
HAL Id: hal-00573690
https://hal.archives-ouvertes.fr/hal-00573690

Preprint submitted on 4 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Termination of Threads with Shared Memory via
Infinitary Choice

Paolo Tranquilli

To cite this version:
Paolo Tranquilli. Termination of Threads with Shared Memory via Infinitary Choice. 2011. �hal-
00573690�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50006411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00573690
https://hal.archives-ouvertes.fr

Termination of Threads with Shared Memory

via Infinitary Choice

Paolo Tranquilli

paolo.tranquilli@ens-lyon.fr

LIP, CNRS UMR 5668, INRIA,
ENS de Lyon, Université Claude Bernard Lyon 1, France

Abstract. We present a static type discipline on an extension of λ-
calculus with threads and shared memory ensuring termination. This dis-
cipline is based on a type and effects system, and is a condition forced on
regions. It generalizes and clarifies the stratification discipline previously
proposed in the literature with the same objective, and is directly in-
spired by positive recursive types. The proof is carried out by translating
the calculus with memory reference into an extension of lambda-calculus
with a non-deterministic infinitary choice, whose strong normalization is
in turn proved by a standard reducibility method.

1 Introduction

Mainstream programming paradigms are pervaded with side effects. The great
majority of programs do not simply calculate a function, but carry out a whole
lot of other actions that may influence the result: interacting with the user or
with other processes, jumping to particular parts of its code, accessing memory,
etc. There is a lot of research in computer science that goes towards controlling
such side effects. Indeed programs that make large, uncontrolled use of side
effects are harder to understand, verify or optimize.

Among the abstract tools that have been developed to this end and that are
of interest to this work are types and effects systems [7] and monads [9]. The
objective of the former is to analyze statically side effects by annotating in some
way the ordinary types of programs. A typical way to analyze memory access is to
abstract memory into different entities called regions. One then decorates types
with the set of regions which the typed program can access, possibly specifying
what kind of access it needs. The annotated types become then informative on
what and where can something happen when calling the function. Such a level
of abstraction from the actual workings of memory management allows to carry
out static analysis. For example such an approach has been successfully used to
analyze the problem of heap memory deallocation ([11], leading to the so-called
region based memory management).

Monads are a tool directly coming from category theory which envisages to
encapsulate and abstract away the details of side effects while remaining in a
“clean”typed world. The idea is that a monad T can be seen as a type constructor

2 Paolo Tranquilli

modelling a computational paradigm where (effect-less) values of type A are
separated from computations of type TA. Since their inception they made it to
be a highlight of Haskell’s type system and way of programming.

Both approaches rely on a common ground: types as a tool to study and/or
discipline programs. Relating to memory access, the typical result of using such
systems is either to allow effective parallelization of the computation (like in
the original type and effect proposal [7]), or ensure type safety (e.g. no “wrong”
operation occurs during execution), or allow timely memory deallocation as al-
ready mentioned. However there is another property that in general type systems
have been studied to deliver: termination, i.e. a certificate that the program will
eventually yield a result.

Until recently this particular aspect has not been much studied in the pres-
ence of side effects involving memory access, especially when higher order types
are possibly referenced. Indeed it was long known [6] that apart from the classical
way of obtaining a (diverging) fix-point operator through self application, which
is easily forbidden by types, such a term can be encoded through well-typed self
reference. A diverging term can be easily written following this idea1:

new x := λy.!x y in !x 〈〉 .

Such a term can be read as “store in x the higher order function that reads from
x what it should do, then apply it”. Indeed, setting M := λy.!x y, and executing
the program against an empty memory store yields (see the rules in Table 1):

∅, new x := M in !x 〈〉
2
→ ∅, l := M ; !l 〈〉

2
→

[l 7→M] , !l 〈〉 → [l 7→M] , (λy.!l y) 〈〉 → [l 7→M] , !l 〈〉 → · · ·

In a standard type system with a type refA for references to values of type A,
we can type the above term with 1 if we type the reference x with ref(1→ 1).
We may get a hint as to why the program loops (but a priori no solution)
by annotating types with regions, and seeing that in fact x with region r stores

functions of type 1
{r}
→ 1: the set added to the arrow indicates that those functions

may access locations in region r, so circularity may ensue.
Recent works explored the idea of stratification of regions to avoid such cir-

cularities ([2,1] and recently in [4]) and yield termination not only for sequential
but also for cooperative multithreading programs. The idea is that of imposing
an ordering on regions so that, intuitively, a region may affect or read only re-
gions that are strictly smaller. This has a distinct logical scent to it: even more so
when one sees the proof techniques employed in [2,1], i.e. reducibility candidates.

In this work we set out to deepen this intuition. We will see how in fact the
type and effect system can be translated to usual λ-calculus if we allow certain
forms of recursive types, i.e. roughly types that can contain themselves in their
definition. The translation is roughly one in memory passing style, where the

1 The constructor new x := M in N can be constructed from the primitives we will
show in Table 1 as (λx.x := M ;N)new.

Termination of Threads via Infinitary Choice 3

annotated type A
{r1,...,rk}
−−−−−−→ B gets translated to A• → Xr1 → . . .→ Xrk → B•,

where Xr is to denote the translation of the type assigned to the region r. This
is neither new nor surprising: memory read access can be modelled by additional
inputs to the procedure via the memory access monad TA := S → A. Returning
to our diverging example, we get that the region r assigned to the location x
must be typed with 1→ Xr → 1, where in fact Xr is itself the type assigned to
r. This leads to the recursive type equation Xr

.
= 1→ Xr → 1.

