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Benchmark 3D: a version of the DDFV scheme
with cell/vertex unknowns on general meshes.

Boris Andreianov, Florence Hubert and Stella Krell

Abstract This paper gives numerical results for a 3D extension of DeDDFV
scheme. Our scheme is of the same inspiration as the ond CGae-DDFV ([9]),
with a more straightforward dual mesh construction. Weakéte construction in
which, starting from a given 3D mesh (which can be non conédand have arbi-
trary polygonal faces), one defines a dual mesh and a diamesH,reconstructs a
discrete gradient, and proves the discrete duality prgpB#tails are given in [1].

1 DDFV methods in 2D and in 3D. A 3D CeVe-DDFV scheme.

DDFV (“Discrete Duality Finite Volume”) scheme was intrazid in 2D by Herme-
line in [15] and by Domelevo and Omnés in [13]. To handle am@pic problems or
nonlinear problems, or in order to work on general distortezthes, full gradient
reconstruction from point values is a popular strategys lell known that recon-
struction of a discrete gradient is facilitated by addingnowns that are new with
respect to those of standard cell-centered finite volumersels. The 2D DDFV
method consists in adding new unknowns at the vertices ohiti@ mesh (this ini-
tial mesh is often called the primal one), and in use of newrocbrmolumes (called
dual cells, or co-volumes) around these points. A family iaitbnd cells is nat-
urally associated to this construction, each diamond bbinlj on two neighbor
cell centers, x_ and the two vertices of the edgf that separates them. On a di-
amond, one can construct a discrete gradient direction ipectin (cell-cell and
vertex-vertex), following the idea of [8]. It turns out thiis discrete gradient is
related by a discrete analogue of integraton-by-parts déanrcalled “discrete du-
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2 Boris Andreianov, Florence Hubert and Stella Krell

ality”, to the classical discrete finite volume divergenssariated with these two
families of meshes. This duality property greatly simpsiftee theoretical analysis
of finite volume schemes based on the DDFV construction, $£¢% 2]. This 2D
strategy reveals to be particularly efficient in terms ofdigat approximation (see
[7, 14]) and has been extended to a wide class of PDE probkaeg1, 5, 6, 18, 19]
and references therein).

The 3D CeVe-DDFV scheme we present here also keeps unknaviynatathe
cell centers and the vertices of the primal mesh, and it usegptimal mesh, a
dual mesh and a diamond mesh; as in the 2D case, a diamondsisuziad from
two neighbor cell centersc,x_and froml vertices of the edgel|. that separates
them ( > 3). The price to pay is that the gradient reconstruction besomore
intricate. As in 2D, one direction per diamond is reconstdaising the two cell
center unknowns at the nodes x_; two complementary directions of the gradientin
K| are reconstructed simultaneously, by a suitable intetjpolaf the vertex values
in each face|. of the primal mesh. While the case= 3 (meshes with triangular
faces) offers no choice, in general we have to fix a formularftarpolation that is
consistent with affine functions and which leads to discdetality (with respect to
appropriately defined dual cells). This was achieved inddpatly in [17] and in
[3, 4, 1], with two different approaches (the above desmipstems from the point
of view developed in [3, 4, 1]).

Several 3D DDFV constructions exist. The CeVe-DDFV schegnPibrre et al.
(see [12]) was the pioneering work in 3D; a particular feamirthis method was in
the double covering of the domain by the dual mesh. This ambrted to a method
that is only slightly different from ours; we refer to the lolmark paper [9] in the
same collection. Next, Hermeline in [16] introduced the artpnt idea to associate
additional unknowns with the face centers of the primal méshhe subsequent
work [17] of Hermeline, elimination of these unknowns evelly led to the same
method that the one we describe. Many numerical tests aga gij16, 17]. Finally,
Coudiére and Hubert in [10] introduced edge unknownsesmsdf eliminating face
unknowns. This idea assessed a new strategy of 3D DDFV ajppation; we call it
CeVeFE-DDFV because with respect to the primal mesh, cattex and face+edge
unknowns are used. Let us point out the differences withe@sip CeVe-DDFV
strategies. In [10], each diamond is constructed on twoasgitersx., x_, on two
verticesxg, X+ in the facek|, and one face centeg, € klL and one edge center
X1+ € X, X+]. Then the gradient is reconstructed per direction (cédll-zertex-
vertex and face-edge), as in 2D. The edge and face centdisearenters for a new,
third mesh. The CeVeFE-DDFV method is the object of the berark paper [11]
in the same collection.

