
HAL Id: inria-00574182
https://hal.inria.fr/inria-00574182

Submitted on 7 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fine-grained Metrics of Cohesion Lack for Service
Interfaces

Dionysis Athanasopoulos, Apostolos Zarras

To cite this version:
Dionysis Athanasopoulos, Apostolos Zarras. Fine-grained Metrics of Cohesion Lack for Service Inter-
faces. 9th IEEE International Conference on Web Services (ICWS), Jul 2011, Washington, United
States. �inria-00574182�

https://hal.inria.fr/inria-00574182
https://hal.archives-ouvertes.fr

Fine-grained Metrics of Cohesion Lack for Service Interfaces

Dionysis Athanasopoulos
Department of Computer Science

University of Ioannina
Ioannina, Greece

dathanas@cs.uoi.gr

Apostolos V. Zarras
Department of Computer Science

University of Ioannina
Ioannina, Greece
zarras@cs.uoi.gr

Abstract—A design issue that often appears in real-world
services is that their interfaces are not cohesive, i.e., they
consist of many and possibly unrelated operations. This issue
may complicate the comprehension of the services functional-
ities and the maintenance of the applications that use them.
Currently, the state of the art on cohesion metrics for service
interfaces is limited. In particular, there exist coarse-grained
metrics of cohesion lack, which consider that the operations of
a service interface are related if the types of certain of their
input/output data exactly match. The problem in this approach
is that operations which operate on data characterized by
similar, but not exactly matching, types are treated as being
totaly unrelated. Consequently, the aforementioned metrics
may overestimate the cohesion lack of service interfaces. In this
paper, we undertake a more elaborate approach. Specifically,
we propose two fine-grained metrics of cohesion lack, which
are defined with respect to the structural similarity of the
input/output data types of interface operations. The proposed
metrics are formally defined and analytically assessed with re-
spect to fundamental properties of software metrics. Moreover,
the usefulness of the metrics in identifying cohesion problems
is evaluated in real-world services.

I. INTRODUCTION

The service-oriented architecture (SOA) paradigm aims
at facilitating the work of distributed application developers
[14], [5]; software reuse is promoted via services that are
available to anyone who wishes to compose them towards
constructing a novel customized application. Nevertheless,
the rapid and low-cost aspects of the overall development
process should not be taken for granted. These aspects
depend on how well-designed are the services, used for
building service-oriented applications. In this paper, we
investigate the issue of cohesion. Cohesion was introduced
in the early 70s [13] and refers to the degree to which
the elements of a module belong together. The lack of
cohesion leads to poorly designed systems that are hard to
comprehend and maintain.

In general, cohesion can be regarded from different
perspectives [13], [17]. According to [13], [17], the best
possible types of cohesion are functional, sequential and
communicational. In a functionally cohesive module, all the
elements of the module contribute in a single well defined
task. In a sequentially cohesive module, the outputs of
one element are used as inputs for other elements. In a

communicationally cohesive module, the elements operate
on the same data.

Generally, in service interfaces, cohesion concerns the
degree to which the operations of a service interface belong
together. However, since functional cohesion is a purely
conceptual notion that can not be quantified, we specifically
focus on the notions of sequential and communicational
cohesion.

Taking a real-world case, Amazon is a major service
provider that offers a variety of Web services. Among
these services, the Amazon Simple Queue Service (SQS)
enables communication via message queues, allocated on
the Amazon infrastructure. Figure 1 shows one of the main
interfaces of the SQS service, called MessageQueue1.
This interface provides a quite large number of operations,
which enable deleting a queue, getting/setting certain queue
attributes/timeouts, adding/removing/listing access permis-
sions for a particular queue, sending messages to a queue,
receiving messages from a queue and changing the visibility
of messages.

Figure 1. The Amazon MessageQueue interface.