As already mentioned, this translation is not surprising. However within the
framework it provides, we see that the stratification proposed in [2,1] corre-
sponds exactly to not needing recursive types, i.e. using regular simple types.
Apart from providing yet another proof that stratification yields termination,
this clear view allows to easily generalize the result in two directions. On the
one hand, it becomes clear that write operations can be completely ignored, so
that a higher-order memory location that can write to itself poses no problems
as to termination. On the other hand, while general recursive types break ter-
mination2, it is known that positive recursive types ensure strong normalization
[8]. The condition states that the self-references of recursive types should ap-
pear in positive position, i.e. on the left of an even number of function arrows:
examples are X

.
= 1 → X or the system X

.
= Y → 1, Y

.
= X → 1. The gen-

eral translation using recursive types allows to lift the positiveness condition to
a condition on regions which is more general than stratification, and which we
also call positiveness (subsection 2.1).

The way in which we are able to disregard write operations and include mul-
tithreading in the picture deserves a highlight. In fact we do not actually use
regular λ-calculus to simulate the language with references Λ

ref
: we use Λ∞, an

extension of simply typed λ-calculus with a choice operator picking from a pos-
sibly infinite list of possible terms. This operator is used to simulate read access,
while write operations are replaced by dummy ones. This allows to approximate
(really coarsely) memory operations: we could say that one contracts both the
space and the time of such operations. The space, as the contents of different
memory locations abstracted with the same region are mixed together; the time,
as the translated term could possibly read a value that is not (yet) written in
the memory. In fact the translation allows all terms of the correct type to be
present in memory at the same time. Among all the possible computations of
the translation of the term, there is one following its intended semantics.

By completely ignoring the actual write operations a program performs before
(or after) the read ones, multithreading is trivially included in the termination
argument. In fact two parallel programs are translated as non-communicating
programs, both having access to a pool of non-deterministically chosen data,
incidentally also containing what the other program could have possibly written.

In a way, the coarseness of this approximation shows the limits of this tech-
nique: would a finer static analysis still ensure termination while allowing to type
more programs? We could say that the argument used for termination has hardly
anything to do with actual memory operations. It says roughly that enriching

2 For example untyped λ-calculus can be“typed”with the recursive type X
.
= X → X.

4 Paolo Tranquilli

simply typed λ-calculus with a typed oracle giving any term of its type each time
that it is called preserves normalization. In the literature we can find a roughly
similar concept in the ǫ(A) construct of [5], akin to Hilbert’s ǫ in the ǫ calculus.
Finite non-deterministic choice on the other hand has been extensively studied
(e.g. [10,3]). The technique we use to prove termination of the language is with
reducibility candidates, as non-deterministic choice in general, and the infinite
one in particular, really gives no sweat to the technique. The proof is therefore
standard, following from what already done in [8].

Outline. In the upcoming section 2 we introduce Λ
ref

, the calculus on which we
base our work. It is a standard λ-calculus endowed with references à la ML, with
read operations !M and write ones M := N , and an allocation operator new. On
top of it, a parallel composition M |N allows separate threads to communicate
via shared memory. We end the section by defining the positiveness condition
on region contexts, and the stronger stratification one in order to discuss and
subsume the previous work found in [2,1].

In the following section 3 we prepare the ground for the definitions of the
following section by presenting systems of (possibly mutually recursive) type
equations of the form X

.
= A. The section is in fact a revision of the work done

in [8], where we mainly introduce our notation for the subsequent exposition.
Next in section 4 we introduce the infinitary choice calculus Λ∞, which ex-

tends regular λ-calculus with the choice {Mi}i∈I which can reduce to any of its
terms non-deterministically. The typing is defined as to allow type conversions
dictated by a type equation system. We then proceed to prove that if E is pos-
itive then Λ∞ is strongly normalizing (Theorem 1), via an easy adaptation of
Mendler’s proof in [8].

Finally in section 5 we discuss the translation of Λ
ref

to Λ∞, which is already
presented in Table 1. We prove that this translation yields a simulation (The-
orem 2), and that positiveness and stratification of region contexts correspond
to positiveness and solvability of the systems of equations translating such con-
texts (Corollary 1). This in turn leads to the result stating that positive region
contexts ensure termination (Theorem 3).

Notation. We will denote usual substitution (in types and terms) by [−/−]. In
types the arrow constructor → associates to the right, as in A → B → C =
A → (B → C). If (Ai)i∈k is a sequence of types, then (Ai)i∈k → C denotes
A0 → . . . → Ak−1 → C. In λ-calculus we allow to bunch together repeated
abstractions or applications, as in λxy.x or zMN . We use the standard Church’s
encoding of pairing 〈M,N〉 := λz.zMN . Finally, we denote by M ;N the term
(λd.N)M with d fresh for N .

2 The higher level: Λ
ref

Table 1 shows the typing rules of Λ
ref

, and the translation to Λ∞ that will be
discussed in the section 5. As is usual (see for example [7]), we have locations

Termination of Threads via Infinitary Choice 5

l,m, . . . as syntactic entities, denoting memory cells. These are to be considered
as runtime entities not available at the time of programming.

Typing judgements are of the form R;L;Γ ⊢M : A, e 7→M ′ where:

– R is a region context, a function with finite domain from regions to types;
– L is a function mapping locations to regions; this information can possibly

be expanded during reduction (namely when allocating memory via the new
construct), as we will see in Theorem 2;

– Γ and M : A are the usual type assignments for free variables and the typed
term respectively;

– e denotes the regions that M may read from;
– M ′ is a regular λ-calculus term: indeed we hard-code the translation to Λ∞

in the type derivations to facilitate the reasoning on it.

The final rule is to type the interaction of a term with a memory store. The
translation attached is the only place where we actually use Λ∞’s infinite choice
operator, indexed with all type derivations for Λ

ref
’s values with a given type.

These indices are clearly countable. We denote by ΛR
ref

the set of store/term pairs
typable with the region context R. Throughout this and the following section,
we suppose we have a fixed order on regions, so that a sequence like (xr)r∈e is
uniquely determined by e.

The following example shows the dynamic threading feature of Λ
ref

:

spawn := λn, p.n (λx, d.p〈〉|x〈〉) (λd.〈〉) 〈〉 : nat
1

e
→⊤
→ (1

e
→ ⊤)→ ⊤.