Let us present the construction of our 3D CeVe-DDFV scherhe.pfimal mesh
needs not be conformal; there is no restriction on numbeaedd or face edges. For
simplicity, let us assume that the primal mesh volumes angexg that their centers
belong to the volumes; and the face centers belong to the.fatese restrictions
can be relaxed, see [1]; but let us stress that the edge poirstse the middlepoints.
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Notation. We use a triple¥ = (9, 9T, D) of partitions ofQ into polyhedra.

e M denotes the initial meshcalled primal mesh We call 99t the set of all
faces of this mesh that are includedd®. These faces are considered as flat
boundary (primal) control volume&Ve denote by the union9° U IM°.

— Center: To any (primal) control volume € °, we associate a poimg € K.

— Vertex: A generic vertex oM is denoted by:.

— Neighbors:givenk € 9%, all control volumes € 9P such thak andvL have
a common face (or part of a face) form the sef) of neighbors ok.

— Face:forall L € .»(k), by k. we denotedk N dL which is a face (or a part of
a face) of the mesti®; it is supplied with dace center ¥ € L.

— Edge: An egde[xq, %] of MC is defined by two neighbor verticeg:, X+
it is marked with the centeg- that must be its middlepoirtke: +x.) /2.

— Element: An elementr = TE*;;I]_* is the tetrahedrofx., XL, X+, X+ ) © here
K is a primal volume Kl is a face ofk ; and [x,X+] is an edge ok|L (see
Fig. 1). The set of all elements is denoted.By If X« is a vertice ofr € .7,
then we say that is associatedwith the volumex, and we writer ~ k.

e 9T denotes thelual mesttonstructed as follows. A generic vertgx of NP is
associated with the polyhedrene 9t made of all elements € .7 that share
the vertexxe (we write T ~ k*). If X+ € Q, we say thak* is adual control
volumeand writek* € M*; and if - € dQ, we say thak: is aboundary dual
control volumeand writek: € 9t . Thust* = M UIMT".

e D is thediamond meshFork € M, L €.+ (k), the union of the convex hull of
X« andk|L with the convex hull ok_andk| is calleddiamond denoted by**.

For expression of the discrete operators one needs a camventdiamond orien-
tation, subdiamonds and other objects and notation of [&]give them via Fig. 1.

orientation diamond
AN N / DKelKe ;k
element SR T / - 5o *
Koo ARV e oV e
ik \
KiiKg 4 X

Fig.1 Element (left). Oriented diamond, subdiamond and relatgdtion, cf. [1] (right).

1 This meansH° is one of the meshes provided by the benchmark organizers.

2 Because we have made the assumption that k|, the relationt ~ k simply means that is
included ink. The same observation applies to the notatienk*. See [1] for generalizations.
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Discrete space and discrete operators; the discrete duajifeature.

e A discrete function o2 is a set® = (W™, w™") consisting of two sets of real
valuesw”™ = (W )keamo andw™ = (Wic: ) con -

e A discrete function o®2 is a sew™ = (W, W™ ;W W) = (WFw'T),
WP = (Wi )keamo, W= (Wit e, W= (Wi Jiccomio, WWPT= (Wier )

e A discrete field o2 is a sel;/F>'I = (/F.;)D@ of vectors ofR3.

e We writeRT, RT, (R3)?, respectively, for the sets of discrete functions/fields.
e Discrete divergencis the operator acting frorfR3)® to RT, given by

a7 (0T ) o (@ T D),y ) =2 VT, (1)

where the entries div ®, divi-.Z * of the discrete function div# = on Q are

N~ 1 7 N 1 *? *
divg. 7~ = Vol (<) TZKmT/T Ty, diveZ~ = Vi) TNZK*rnTJT ﬁT, )

s, ﬁ; being the exterior normal vectorsda, dk:. Formulae (2) stem from the
standard procedure of finite volume discretization, apipdie® and on)Jt".

o Discrete gradients the operator acting from™ to (R3)®, given by

= wf o (HDWT)D@ — OTwE (3)
= = . = .
where the entnyil, w*® of the discrete field]*w* corresponding t@ = "ok
(see Fig. 1) is reconstructed from the valum@ W at the ne|ghbor centers
Xk, % (they give the projection oy, xKP) and the vaIueséwK*) _, at thel
vertices of the interface. .. (they give the projection on the plangKﬁg)3 with