The MessageQueue interface is not cohesive, in
the sense that it includes various functionalities that do
not belong together (queue attributes management, access
rights management, message exchange operations). Conse-
quently, a developer who aims at building a queue client

1http://docs.amazonwebservices.com/AWSSimpleQueueService/2007-05-01/SQSDeveloperGuide/

(QueueClientApplication in Figure 1) that commu-
nicates with other queue clients through an existing queue is
supposed to study the specification of the MessageQueue
interface (which consists of 838 lines of WSDL and XML
schema definitions) and a 49 pages API reference guide.
Nevertheless, amongst the various operations offered by the
MessageQueue interface, only 4 are actually related to the
exchange of messages. A more cohesive decomposition of
the provided operations into separate interfaces that relate
to the management of queue attributes, the management of
access rights and the exchange of messages would simplify
the comprehension of the functionalities that the developer
actually needs. Regarding the queue client application, we
may further consider maintenance scenarios that involve new
releases of the MessageQueue interface. Such scenarios
may be quite frequent. Specifically, since 2006 there have
been various different releases of MessageQueue, which
were not always backwards compatible. In the 2008 release,
the access rights management operations (ListGrants(),
AddGrant(), RemoveGrant()) were removed from the
interface. Dealing with such situations, amounts to reasoning
about whether the changes from one release to the other
actually affect the queue client application. Again, a more
cohesive decomposition of the provided operations that
groups the message exchange operations into a separate
interface would simplify the aforementioned reasoning.

Despite the widely recognized importance of cohesion as
a general design property of software, the state of the art on
cohesion metrics in the context of the SOA paradigm is quite
limited. Specifically, for sequential and communicational
cohesion, there exist coarse-grained metrics of cohesion
lack, which consider that the operations of a service interface
are related if the types of certain of their input/output data
exactly match [10], [11], [12]. A limitation of these metrics
is that operations which operate on data characterized by
similar, but not exactly matching, types are treated as being
totaly unrelated. Such cases of operations are frequent in
real world services. For instance, in our example, several
operations of the MessageQueue interface use similar but
not exactly matching data types (e.g., see Figure 2 for the
input/output data of the GetQueueAttributes() and
the SetQueueAttributes() operations). Consequently,
the state of the art metrics for sequential and communi-
cational cohesion may overestimate the cohesion lack of
service interfaces.

Based on the previous discussion, in this paper we propose
two fine-grained metrics of cohesion lack, which are defined
with respect to the structural similarity of the input/output
data types of interface operations. The proposed metrics are
formally defined and analytically assessed with respect to
fundamental properties of software metrics. Moreover, the
usefulness of the metrics in identifying cohesion problems
is evaluated in real-world services.

The rest of the paper is structured as follows: Section 2

defines formally the proposed metrics and validates them
with respect to fundamental software metrics properties.
Section 3 details the methodology of the evaluation and
analyzes the experimental results. Section 4 focuses on
related work. Finally, Section 5, summarizes the contribution
of the paper and discusses the future work.

II. COHESION OF SERVICE INTERFACES

Our overall approach for the definition of the proposed
metrics is based on a generic conceptual model for ser-
vices, derived from the W3C standard services architec-
ture2. According to this model, a service is characterized
by a name and provides a set of interfaces (Table I(1,
2)). An interface is characterized by a name and a set of
operations (Table I(3, 4)). An operation corresponds to a
particular functionality; its execution requires at most one
input message and produces at most one output message
(Table I(5)). A message is modeled as an unordered rooted
tree (Table I(6-9)). The tree root represents the message.
The non-leaf vertices correspond to complex elements, i.e.,
elements characterized by a name and a complex XML
type, which consists of further constituent elements. The
leaves of the tree represent primitive elements, i.e., elements
characterized by a name and a XML build-in type.

Table I
SERVICE MODEL.

Service = (name : string, I) (1)
I = {si : Interface} (2)
Interface = (name : string, O) (3)
O = {op : Operation} (4)
Operation = (name : string, (5)

in : Message, out : Message)

Message = (V, E) (6)
V = {v : Element} (7)
Element = (name : string, type : anyType) (8)
E = {(vi, vj) ∈ V × V |i 6= j} (9)

A. Communicational & Sequential Cohesion Metrics

The fundamental notions of communicational and sequen-
tial cohesion can be adapted in the case of services as
follows.