If M is a program of type ⊤ with effects e, and n is a Church integer, then
spawnn (λd.M) reduces to n parallel copies of M .

2.1 The positiveness condition

Mimicking the positiveness condition of recursive types, we will present in this
section the positiveness condition of region contexts. This condition will assure
termination via a suitable translation in positively recursive type equations (sec-
tion 5). On the other hand, this condition is more general than the stratification
one presented in [2,1].

First, let us define by mutual recursion the positive and negative effects
of a type, as follows.

eff+(1) = eff−(1) = eff+(⊤) = eff−(⊤) = eff+(refr)) = eff−(refr) := ∅,

eff+(A
e
→ B) := eff−(A) ∪ eff+(B), eff−(A

e
→ B) := eff+(A) ∪ e ∪ eff−(B).

Notice how encapsulated effects contribute to the negative effects of a type, as
morally we must think read effects to be as additional inputs to the procedure,
therefore occupying a negative position.

Next, we define positive (resp. negative) dependence in R, written r ≻+

s (R) (resp. r ≻− s (R)) as follows:

s ∈ effε(R(r))

r ≻ε s (R)

r ≻ε1 s (R) s ≻ε2 t (R)

r ≻ε1ε2 t (R)

6 Paolo Tranquilli

Syntax

x, y, . . . (variables) l,m, . . . (locations)
U, V, . . . ::= x | l | 〈〉 | λx.M (values)
M,N, . . . ::= V | MN | new | !M | M := N | M |N (terms)
E,F, . . . ::= [] | EM | V E | !E | E := M | V := E | E|M | M |E (contexts)
S, T, . . . (stores, functions from locations to values)
r, s, . . . (regions) e, f, . . . (sets of regions)

A,B, . . . ::= 1 | A
e
→ B | refr (types)

Reduction

S,E[(λx.M)V] → S,E[M [V/x]]

l fresh for S and E

S,E[new] → S,E[l]

l ∈ dom(S)

S,E[!l] → S,E[S(l)] S,E[l := V] → S [l 7→V] , E[S(l)]

Typing rules and translation to Λ∞

R;L;Γ ⊢ x : Γ (x), ∅ 7→ x R;L;Γ ⊢ l : refL(l), ∅ 7→ I R;L;Γ ⊢ 〈〉 : 1, ∅ 7→ I

R;L;Γ, x : A ⊢ M : B, e 7→ M ′

R;L;Γ ⊢ λx.M : A
e
→ B, ∅ 7→ λx.λ(xr)r∈e.M

′

R;L;Γ ⊢ M : A
e
→ B, f 7→ M ′ R;L;Γ ⊢ N : A, f 7→ N ′ e ⊆ f

R;L;Γ ⊢ MN : B, f 7→ M ′N ′(xr)r∈e

R;L;Γ ⊢ new : refr, ∅ 7→ I; I

R;L;Γ ⊢ M : refr, e 7→ M ′ r ∈ e

R;L;Γ ⊢!M : R(r), e 7→ M ′;xr

R;L;Γ ⊢ M : refr, e 7→ M ′ R;L;Γ ⊢ N : R(r), e 7→ N ′

R;L;Γ ⊢ M := N : 1, e 7→ M ′;N ′; I

R;L;Γ ⊢ M : A, e 7→ M ′ e ⊆ f

R;L;Γ ⊢ M : A, f 7→ M ′

R;L;Γ ⊢ M : A, e 7→ M ′

R;L;Γ ⊢ M : ⊤, e 7→ M ′

R;L;Γ ⊢ M : ⊤, e 7→ M ′ R;L;Γ ⊢ N : ⊤, e 7→ N ′

R;Γ ⊢ M |N : ⊤, e 7→ 〈M ′, N ′〉

R;L;Γ ⊢ M : A, e 7→ M ′ ∀l ∈ domS : R; ;Γ ⊢ S(l) : R(L(l)), ∅

R;L;Γ ⊢ S,M : A, e 7→ M ′
[

{V ′}R;;Γ⊢V :R(r) 7→V ′/r
]

r∈e

Table 1. Typing rules of Λref and translation to Λ∞ (which will be presented in
section 4).

Termination of Threads via Infinitary Choice 7

where the signs {+,−} are endowed with the natural multiplication ε1ε2 = +
iff ε1 = ε2. We will say that R is positive if for all r ∈ domR we do not have
that r ≻− r (R). We say R is stratified if in R the relation ≻ = ≻+ ∪ ≻− is a
strict order. Clearly stratification implies positiveness, though not the contrary,

as exemplified by the region context r : 1
{s}
→ 1, s : 1

{r}
→ 1, or r : (1

{r}
→ 1)→ 1.

Notice that the positiveness condition can be checked by a simple variation
of the path finding algorithm on directed graphs, and as such is a problem in
the polynomial complexity class.

3 Mutually Recursive Type Equations

We will here introduce our notations for mutually recursive sets of type equa-
tions. In this and the following section we will consider types to be the usual
simple types of λ-calculus, i.e. generated by a countable set of type variables
(with meta-variables X,Y, . . .) and the arrow constructor, plus the ⊤ type:

A,B, . . . ::= X | ⊤ | A→ B.

The sets V+(A) and V−(A) of positive (resp. negative) variables of a
type A are defined by mutual recursion as follows:

V+(X) := {X}, V+(A→ B) := V−(A) ∪V+(B),
V+(⊤) = V−(⊤) = V−(X) := ∅, V−(A→ B) := V+(A) ∪V−(B),

Clearly the set of variables occurring in A is V(A) := V+(A) ∪V−(A).
A type equation is an ordered pair of a type variable and a non-variable

type3, written X
.
= A. We say that X

.
= A is on the variable X. A system

of equations E is a finite set of equations on distinct variables. A system E
can be equivalently seen as a function with finite domain from type variables to
types. Consequently we denote by domE the projection of E on variables and
by E(X) the type associated to X in E. We define positive (resp. negative)
dependency in E, written X ≻+ Y (E) (resp. X ≻− Y (E)) via the following
rules:

Y ∈ Vε(E(X))

X ≻ε Y (E)

X ≻ε1 Y (E) Y ≻ε2 γ (E)

X ≻ε1ε2 γ (E)

We denote plain dependecy by X ≻ Y (E), which happens iff X ≻ε Y (E) for
a sign ε.

