dleware services and their composition. They have also shown how specifications
in the TLAM framework can lead to implementations. They proved that the
implemented middleware correctly works (provided that middleware services
respect a set of constraints) and they planned to rely on a theorem prover to
achieve these proofs and automate their method.

However, in the same vein as our approach, some works rely on model-
checking techniques to ensure the reliability of middleware solutions. For in-
stance, PolyORB is a schizophrenic (“strongly generic”) middleware offering
several core functions and a Broker design pattern to coordinate them. In [12],
Hugues and al, generate Petri nets to model the Broker design pattern of Poly-
ORB and use model checking techniques relying on Petri nets models to verify
qualitative properties (deadlock, bounds of buffers, appropriate use of critical
section,...). We don’t use such a modelling because (1) we want to rely on
a user-friendly method to describe critical unknown component behaviors; (2)
properties we consider don’t require Petri nets modelling to be checked. Thus,
we prefer to rely on a language allowing to express both component behavior
and properties to be checked. The work presented in [3] is close to our approach,
but is not applied in the same context. The authors present a compositional rea-
soning to verify middleware-based Software Architecture. They take advantage
of the particular structure of applications due to their middleware-based ap-
proach to apply the “assume-guarantee” paradigm in their verification process.
In this paradigm the validation of a global property is reduced to the verifica-
tion of local properties against sub components. We share with us the same
verification context, but instead of proving global properties by decomposition,
we are interested to verify local critical component or assemblies. Following our
philosophy, we want to prove properties on the behavior of small entities and
thus only a preservation of property validation through a composition opera-
tion is relevant for our approach. In [6], Delaval and all also use a synchronous
data flow language complemented with a mechanism to depict component con-
trats (BZR) to extend a high level component-based model (Fractal) in order
to enforce safety properties concerning component interactions during dynamic
reconfiguration. Indeed from Fractal specification it is possible to extract a
BZR program made of the automata representation of the component behavior
and the component contract. Then, using an ad-hoc discrete controller syn-
thesis tool, they generate in a target executive middleware of Fractal (C, Java)
an additional validated controller. But, common component-based middleware
as WComp do not supply enough information to deduce component behaviors
and constracts. Then, we solve the problem of safe reconfiguration in relying
on sound composition of user-defined synchronous monitors, which operation
preserves component properties already proved. Finally, we want to mention
Shin Nakajima [18] work which shows that model-checking techniques are well

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 24

suited to verify the reliability of web service flows. He relied on SPIN model-
checker [10] to verify the reliability of web service flows expressed as WSFL
descriptions. The properties validated are reachability, dead-lock freedom or
application specific progress properties.

7 Conclusion and Future Works

The work described in this paper is derived from our experience in providing
support for correct assembly of components in an event-based reactive and adap-
tive middleware. In this latter, we solved the adaptation paradigm using the
Aspect of Assembly concept. When using our middleware, a developer ben-
efits from a composition mechanism between different component assemblies
to adapt his application to context change. While defining this composition
mechanism, we realized the need to formalize and verify the multiple access
to a critical component (i.e related to a critical device). The corresponding
formalism, the topic of this paper, relies on formal methods. Our approach
introduces in a main assembly, a synchronous component for each sub assembly
connected with a critical component. This additional component implements
a behavioral model of the critical component and model checking techniques
apply to verify safety properties about it. Thus, we consider that the critical
component is validated. Then we proposed a sound (with respect to our math-
ematical formalism) composition operation between synchronous components.
We proved that this operation preserves already separately verified properties
of synchronous components. This operation is an answer to the multiple access
to critical components. Our aim is to improve our middleware WComp with a
dedicated tool. Currently, we supply a graphical interface to design both critical
component behaviors and properties as observers in the synchronous language
Lustre (see section 5). Then the validation of properties and the creation of
the validated synchronous component is automatic. But, designing with Lus-
tre language is not obvious for any expert user and in the future we aimed at
providing a user-friendly interface to express critical component behaviors and
properties. This interface will report about violation of properties relying on
powerful model checker as NuSMV [4] and straightly (without using the Lustre
compiler) generate internal code to implement synchronous monitors.