(WKsp - WKTD) ﬁK@Keﬁ

= = 1 I {<XK Ko s Xk XK 0 X6 % )
DDW =
6v0I(D) i; X Xl - Tl i

20w, —we) [RX X XXk b @)
e Pick [[WT, v"ﬂ =1 S kcamo VOI(K) Wk Vi + 3 3 canr VOI(K*) Wi Vi for scalar prod-
uctonR* and{?’f, 67"} =S peo WI(D) /FD}?.; for scalar product ofiR3)®
And now, one can mimic the identity- fQ(diva})w= Jo 7. Ow forw|yq =0:

Proposmon 1 (the discrete duality property see [3, 1], see also [1QFOr all
7= (R3)® and all wE € R with w'= = o, [ -div 7T W] :{yf o).

3 Whenl = 3, one simply uses the three-point interpolation in the @lark.. to reconstruct this
projection. Clearly, the interpolation is exact for affinm€tions. In general, the reconstruction (3),
which is exact for affine functions, is based upon the 2D iithegtven in [3] and [1, Appendix].



Benchmark 3D: a CeVe-DDFV scheme on general meshes 5

The scheme. In this benchmark, one approximates the linear diffusiarbfam
—div[A(~)E)u] = f(-) with Dirichlet boundary conditionu|so = u(-), A(-) being
a heterogeneous anisotropic diffusion tensor &g being a source term. L&*
denote the projection on the DDFV me$h(i.e. the components df* f are the

mean values of € L(Q) per primal and per dual volume®):* is the projection on

the boundary part of the mesh. LB denote the projection on the diamond mesh
®. For general data, the heterogeneity of the mairi¥ is taken into account by

using the diamond-wise projectiét := P*A(+); similarly, we usef* =P*f(-) as

the discrete source term. The boundary condition is givethéyrojectior’=u(-).

For a fully practical discretization &&(-) and f(-) (which are continuous in all
the tests we perform), for every element (recall that diasispprimal volumes and
dual volumes of a DDFV mesh are unions of elements, see Fige 1dke the mean
value of the four vertices of the element. The point valugbefexact solutiomne in
the centers of the boundary volumes are used as discretel@iguronditions.

Given a DDFV meslIt of Q the method writes as:
Find u® s.t. — div® [AT 00T | = £% with U = (U™; P°%0).

Convergence. From the discrete duality (Prop. 1) which is a cornerstorieFV
schemes, and from consistency properties of the projegiadlient and divergence
operators (see [2]; cf. [5] for analogous properties in 2D¢ @asily derives that
the scheme is well posed fbr 4. Given a family(Th), of CeVe-DDFV meshes,
the associated discrete solutiarfs enjoy a uniform discretel! estimate, and they
converge to the exact solutiaras the sizér of the mesh tends to zero. Convergence
analysis requires mild proportionality assumptions omtieshest, in use, see [2].

2 Numerical results

In this section, we describe the results obtained on Tegt®fithe benchmark. No-
tice that, while the method converges for mereR/uniformly elliptic tensorA(-),

it is not designed for a smart handling opecewisecontinuousA(-)°. Therefore,
we skip Test 5 that involves piecewise constafy). We refer to Coudiere, Pierre,
Rousseau and Turpault [12] and to Hermeline [17] for 3D CB\&-V construc-
tions efficiently taking into account discontinuitiesAf-).

Choice of the cell and face points.We pick forx, the isobarycenter of the ce|
and forxg , the isobarycenter of the faeg.

4 The restriction on the numbeéf face vertices is only needed for justifying a discreterRaré
inequality; yet this property is immaterial, e.g., for thesaciated evolution problem. In practice,
in the below tests valuds= 3, 4,6 were used, and no particular problem ffet 6 is reported.