We say that a system of equations E is circular if for every X 6= Y ∈ domE
we have X ≻ Y ≻ X (E). Notice that every single equation X

.
= A is considered

a circular system. Given two subsystems E1, E2 ⊆ E with disjoint domains we
write E1 ≻ E2 (E) if ∃X ∈ domE1, Y ∈ domE2 : X ≻ Y (E). An easy exercise
shows that in case E1 and E2 are non-empty and circular the latter condition is
equivalent with turning the existential into a universal quantifier.

→
proof in

tech. app.
Lemma 1. Every system of equations E is uniquely decomposable in a partition
E = E1 + · · ·+ Ek such that every Ei is circular and ≻ on {Ei} is an order.

3 We explicitly prevent aliasing, i.e. equations of the form X
.
= Y .

8 Paolo Tranquilli

We say a sequence E1, . . . , Ek of systems is canonic if it is a partition of E1∪· · ·∪
Ek satisfying the conditions of the above lemma and if Ei ≻ Ej implies i > j.
Clearly every system E admits a canonic (not necessarily unique) decomposition
in circular subsystems.

We say a system of equations is positive if for every X ∈ domE it is never
the case that X ≻− X (E).

proof in

tech. app.
← Lemma 2. If E = E1 + · · · + Ek is a partition satisfying the conditions of

Lemma 1, then E is positive iff every Ei is positive.

We write A = B (E) for the contextual, symmetric, transitive and reflexive
closure of

.
= as prescribed by E. Namely:

X
.
= A ∈ E

X = A (E) A = A (E)

A = B (E)

B = A (E)

A = B (E) B = C (E)

A = C (E)

A = B (E) C = D (E)

A→ C = B → D (E)

We further write that a system E is solvable if for every X ∈ domE there is a
type AX such that X = AX (E) and V(AX) ∩ domE = ∅.

proof in

tech. app.
← Lemma 3. E is solvable iff ≻ in E is a strict order on domE. In particular if

E is solvable then it is positive.

4 The lower level: Λ
∞

Table 2 shows the syntax, the reduction and the typing rules of the infinite choice
λ-calculus Λ∞. Typing judgments are of the form E;Γ ⊢M : A, where as usual
Γ is the context mapping term variables to their types, and E is a system of type
equations whose induced equality may be used while typing the term. Given a
system of type equations E, we denote by ΛE

∞ the set of terms M typable with
judgments E;Γ ⊢M for some context Γ .

The only difference from regular λ-calculus is the choice operator {Mi}i∈I . In
it Mi is a family of terms indexed by I, where I is a set of arbitrary cardinality,
though bounded by a cardinal fixed once and for all for all terms4. Such an
operator is just a non-deterministic choice done anywhere within a term and
picking from a possibly infinite list of terms (typed with the same type).

Before going on we stress some aspects of the calculus.

No reduction inside the choice operator. Reduction does not happen inside the
choice operator, as prescribed by the definition of context. This avoids simple
infinite reductions: take Mh,k to be I if h < k and II otherwise (with I the
classic identity λx.x). Then with a reduction happening inside a choice operator
we would have {Mh,k}h∈N → {Mh,k+1}h∈N for all k.

4 Letting I’s cardinality be arbitrary for any choice operator would lead to a bad
inductive definition, as taking as I the set of terms themselves would give a paradox.

Termination of Threads via Infinitary Choice 9

Syntax

x, y, . . . (variables)
M,N, . . . ::= x | λx.M | MN | {Mi}i∈I

(terms)
E,F, . . . ::= [] | EM | ME | λx.E (contexts)

Reduction

(λx.M)N → M [N/x]

j ∈ I

{Mi}i∈I
→ Mj

M → N

E[M] → E[N]

Typing rules

x : A ∈ Γ

E;Γ ⊢ x : A

E;Γ, x : A ⊢ M : B

E;Γ ⊢ λx.M : A → B

E;Γ ⊢ M : A → B E;Γ ⊢ N : A

E;Γ ⊢ MN : B

∀i ∈ I : E;Γ ⊢ Mi : A

E;Γ ⊢ {Mi}i∈I
: A

E;Γ ⊢ M : A

E;Γ ⊢ M : ⊤

E;Γ ⊢ M : A A = B (E)

Γ ⊢ M : B

Table 2. Grammar, reduction and typing rules of Λ∞. In the choice operator {Mi}i∈I

the set I of indexes is arbitrary but with bounded cardinality fixed for all terms.

No confluence. The calculus is not confluent, as can be expected from a non-
deterministic reduction. However the situation is even worse than that. We
could consider the reduction as happening between sets of possible computa-
tions, where internal choice is the only responsible of forking. However, even
with such a formalism confluence would fail. For example taking any family Ni

the term (λx.〈x, x〉){Ni}i∈I reduces either to { 〈Ni, Nj〉 | i, j ∈ I } if first reduc-
ing the β-redex, or to { 〈Ni, Ni〉 | i ∈ I } if first firing the internal choice. This
is a standard problem encountered in non-deterministic calculi. However we are
looking for termination of this language as a tool for the termination of another
extension of λ-calculus, so we really do not care about any form of confluence.

The top type. We add a ⊤ type whose semantics is all typable terms. This poses
no problems whatsoever and is needed to reflect the thread behaviour used by
Λ
ref

(see Table 1).

Subject reduction. Preservation of typing by reduction is easily obtainable by a
standard proof.