From a theoretical point of view, we aim at improving the efficiency of the
composition mechanism. Instead of replacing synchronous components by their
composition, we want to supply a composition synchronous monitor listening
the output events of the original synchronous monitors and achieving their com-
position. Then we must prove that this assembly yields to the same result than
to perform the composition under constraints of synchronous monitors. On an-
other hand, a hard and long term challenge is to take into account uncertainty
in critical component modelling. Indeed, in some applications, some sensor de-
vices could deliver non accurate information. Then, it would be more realistic to
study others models in order to model behavior of critical component when they
intervene in an assembly listening an uncertain context. Only few approaches
in synchronous domain offer this feature and model-checking techniques which
consider timed or stochastic automata as models are nowadays non efficient.

RR n° 7541

Composition and Formal Validation in Reactive Adaptive Middleware 25

References

[1] ARM ’10: Proceedings of the 9th International Workshop on Adaptive and
Reflective Middleware, New York, NY, USA, 2010. ACM.

[2] A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. Readings in hardware/software co-design, pages 147–
159, 2002.

[3] Mauro Caporuscio, Paola Inverardi, and Patrizio Pelliccione. Composi-
tional verification of middleware-based software architecture descriptions,
2004.

[4] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: an OpenSource
Tool for Symbolic Model Checking. In Ed Brinksma and Kim Guld-
strand Larsen, editors, Proceeeding CAV, number 2404 in LNCS, pages
359–364, Copenhagen, Danmark, July 2002. Springer-Verlag. Available
from: http://nusmv.irst.itc.it.

[5] E.M. Clarke, E.A. Emerson, and A.P Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8:244–263, 1986.

[6] Gwenaël Delaval and Éric Rutten. Reactive model-based control of reconfig-
uration in the fractal component-based model. In 13th International Sym-
posium on Component Based Software Engineering (CBSE 2010), Prague,
Czech Republic, June 2010. Available from: http://pop-art.inrialpes.
fr/people/delaval/pub/delaval-cbse10.pdf.

[7] Paul Grace. Dynamic adaptation. In H. Miranda B. Garbinato and L. Ro-
drigues, editors, Middleware for Network Eccentric and Mobile Applica-
tions, pages 285–304. Springer, 2009.

[8] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and
the verification of reactive systems. In M. Nivat, C. Rattray, T. Rus, and
G. Scollo, editors, Third Int. Conf. on Algebraic Methodology and Software
Technology, AMAST’93, Twente, June 1993. Workshops in Computing,
Springer Verlag.

[9] N. Halbwachs and P. Raymond. Validation of synchronous reactive sys-
tems: from formal verification to automatic testing. In ASIAN’99, Asian
Computing Science Conference, Phuket (Thailand), December 1999. LNCS
1742, Springer Verlag.

[10] G.J. Holzmann. The Spin Model Checker. IEEE Trans. on Software Engi-
neering, 23:279–295, 1997.

[11] Valerie Issarny, Mauro Caporuscio, and Nikolaos Georgantas. A
perspective on the future of middleware-based software engineering.
In 2007 Future of Software Engineering, FOSE ’07, pages 244–258,
Washington, DC, USA, 2007. IEEE Computer Society. acmid =
1254722. Available from: http://dx.doi.org/10.1109/FOSE.2007.

RR n° 7541

http://nusmv.irst.itc.it
http://pop-art.inrialpes.fr/people/delaval/pub/delaval-cbse10.pdf
http://pop-art.inrialpes.fr/people/delaval/pub/delaval-cbse10.pdf
http://dx.doi.org/10.1109/FOSE.2007.2
http://dx.doi.org/10.1109/FOSE.2007.2

Composition and Formal Validation in Reactive Adaptive Middleware 26

2, http://dx.doi.org/http://dx.doi.org/10.1109/FOSE.2007.2 doi:http:
//dx.doi.org/10.1109/FOSE.2007.2.