Definition 1: Sequential cohesion: An interface si ∈ s.I
of a service s is sequentially cohesive to some extent,
if it includes pairs of operations, opi, opj , such that the
input message of opj (resp. opi) and the output message
of opi (resp. opj) comprise common (complex or primi-
tive) elements. More specifically, for complex elements the
term common refers to elements characterized by the same
complex XML type, while for primitive elements the term

2http://www.w3c.org/TR/ws-arch.

common refers to elements, characterized by the same name
and build-in type. In this case, the operations opi, opj are
sequentially related, in the sense that certain output data
produced by opi (resp. opj) may be used as input for opj

(resp. opi).
Definition 2: Communicational cohesion: An interface

si ∈ s.I of a service s is communicationally cohesive
to some extent, if it includes pairs of operations opi, opj ,
such that their input messages and/or their output messages
comprise common (complex or primitive) elements. In this
case, the operations are communicationally related, in the
sense that they may use similar input data and/or produce
similar output data.

The common elements of messages play an important role
in both of the previously defined types of cohesion. The
following definition reflects the similarity of messages more
formally.

Definition 3: Message similarity: Let Smi,mj
be the set

of the common elements of two messages mi, mj . Accord-
ing to our model, each ti ∈ Smi,mj

is a common bottom-up
subtree of mi and mj

3. In the trivial case, where |ti.V | = 1,
ti corresponds to a common primitive element, otherwise
ti corresponds to a common complex element. Then, the
similarity MS(mi, mj) of mi, mj is defined as the sum of
the orders of the common bottom-up subtrees of Smi,mj

,
divided by the order of the message that results from the
union of mi and mj (Table II(1)).

Table II
DEFINITIONS OF METRICS.

MS(mi, mj) =

∑
∀ti∈Smi,mj

|ti.V |

|mi.V ∪mj .V |
(1)

OpSseq(opi, opj) =
MS(opi.in, opj .out)

2
+ (2)

MS(opi.out, opj .in)

2

OpScom(opi, opj) =
MS(opi.in, opj .in)

2
+ (3)

MS(opi.out, opj .out)

2

Csi = {(opi, opj) ∈ si.O × si.O| (4)
(opi 6= opj) ∧ (opj , opi) 6∈ Csi}

LoCS(si) = 1−

∑
∀(opi,opj)∈Csi

OpSseq(opi, opj)

|si.O|∗(|si.O|−1)
2

(5)

LoCC(si) = 1−

∑
∀(opi,opj)∈Csi

OpScom(opi, opj)

|si.O|∗(|si.O|−1)
2

(6)

By definition, the values MS(mi, mj) range from 0
to 1; MS(mi, mj) = 1 if the messages exactly match,

3In general, a tree t is a bottom-up subtree of t′ if the root v of t is a
vertex of t′ and the rest of the vertices of t are the descendants of v in t′

[15]

while MS(mi, mj) = 0 if the messages are completely
unrelated. The similarity between two messages increases
with the number of the bottom-up subtrees that they have in
common and the orders of these subtrees. Technically, the
specification of every service includes references to XML
schemas that contain the definitions of the complex XML
data types used in the definitions of the interfaces provided
by the service. These complex XML data types constitute
the set of candidate bottom-up subtrees that may be common
in two messages. In this way, constructing the set Smi,mj

amounts to checking whether a complex XML data type is
used in mi and mj .

Nevertheless, when constructing Smi,mj
special attention

must be paid to certain common elements. In practice,
the operations of many service interfaces use input mes-
sages and/or produce output messages that have common
bottom-up subtrees, which correspond to generic meta-data
elements. These elements are not related to the particular
functionality of the operations and may result in misleading
values of cohesion lack for the service interfaces. Dealing
with this issue, when measuring the value of MS(mi, mj)
amounts to filtering out from Smi,mj

the common bottom-
up subtrees that correspond to generic meta-data elements.
Apparently, excluding the aforementioned subtrees from
MS(mi, mj) requires user intervention so as to identify the
generic meta-data elements. However, this task is quite sim-
ple; the generic meta-data elements can be easily identified,
since they are included in all input, or in all output messages.