4.1 Candidates of reducibility

In this subsection we sketch the termination of ΛE
∞ for a positive system E of

type equations. The technique is exactly the same as is found in [8], with a
trivial extension needed for the infinite choice operator. Let SN denote the set
of strongly normalizing Λ∞ terms.

We say that a subset X ⊆ SN is saturated if for every terms ~P in SN:

S1) for every variable x we have x~P ∈ X ;

10 Paolo Tranquilli

S2) if Q ∈ SN we have that M [Q/x] ~P ∈ X entails (λx.M)Q~P ∈ X ;

S3) we have that if for all i ∈ I we have Mi
~P ∈ X then {Mi}i∈I

~P ∈ X .

A valuation is any map ρ : V → SAT. We denote by ρ[X 7→ X] the valuation
acting as ρ on Y 6= X and assigning X to X. Similarly we will write ρ[Xi 7→
Xi]i∈I for indexed families of variables and saturated sets. For every valuation
ρ, we extend it on all types by setting ρ(⊤) := SN and ρ(A → B) := ρ(A) →
ρ(B) = {M | ∀N ∈ ρ(A) : MN ∈ ρ(B) } .

Lemma 4. Given a valuation ρ and a type A we have ρ(A) ∈ SAT.

Lemma 5 ([8]). If E is positive and circular, then for every ρ the function
proof in

tech. app.
← FE,ρ : 〈XX〉X∈domE 7→ 〈ρ[Y 7→ XY]Y ∈domE(E(X))〉X∈domE has a fixpoint TE,ρ.

Let us fix for every E and ρ the fixpoint TE,ρ whose existence is assured by
the lemma above. Given a valuation ρ and a circular positive system E let us
denote by ρ[E] the valuation defined by ρ[E] = ρ

[

X 7→πdomE
X TE,ρ

]

X∈domE
.

Abusing the notation, we will denote with ρ[E] for any positive system E the
valuation ρ[E1] · · · [Ek] for a canonic decomposition into circular subsystems E =
E1 + · · ·+ Ek, even if there might be several such decompositions.

Lemma 6 ([8]). If E is positive and A = B (E) then ρ[E](A) = ρ[E](B).
proof in

tech. app.
←

If σ is a partial function σ : V → Λ∞ with finite domain, let Mσ stand for
the simultaneous substitution M [σ(x)/x]x∈domσ. If moreover ρ is an evaluation
let ρ, σ, E � M : A stand for Mσ ∈ ρ[E](A), and ρ, σ, E � Γ be ρ, σ, E � x : A
for every x : A ∈ Γ . The adequacy of the interpretation can now be stated.

proof in

tech. app.
← Lemma 7. If E is positive, E;Γ ⊢M : A and ρ, σ, E � Γ then ρ, σ, E � M : A.

Theorem 1. ΛE
∞ with E positive is strongly normalizable.

Proof. Immediate from the above lemma, as if M belongs to a saturated set then
it is in SN by definition.

5 Translation

In this section we will discuss the translation from Λ
ref

to Λ∞ which we already
presented as a decoration of Λ

ref
’s typing rules. We will in particular show that

it is a simulation ensuring that Λ
ref

is terminating when the region context is
positive.

As can be seen in Table 1, to each regular typing judgement derivable for
Λ
ref

, there is a term M ′ attached, as in R;L;Γ ⊢M : A, e 7→M ′. This term is a
regular λ-calculus term, which has new term variables xr for each r ∈ e (which
are considered fresh). Those variables are bound when typing an abstraction,
and when finally the interaction of a term and a store is typed, those variables
are instantiated with an infinite choice.

Termination of Threads via Infinitary Choice 11

We will see that if R;L;Γ ⊢ S,M : A, e 7→M ′, thenM ′ non-deterministically
approximates the behaviour of S,M . However we can see how such an approxi-
mation is coarse: indeed the definition of M ′ does not take into account S, and
it just instantiates the variables xr (which stands for any location of region r)
with the translation of all the possible terms typed with the correct type. This is
why the write operation is ignored by the effects system. In fact what we show in
this paper is that the stratification discipline (or the finer positive one) ensures
something much stronger than termination of programs with shared memory. In
fact the termination argument does not depend in any way of what is written in
memory, by just using the fact that it is typed of the correct type.

By hard-coding the translation in the typing rules, we can indeed prove sub-
ject reduction of Λ

ref
and simulation in one go. First we need a substitution

lemma, which has an easy proof by induction. Then we can prove Theorem 2 by
an induction too.

Lemma 8. If R;L;Γ ⊢ V : A, ∅ 7→ V ′ and R;L;Γ, x : A ⊢M : B, e 7→M ′ then
R;L;Γ ⊢M [V/x] 7→M ′ [V ′/x].

→
proof in

tech. app.
Theorem 2. If R;L;Γ ⊢ S,M : A, e 7→ M ′ and S,M → T,N , then there is

L′ ⊇ L and N ′ with R;L′;Γ ⊢ T,N : A, e 7→ N ′, such that M ′ +
→ N ′ in Λ∞.

Next, we show how the translation respects typing. In order to do so we
provide the following translation of Λ

ref
types into regular types, Λ

ref
region

contexts into type equations and Λ
ref

type assignements into regular type as-
signements:

1• := ⊤ → ⊤, (A
e
→ B)• := A• → (Xr)r∈e → B•, (refr)

• := ⊤ → ⊤,

⊤• := ⊤, R•(Xr) := (R(r))•, Γ •(x) := (Γ (x))•.

Notice how we are just using a memory monad TA = S → A where S is the
type of memory [9]. The monad is however localized in the regions effectively
used by the procedures. We could define an indexed monad TeA = (Xr)r∈e → A

and thus having the usual monadic translation of A
e
→ B as A• → TeB

•. The
translation’s adequacy is stated as follows.

→
proof in

tech. app.
Lemma 9. If R;L;Γ ⊢ M : A, e 7→ M ′ (resp. R;L;Γ ⊢ S,M : A, e 7→ M ′),
then in Λ∞ we have R•;Γ •, (xr : Xr)r∈e ⊢M ′ : A• (resp. R•;Γ • ⊢M ′ : A•).