[12] J.Hugues, L.Pautet, and F.Kordon. Refining middleware functions for ver-
ification purpose. In Proceedings of the Monterey Workshop 2003 (MON-
TEREY’03), pages 79–87, Chicago, IL, USA, September 2003.

[13] E. M. Clarke Jr., O. Grumberg, and D.E. Long. Model checking and ab-
straction. ACM Transactions om Programming Languages and Systems,
16(5):1512–1542, 1994.

[14] E. M. Clarke Jr., O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[15] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H.C.
Cheng. Composing adaptive software. IEEE Computer, 37(7):56–
64, 2004. Available from: http://portal.acm.org/citation.cfm?id=
1008751.1008762, http://dx.doi.org/10.1109/MC.2004.48 doi:10.1109/
MC.2004.48.

[16] G. Mealy. A method to synthesizing sequential circuits. Bell Systems
Technical Journal, pages 1045–1079, 1955.

[17] F. Lagnier N. Halbwachs and C. Ratel. Programming and verifying critical
systems by means of the synchronous data-flow programming language lus-
tre. Special Issue on the Specification and Analysis of Real-Time Systems.
IEEE Transactions on Software Engineering, 1992.

[18] S. Nakajima. Verification of web service flows with model-checking tech-
niques. In CW ’02: Proceedings of the First International Symposium on
Cyber Worlds (CW’02), page 0378, Washington, DC, USA, 2002. IEEE
Computer Society.

[19] P. Pettersson and K. Larsen. Uppaal2k. Bulletin of the European Associ-
ation for Theoretical Computer Science, 70:40–44, 2000.

[20] M. Satyanarayanan. Fundamental challenges in mobile com-
puting. In Proceedings of the fifteenth annual ACM sympo-
sium on Principles of distributed computing, PODC ’96, pages
1–7, New York, NY, USA, 1996. ACM. acmid = 248053.
Available from: http://doi.acm.org/10.1145/248052.248053,
http://dx.doi.org/http://doi.acm.org/10.1145/248052.248053 doi:http:
//doi.acm.org/10.1145/248052.248053.

[21] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, and M. Riveill. Lightweight
service oriented architecture for pervasive computing. IJCSI International
Journal of Computer Science Issues, 4(1), September 2009. ISSN (Online):
1694-0784, ISSN (Print): 1694-0814 paper.

[22] Nalini Venkatasubramanian, Carolyn Talcott, and Gul A. Agha. A formal
model for reasoning about adaptive qos-enabled middleware. ACM Trans.
Softw. Eng. Methodol., 13(1):86–147, 2004. doi:http://doi.acm.org/10.
1145/1005561.1005564.

RR n° 7541

http://dx.doi.org/10.1109/FOSE.2007.2
http://dx.doi.org/10.1109/FOSE.2007.2
http://portal.acm.org/citation.cfm?id=1008751.1008762
http://portal.acm.org/citation.cfm?id=1008751.1008762
http://doi.acm.org/10.1145/248052.248053
http://dx.doi.org/http://doi.acm.org/10.1145/1005561.1005564
http://dx.doi.org/http://doi.acm.org/10.1145/1005561.1005564

Composition and Formal Validation in Reactive Adaptive Middleware 27

[23] M. Weiser. The computer for the twenty-first century. Scientific American
Ubicomp Paper, 265:94–104, September 1991.

RR n° 7541

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Component-based Adaptive and Reactive Middleware
	Need for Validation
	Our proposal

	Component-based Middleware Use
	Components with Validated Behaviors
	Component Behavior Modelling.
	Component Behavior as Synchronous Models
	Synchronous Monitors

	Component Behavior Validation
	Verification context
	Properties Definition

	Synchronous Model Composition
	Multiple Access to Components.
	Composition and Validation.
	Approximations for Synchronous Monitors

	Approximation and Property Preservation
	CTL* Property Preservation
	Properties Preservation for Synchronous Monitors

	Practical Issues
	Our Reactive Adaptive Middleware
	Extending WComp
	Use Case Implementation

	Related Works
	Conclusion and Future Works