51n 2D, a scheme called m-DDFV, specifically designed to hadidicontinuousliffusion tensors,
was designed by Boyer and Hubert in [6]. There is a clearreiffee in convergence orders for the
basic DDFV version [5] and the m-DDFV version [6] (see the 2Zixéhmark paper [7]).
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Measure of errors and convergence ordersTo put the discrete and the exact solu-
tions “at the same level”, we use the prﬂecﬁb’?ue of the exact solution and the as-

sociated discrete gradient reconstructiofP=ue, whereP= -

— (P*-;P’T.). The

L2 norms of the erroré" :=u®— P~ ue andﬁfg =
terms of the scalar producﬂs, ﬂ onR¥*, {{
ative error indicatorserl2 and ener,

TuT— O*P%u. are measuredin

}}and{ }}on R3)®: the rel-

ergrad we use are defined, respectively, as

(

[[ef ’e‘Iﬂ 1/2
7[[@’%&1?’%.3] anda

{asTem O} }})1/2 ( {07 o)

{AT=PTue, O*PT e {O~P%u. 0P 0

})1/2

e Test 1 Mild anisotropy, Ue(x,y,z) = 1+ sin(rx)sin(mt(y+3)) sin(mt(z+3))

min=0,

max= 2, Tetrahedral meshes

nu nmat umin uemin umax uemax norm

D

2187 21287 0.706E-02 0.706E-02 1.992 1.992 0.178

4301 44813 0.706E-02 0.706E-02 1.997 1.996 0.179

8584 94088 0.278E-02 0.278E-02 1.993 1.993 0.179

17102 195074 0.792E-03 0.792E-03 1.997 1.997 0.179

34343 405077 0.140E-02 0.140E-02 1.999 1.999 0.180

[
1
2
3
4
5
6

69160 838856 0.140E-02 0.140E-02 1.999 1.999 0.180

nu erl2  ratiol2 ergrad ratiograd ener

F+01
F+01
c+01
E+01
E+01
E+01

ratiogner

2187 0.539E-02 0.654E-01 0.649E-01

4301 0.331E-02 2.165 0.488E-01 1.297 0.491E-01

P39

8584 0.206E-02 2.069 0.381E-01 1.077 0.383E-01

D79

17102 0.135E-02 1.841 0.301E-01 1.018 0.302E-01

D26

34343 0.846E-03 1.998 0.240E-01 0.973 0.242E-01

.B55

DU P W NP —

ok e

69160 0.539E-03 1.934 0.190E-01 1.012 0.191E-01

.p0o8

e Test 1 Mild anisotropy, Ue(x,Y,2) = 1+ sin(rx)sin(m(y+3)) sin(m(z+3))

min=0,

max= 2, Voronoi meshes

nu nmat umin uemin umax uemax normg
87 1433 0.667E-01 0.667E-01 1.904 1.904 0.159HK
235 4393 0.432E-02 0.432E-02 1.997 1.997 0.172K

1013 21793 0.108E-02 0.108E-02 2.003 1.995 0.177
1776 40998 0.113E-01 0.113E-01 2.000 1.996 0.178

i
1
2
3
4
5

nu erl2  ratiol2 ergrad ratiograd ener ratios

+01
+01
527 10777 0.280E-01 0.280E-01 1.990 1.990 0.176E+01
F+01
F+01

ner

87 0.484E-01 0.204E+00 0.374E+00

235 0.388E-01 0.666 0.173E+00

0.496 0.277E+01 -6.p49

527 0.231E-01 1.925 0.118E+00

1.402 0.838E+00 4.445

1013 0.167E-01 1.484 0.940E-01

1.060 0.299E+01 -5.843

1776 0.117E-01 1.937 0.818E-01

0.742 0.291E+01 0.147
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e Test 1 Mild anisotropy, Ue(x,y, ) = 1+ sin(rx)sin(m(y+3)) sin(mr(z+3))

min = 0, max= 2, Kershaw meshes

nu nmat umin  uemin umax uemax normg

855 13819 2.28E-022.28E-02 1.989 1.989 1.730

i
1
2| 7471 138691 2.52E-03 2.52E-031.994 1.994 1)778
3/ 62559 1237459 1.99E-03 1.99E-03 1.999 1.999 1}794

~

512191 10443763 3.82E-04 3.82E-04 2.000 2.000 1{797

nu erl2  ratiol2 ergrad ratiograd ener

ratiogner

855 0.501E-01 - 0.484E+00 - 0.558E+00 -

7471 0.156E-01 1.611 0.209E+00 1.160 O0.159E+00 1.

35

62559 0.392E-02 1.954 0.677E-01 1.594 0.395E-01 1.