Notice that if we abstracted the xr’s after each rule, we would get a monadic
typing in the form of R•;Γ • ⊢ M ′ : TeA

• when starting from R;L;Γ ⊢ M :
A, e 7→M ′ in Λ

ref
.

Next, we show how the positiveness condition is invariant for the translation,
and how it relates stratification with solvability of type systems.

Lemma 10. r ≻ε s (R) iff Xr ≻ε Xs (R•).

Proof. The statement follows from the observation that Xs ∈ Vε(R
•(Xr)) if and

only if s ∈ effε(R(r)), and the rules for transitivity are the same. ⊓⊔

12 Paolo Tranquilli

Corollary 1. We have that

– R is positive iff R• is positive.
– R is stratified iff R• is solvable.

Proof. The first point is a direct consequence of the above lemma. The second
is equally immediate by using Lemma 3. ⊓⊔

Theorem 3. If R is a positive region context, then ΛR
ref

is strongly normalizing.

Proof. Immediate consequence of Theorems 1 and 2 and of Corollary 1. ⊓⊔

References

1. Amadio, R.M.: On stratified regions. In: Hu, Z. (ed.) APLAS. Lecture Notes in
Computer Science, vol. 5904, pp. 210–225. Springer (2009)

2. Boudol, G.: Fair cooperative multithreading. In: CONCUR. Lecture Notes in Com-
puter Science, vol. 4703, pp. 272–286. Springer (2007)

3. de’Liguoro, U., Piperno, A.: Non deterministic extensions of untyped λ-calculus.
Info. and Comp 122, 149–177 (1995)

4. Demangeon, R., Hirschkoff, D., Sangiorgi, D.: Termination in impure concurrent
languages. In: Gastin, P., Laroussinie, F. (eds.) CONCUR. Lecture Notes in Com-
puter Science, vol. 6269, pp. 328–342. Springer (2010)

5. de Groote, P.: Denotations for classical proofs - preliminary results. In: Nerode,
A., Taitslin, M.A. (eds.) LFCS. Lecture Notes in Computer Science, vol. 620, pp.
105–116. Springer (1992)

6. Landin, P.J.: The mechanical evaluation of expressions. The Computer Journal
6(4), 308–320 (January 1964), http://dx.doi.org/10.1093/comjnl/6.4.308

7. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL ’88: Proceed-
ings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. pp. 47–57. ACM, New York, NY, USA (1988)

8. Mendler, N.P.: Inductive types and type constraints in the second-order lambda
calculus. Ann. Pure Appl. Logic 51(1-2), 159–172 (1991)

9. Moggi, E.: Notions of computation and monads. Information and Computation
93(1), 55–92 (Jul 1991)

10. Saheb-Djahromi, N.: Probabilistic lcf. In: Winkowski, J. (ed.) MFCS. Lecture Notes
in Computer Science, vol. 64, pp. 442–451. Springer (1978)

11. Tofte, M., Talpin, J.P.: Region-based memory management. Inf. Comput. 132(2),
109–176 (1997)

http://dx.doi.org/10.1093/comjnl/6.4.308

Termination of Threads via Infinitary Choice 13

A Technical Proofs

Lemma 1. Every system of equations E is uniquely decomposable in a partition
E = E1 + · · ·+ Ek such that:

– every Ei is circular;
– ≻ on {Ei} is an order.

Proof. Existence is by induction on #domE. If there is X ∈ domE, we can
take the maximal circular subsystem E1 ⊆ E with X ∈ domE1, then apply the
inductive hypothesis on E \E1 obtaining E = E1 +E2 + · · ·+Ek. Then ≻ is an
order on {Ei}i≥2. Now suppose for a contradiction that E1 ≻ Ej and Ej ≻ E1:
it would follow that E1 ∪ Ej is circular which contradicts maximality of E1.

For uniqueness, suppose without loss of generality that E = E1 + · · ·+Ek =
E′

1+· · ·+E′
k′ with E1∩E

′
1 6= ∅ and E1\E

′
1 6= ∅. We can takeX ∈ domE1∩domE′

1

and Y ∈ domE1 \ domE′
1. Suppose Y ∈ domE′

i. As X 6= Y ∈ domE1 we have
X ≻ Y ≻ X (E) by circularity of E1, so E′

1 ≻ E′
i ≻ E′

1 which is a contradiction.
⊓⊔

Lemma 2. If E = E1 + · · · + Ek is a partition satisfying the conditions of
Lemma 1, then E is positive iff every Ei is positive.

Proof. For only if part, it suffices to see that if X ≻− X (Ei) then the same
holds in E. For the if part: the only way in which one would have X ≻− X (E)
but not X ≻− X (Ei) with X ∈ domEi would be to have X ≻ε1 Y (E)
and Y ≻ε2 X (E) with Y /∈ domEi and ε1 6= ε2. But then one would have
Ei ≻ Ej ≻ Ei with Y ∈ domEj , which is a contradiction. ⊓⊔

Lemma 11. X ≻ε Y (E) iff there is a non-variable type A with X = A (E)
and b ∈ Vε(A).

Proof. Immediate induction. ⊓⊔

Lemma 12. If A and B are such that V(A) ∩ domE = V(B) ∩ domE and
A = B (E), then they are the same type.

Proof. Immediate induction. ⊓⊔

Lemma 3. E is solvable iff ≻ in E is a strict order on domE. In particular if
E is solvable then it is positive.

Proof. For the only if part, suppose E is solvable with solution AZ and X ≻
X (E) for an X. Then by Lemma 11 we would have a type B with X = B (E),
X ∈ V(B) and B not a variable. Then if we let B′ be the type B [AZ/Z]Z∈domE ,
we would have AX = B′ (E), which reverts to an actual equality by Lemma 12
as V(B′)∩domE = ∅. This is a contradiction as X ∈ V(B) and B not a variable
would imply that AX is a proper subterm of B′, i.e. itself.

For the if part, one proceeds by induction on the cardinality of domE. If it is
not empty by its finitess there must be a variable X in domE which is minimal

14 Paolo Tranquilli

with respect to ≻. In particular it must be the case that V(E(X)) ∩ (domE \
{X}) = ∅. We then can solve (E \ {X

.
= E(X)}) [E(X)/X] with the inductive

hypothesis, and adding AX = E(X) to that solution obtain one for the whole of
E. ⊓⊔

Lemma 13. For every X /∈ V−(A) (resp. X /∈ V+(A)) we have that if X ⊆ Y
then ρ[X 7→ X](A) ⊆ ρ[X 7→ Y](A) (resp. ρ[X 7→ X](A) ⊇ ρ[X 7→ Y](A)).

Lemma 5. Given a positive circular system of equations E, then for every ρ
the function

FE,ρ : 〈XX〉X∈domE 7→ 〈ρ[Y 7→ XY]Y ∈domE(E(X))〉X∈domE

has a fixpoint TE,ρ.

Proof. By positiveness and circularity for every X,Y ∈ domE it is not possible
that X ≻+ Y and X ≻− Y at the same time. If it were the case as Y ≻ X, we
would have X ≻− X whatever the sign of the dependency of Y on X. So, by
Lemma 13 we know that πdomE

X FE,ρ(〈XY 〉Y ∈domE is increasing on those XY ’s
with X ≻+ Y (as Y /∈ V−(E(X))) and decreasing on the others.

Let us fix any X0 ∈ domE. We define the order ⊑ on SAT
domE by

〈XX〉X∈domE ⊑ 〈YX〉X∈domE

⇐⇒ ∀X ∈ domE :

{

XX ⊆ YX if X ≻+ X0 (E),

XX ⊇ YX otherwise.

Clearly from completeness of ⊆ and ⊇ derives completeness of ⊑ Then we
can see that FE,ρ is monotone increasing with respect to ⊑. Indeed suppose
〈XX〉X∈domE ⊑ 〈YX〉X∈domE . Then take any X ∈ domE with X ≻ε1 X0, and
consider πdomE

X FE,ρ. If Y ≻ε2 X0 by circularity X0 ≻ Y , and by positiveness
it must be X0 ≻ε2 Y so in fact X ≻ε1ε2 Y . So in fact by inspecting all the
combinations of ε1 and ε2 and exploiting the above fact on monotonicity we
see that indeed πdomE

X FE,ρ maps ⊑ to ⊆ if X ≻+ X0 and to ⊇ otherwise. By
completeness of ⊑ we can then take for TE,ρ the least (for example) fixpoint of
FE,ρ with respect to ⊑. ⊓⊔

Fact 4. If V(A) ∩ domE = ∅ then ρ[E](A) = ρ(A).

Lemma 6. If E is positive and A = B (E) then ρ[E](A) = ρ[E](B).

Proof. Suppose E = E1 + · · ·+Ek is the canonic partition into positive subsys-
tems underlying the definition of ρ[E]. We proceed by induction on the deriva-
tion of A = B (E), the only difficult case being proving that ρ[E1] · · · [Ek](X) =
ρ[E1] · · · [Ek](E(X)). We can suppose X ∈ domEk. If indeed X ∈ domEi with
i < k then on one side ρ[E1] · · · [Ek](X) = ρ[E1] · · · [Ek−1](X) by definition,
while on the other we can see that domEk ∩ V(E(X)) = ∅ (otherwise Ei ≻ Ek

which contradicts canonicity), so ρ[E1] · · · [Ek](E(X)) = ρ[E1] · · · [Ek−1](E(X))
by Fact 4.

Termination of Threads via Infinitary Choice 15

So if X ∈ domEk, we let ρ′ = ρ[E1] · · · [Ek−1]. The fact that ρ[E](X) =
ρ′[Ek](X) = πdomEk

X TEk,ρ′ = ρ′[Ek](E(X)) is a direct consequence of TEk,ρ′

being a fixpoint of FEk,ρ′ as defined in Lemma 13. ⊓⊔

Lemma 7. If E is positive, E;Γ ⊢M : A and ρ, σ, E � Γ then ρ, σ, E � M : A.

Proof. By induction on the length of the derivation of E;Γ ⊢ M : A. Here are
the cases for the three rules differing from usual λ-calculus (taken as in Table 2).

{ }-intro: We have that for all i it is the case that Miσ ∈ ρ[E](A) by inductive
hypothesis. Then by S3 {Miσ} = {Mi}σ ∈ ρ[E](A).

⊤: From inductive hypothesis follows Mσ ∈ ρ[E](A) ⊆ SN = ρ[E](⊤).
type equality: The soundness of this rule is a direct consequence of Lemma 6.

⊓⊔

The next lemma is a consequence of how values are typed and translated.

Lemma 14. If R;L;Γ ⊢ V : A, e 7→ V ′, then R;L;Γ ⊢ V : A, ∅ 7→ V ′.

Theorem 2. If R;L;Γ ⊢ S,M : A, e 7→ M ′ and S,M → T,N , then there is

L′ ⊇ L and N ′ with R;L′;Γ ⊢ T,N : A, e 7→ N ′, such that M ′ +
→ N ′ in Λ∞.

Proof. We proceed by induction on the size of the derivation, reasoning by cases
on the second last rule (i.e. the rule just preceding the one for the interaction
with the store). Let σe be the substitution

[

{V ′}R;;Γ⊢V :R(r),∅7→V ′/xr

]

r∈e
, so that

R;L;Γ ⊢ M : A, e 7→ M ′′ for some M ′′ with M ′ = M ′′σe. Notice how σe does
not depend in any way on the store.