D70

PIWIN| | —

512191 0.101E-02 1.936 0.223E-01 1.585 0.109E-01 1.B35

e Test 1 Mild anisotropy, ug(x,y,z) = 1+ sin(rx)sin(rt(y+ 3)) sin(m(z+3))

min = 0, max= 2, Checkerboard meshes

nu nmat umin uemin umax uemax normgyg

59 703 0.341E-01 0.341E-01 1.966 1.966 0.167E+01

599 9835 0.856E-02 0.856E-02 1.991 1.991 0.178Ek+01

46175 917395 0.535E-03 0.535E-03 1.999 1.999 0.180E+01

i
1
2
3| 5423 101539 0.214E-02 0.214E-02 1.998 1.998 0.179E+01
4
5

381119 7788403 0.134E-03 0.134E-03 2.000 2.000 O.

180E+01

nu erl2  ratiol2 ergrad ratiograd ener

ratiogner

59 0.396E-01 - 0.136E+00 - 0.116E+00

599 0.149E-01 1.266 0.928E-01 0.499 0.818E-01

149

I

1

2 0.4

3| 5423 0.400E-02 1.792 0.497E-01 0.849 0.448E-01 0.820
4/ 46175 0.103E-02 1.905 0.256E-01 0.931 0.232E-01 O.

5 0.

20

381119 0.259E-03 1.954 0.130E-01 0.965 0.118E-01

061

e Test 2 Heterogeneous anisotropynin = —0.862 max= 1.0487
Ue(X, Y, 2) = X3y?z+ xsin(271x2) sin(271xy) sin(271z), Prism meshes

nu nmat umin uemin umax uemax normg

3010 64158 -.856E+00 -.856E+00 1.044 1.044 0.170E+01

24020 555528 -.859E+00 -.859E+00 1.047 1.047 0.171E+01

192040 4619868 -.862E+00 -.862E+00 1.049 1.049 0.

i
1
2
3| 81030 1924098 -.861E+00 -.861E+00 1.049 1.049 0.171E+01
4

171E+01

nu erl2  ratiol2 ergrad ratiograd ener ratiogner

3010 0.467E-01 - 0.711E-01 - 0.785E-01

|
1
2| 24020 0.123E-01 1.931 0.224E-01 1.667 0.328E-01 1.262
3| 81030 0.554E-02 1.960 0.116E-01 1.634 0.190E-01 1.348
4/192040 0.314E-02 1.973 0.728E-02 1.607 0.127E-01 1.389
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e Test 3 Flow with strong anisotropy on random meshegnin = 0, max= 1,
Ue(X, Y, ) = sin(mx) sin(ty) sin(7z), Random meshes

i| nu nmat umin uemin umax uemax normg

1) 91 1063 -.202E+01-.978E+00 1.969 0.931 0.392E+01
2| 855 13819 -.116E+01-.994E+00 1.206 0.982 0.363K+01
3[ 7471 138691 -.105E+01 -.995E+00 1.029 0.991 0.362F+01
462559 1237459 -.101E+01 -.998E+00 1.014 0.998 0.360E+01

nu erl2  ratiol2 ergrad ratiograd ener ratiogner
91 0.713E+00 - 0.716E+00 - 0.439E+00 -
855 0.152E+00 2.068 0.199E+00 1.712 0.130E+00 1.633
7471 0.384E-01 1.906 0.854E-01 1.174 0.417E-01 1.568
62559 0.119E-01 1.656 0.542E-01 0.640 0.183E-01 1.165

PN —

e Test 4 Flow around a well, min = 0, max= 5.415, Well meshes

i| nu nmat umin uemin umax uemax normg
1) 1482 23942 -.438E-01-.438E-015.415 5.415 0.162E+04
2| 3960 70872 -.239E-01-.239E-015.415 5.415 0.162E+04
3| 9229 173951 -.132E-01-.132E-01 5.415 5.415 0.162E+04
421156 412240 -.661E-02 -.661E-02 5.415 5.415 0.162E+04
5
6
7

44420 882520 -.411E-02 -.411E-02 5.415 5.415 0.162E+04
82335 1654893 -.281E-02 -.281E-02 5.415 5.415 0.162E+04
145079 2937937 -.198E-02 -.198E-02 5.415 5.415 0.162E+04

il nu erl2  ratiol2 ergrad ratiograd ener ratiogner
1| 1482 0.564E-02 - 0.473E-01 - 0.817E-01 -

2| 3960 0.218E-02 2.897 0.205E-01 2.556 0.487E-01 1.578
3| 9229 0.964E-03 2.898 0.108E-01 2.255 0.296E-01 1.770
421156 0.645E-03 1.454 0.748E-02 1.344 0.205E-01 1.320
5( 44420 0.427E-03 1.664 0.546E-02 1.274 0.144E-01 1.443
6| 82335 0.291E-03 1.864 0.396E-02 1.560 0.108E-01 1.391
7|145079 0.205E-03 1.848 0.337E-02 0.858 0.794E-02 1.524

3 Comments

Let us summarize the observations; footnotes provide camswé theoretical order.

Choice of the solvers. The following results have been performed either with the
direct solvers given by the UMFPACK library, or with the BiGS&b algorithm with
ILU(0) preconditionning delivered in the HSL library. A cqarison between ISTL-
CG with ILU(0) preconditionning and PETSC-CG with ILU(2)gmonditionning
shows that, whenever ISTL-CG/ILU(0) algorithm convergasich less CPU time
and much less memory is used than for the PETSC-CG/ILU(2yglfgn.
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Convergence orders observeédd Even if the orders present serious oscillations for
some cases (e.g., in Test 3 and in Test 1 on Voronoi meshds)sslightly belown?
(superconvergence) for the solution in ttfeorm are observed quite systematically.
One exception is Test4, where an order intermediate beth#émandh? seems to
appear; this may be related to the presence of a singularibeiwell center.

Regarding the gradient norm, convergence orders closate seen in Test1 on
tetrahedral, Voronoi, checkerboard meshes. On Kershahi@seén Test 1 and prism
meshes of Test 2, more structured though distortedi?&rconvergence order can
be observed. For random meshes of Test 3, orders degradidydquicthe numerical
evidence (four meshes only) seems insufficient. The welheeesf Test4 appear
as rather structured but having a singularity; the effediogularity grows as the
mesh becomes finer, and the convergence order falls fifoim h®2 and then tch.
Yet from Tests 3 and 4 with stronger anisotropyAqf), it becomes clear that more
adequate norm for measuring gradient convergence is tligyenerm. In Test4 we
observe an accuralé’2 convergence and in Test 3, an orti&F can be conjectured.

Violation (and fulfillment) of the maximum principle 7. We observe that viola-
tion of discrete maximum principle does not occur systecadl$i (or if it occurs,
it is of imperceptible magnitude, even on coarse mesheshvdshoot/undershoot
isreported on Kershaw, checkerboard and prism meshes $bd.;Teor on the well
meshes of Test 4; a very slight overshoot can be seen in Testtrahedral meshes.
On the contrary, random meshes of Test3, and also the finest among the
Voronoi meshes of Test 1, exhibit a perceptible violatibthe maximum principle
which is nonetheless reduced as the mesh size dimifisbéfculties on these two
kinds of meshes can be explained by their poor shape regularg., fine Voronoi
meshes in Test 1 present a dramatic contrast of size betvedgimbor cells).

Influence of the mesh type and quality on convergence ordets Among the
different mesh properties that could influence the numHoiglaavior, restrictions on

| appear as immaterial (the best convergence orders arevadtim prism meshes
of Test2 having up td = 6 face vertices). While conformity is not needed for the
method, non-conformal meshes bring more distorted cetlsd@ammonds. We have
seen that bad shape conditioning may induce violation ofitagimum principle.

In Test 1, presence of neighbor cells with considerablerashin size (for Voronoi
meshes and for non-conformal checkerboard meshes) degradeergence orders
for the gradient, in contrast to rather gradually distoKedshaw and prism meshes.

6 For regular enough (-) andue, orderh can be proved for both solution and its gradient #n

7 In principle, DDFV methods are not designed in order to resfiee discrete maximum princi-
ple; and the convergence analysis exploits rather thetiara structure, well preserved by the
method (this is one of the benefits from the discrete duafityrop. 1). Let us point out that for
isotropic problems on primal meshes satisfying the orthadity condition (e.g., Delaunay tetra-
hedral meshes with the choice of circumcenters for the eallersx - note thatxx may fall out of
K), the discrete maximum principle is easily shown for the E®DFV scheme under study ([4]).
8 In theory, one can prove convergence fifor g < 6; nothing guarantees convergence.th

9 Recall that conformity of meshes is not required by the netlamd the construction allows
for unrestricted numbdrof face vertices. Yet it is a well-known difficulty for the dpsis of the
scheme that the discrete Poincaré inequality cannot heegrior| > 4, see [17, 2].
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