The passing to context of the reduction is easily handled by applying induc-
tive hypotheses. As an example, take S,M |P → T,N |P , with 〈M ′, P ′〉 translat-
ing M |P . Then we have R;L;Γ ⊢M : ⊤, e 7→M ′ and S,M → T,N , so inductive
hypothesis gives L′ and N ′ with R;L′;Γ ⊢ N 7→ N ′ and M ′σe → N ′σe, so that

〈M ′, P ′〉σe = 〈M
′σe, P

′σe〉 → 〈N
′σe, P

′σe〉 = 〈N
′, P ′〉σe,

and indeed R;L′;Γ ⊢ N |P : ⊤ 7→ 〈N ′, P ′〉σe.
We are therefore left with the cases of immediate redexes.

Case 1 (β-redex). let R;L;Γ ⊢ (λx.M)V : B, e 7→ P , with S, (λx.M)V →
S,M [V/x] and application as the last rule of the derivation. By Lemma 14 we
can restrict to the case where R;L;Γ, x : A ⊢ M : B, e 7→ M ′ and R;L;Γ ⊢ V :
A, ∅ 7→ V ′. Then Lemma 8 entails this case.

Case 2 (new). let R;L;Γ ⊢ new : refr, ∅ 7→ I; I, with S, new → S, l, l a fresh
location. By setting L′ = L [l 7→r], we immediately get R;L′;Γ ⊢ l : refr 7→ I,
with I; I → I.

Case 3 (dereferencing). by Lemma 14 we can reduce to the case where R;L;Γ ⊢
!l : R(r), {r} 7→ xr, with L(l) = r and S, !l→ S, S(l). By typing of the store have
R; ;Γ ⊢ S(l) : R(r), ∅ 7→ U ′, which can become R;L;Γ ⊢ S(l) : R(r), {r} 7→ U ′.

We conclude by observing that I;xrσe = I; {V ′}R;;Σ⊢V :R(r) 7→V ′

2
→ U ′.

16 Paolo Tranquilli

Case 4 (assignment). again by Lemma 14, we can suppose we have R;L;Γ ⊢ l :
refL(l), ∅ 7→ I and R;L;Γ ⊢ V : R(L(l)), ∅ 7→ V ′, giving R;L;Γ ⊢ l := V : 1 7→
I;V ′; I, and S, l := V → S [l 7→V] , 〈〉. Indeed I;V ′; I reduces in two steps to I,
where R;L;Γ ⊢ 〈〉 : 1, ∅ 7→ I. ⊓⊔

Lemma 9. If R;L;Γ ⊢ M : A, e 7→ M ′ (resp. R;L;Γ ⊢ S,M : A, e 7→ M ′),
then in Λ∞ we have R•;Γ •, (xr : Xr)r∈e ⊢M ′ : A• (resp. R•;Γ • ⊢M ′ : A•).

Proof. Once the statement for typing terms is obtained, the one for the inter-
actions with stores follows. Indeed if we have R;L;Γ ⊢ S,M : A, e 7→ M ′ then
we would have R•;Γ •, (xr : Xr)r∈e ⊢M ′′ : A•, e 7→M ′′ with M ′ = M ′′σe, with
σe =

[

{V ′}R;;Γ⊢V :R(r) 7→V ′/xr

]

r∈e
. But then for every r ∈ e we have

∀(V ′, R; ;Γ ⊢ V : R(r), ∅ 7→ V ′) : R•;Γ • ⊢ V ′ : R•(Xr)

R•;Γ • ⊢ {V ′}R;;Γ⊢V :R(r),∅7→V ′ : R•(Xr) R•(Xr) = Xr (R•)

R•;Γ • ⊢ {V ′}R;;Γ⊢V :R(r),∅7→V ′ : Xr

so that the desired typing for M ′ is obtained by a standard substitution argu-
ment.

So we reason by induction on the typing, splitting on the last rule used. We
refer to the same terminology of Table 1. Let Γe = (xr : Xr)r∈e.

Case 1 (axioms). These cases are trivial. In particular notice how in typing the
translation of locations any reference to their actual type is lost. Indeed we have
R;L;Γ ⊢ l : refL(l), ∅ 7→ I and indeed R•;Γ • ⊢ I : ⊤ → ⊤ = (refL(l))

•.

Case 2 (abstraction). By inductive hypothesis we have R•;Γ •, x : A•, Γe ⊢M ′ :
B•, so that repeated abstraction rules give

R•;Γ •, Γ∅ ⊢ λx.λ(xr)r∈e.M
′ : A• → (Xr)r∈e → B• = (A

e
→ B)•.

Case 3 (application). We have R•;Γ •, Γf ⊢ M ′ : A• → (Xr)r∈e → B• and
R•;Γ •, Γf ⊢ N ′ : A• with e ⊆ f , so repeated applications with suitable axioms
on the xr’s give R•;Γ •, Γf ⊢M ′N ′(xr)r∈e : B

•.

Case 4 (dereferencing). M ′ is typable, but we do not need its actual type. As
r ∈ e we immediately get R•;Γ •, Γe ⊢M ′;xr : Xr = (R(r))• (R•), i.e. we use a
type equality in the type system R•.

Case 5 (assignment). M ′ and N ′ are typable, but then M ′;N ′; I is trivially
typable with 1• = ⊤ → ⊤.

Case 6 (dummy effects). This case follows from a standard weakening property
of Λ∞ type assignment.

Case 7 (top). Λ∞’s ⊤ rule fits the bill.

Case 8 (parallel composition). If M ′ and N ′ are both typed with ⊤, we clearly
have R•;Γ •, Γe ⊢ 〈M

′, N ′〉 : (⊤ → ⊤ → ⊤) → ⊤, which can be again typed as
⊤ = ⊤•. ⊓⊔

	Termination of Threads with Shared Memory via Infinitary Choice
	Introduction
	The higher level: Lambda-ref
	The positiveness condition

	Mutually Recursive Type Equations
	The lower level: Lambda-infinity
	Candidates of reducibility

	Translation
	References
	Technical Proofs