Based on message similarity, we can define the similarity
of operations. In particular, OpSseq reflects the similarity
of operations from the perspective of sequential cohesion,
while OpScom reflects the similarity of operations from the
perspective of communicational cohesion.

Definition 4: Sequential similarity: The sequential simi-
larity between two operations opi, opj ∈ si.O of an interface
si is defined as (Table II(2)) the average of:

1) the similarity of the input message of opi and the
output message of opj and

2) the similarity of the output message of opi and the
input message of opj .

Definition 5: Communicational similarity: The communi-
cational similarity between two operations opi, opj ∈ si.O
of an interface si is defined as (Table II(3)) the average of:

1) the similarity of the input messages of opi and opj

and
2) the similarity of the output messages of opi and opj .
Based on the previous notions of similarity between oper-

ations, we define the proposed metrics of cohesion lack for
service interfaces. In particular, LoCS evaluates sequential
cohesion (i.e., whether interfaces consist of sequentially
similar operations), while LoCC evaluates communicational
cohesion (i.e., whether interfaces consist of communication-
ally similar operations).

Figure 2. Examples of MessageQueue operations.

Definition 6: Lack of cohesion metrics: Let Csi be the
set of all pairs of operations of an interface si ∈ s.I of
a service s, formed such that it contains either (opi, opj),
or (opj , opi) (Table II(4)). The lack of sequential cohesion,
LoCS(si) for si is defined as the complement of the average
sequential similarity of the pairs of operations that belong
to Csi (Table II(5)). Similarly, the lack of communicational
cohesion, LoCC(si) for si is defined as the complement
of the average communicational similarity of the pairs of
operations that belong to Csi (Table II(6)).

B. Analytic Validation

To provide a first analytical assessment of the proposed
metrics we follow the approach of Chidamber & Kemerer
[6]. Specifically, the goal is to examine the behavior of
LoCS and LoCC with respect to the properties of software
metrics that have been proposed by Weyunker [16] (i.e.
non-coarseness, non-uniqueness, design-details-importance,
monotonicity, non-equivalence and increased-complexity).
As discussed in detail in this subsection, the proposed
metrics exhibit a similar behavior with the Lack of Cohesion
of Methods (LCOM) metric proposed by Chidamber &
Kemerer [6] in their object-oriented metrics suite. Moreover,

the behavior of LoCS and LoCC with respect to the exam-
ined properties is the same. Therefore, hereafter we use the
term LoC∗ to refer to either LoCS , or LoCC .

Briefly, non-coarseness states that the values of LoC∗ are
not the same for all interfaces, whilst non-uniqueness states
that the values of LoC∗ are not different for all interfaces.
The design-details-importance property states that different
interfaces that offer the same functionality, may have dif-
ferent LoC∗ values. As discussed below, proving that these
properties are satisfied by LoC∗ can be done, by following
similar steps as in [6] for the case of LCOM . The remaining
three properties considered in [6], concern the behavior of
LoC∗ when merging two interfaces si, sj; the merging of
two interfaces si

⋃
sj results in a service interface that

provides the union of the operations of si and sj, i.e.,
(si

⋃
sj).O = si.O

⋃
sj.O. Following, we show that the

monotonicity property is not satisfied, i.e., LoC∗ may not
increase monotonically when merging si with sj. Moreover,
we show that the non-equivalence property is satisfied, i.e.,
if si, sj are characterized by the same LoC∗ value and
each one of them is merged with the same interface sk, the
resulting two interfaces may be characterized by different
LoC∗ values. Finally, we show that the increased-complexity
property is not satisfied, i.e., the value of LoC∗ for the
interface that results from merging si, sj may be less than
the sum of the LoC∗ values of the merged interfaces.

Property 1: (Non-coarseness) Given an interface si, an-
other interface sj can always be found such that LoC∗(si) 6=
LoC∗(sj).

Proof: To prove this proposition we rely on the ap-
proach followed by Chidamber and Kemerer [6]. Specifi-
cally, in [6] the authors assume that the numbers of methods
and attributes that characterize different classes are inde-
pendent identically distributed random variables. Similarly,
we can assume that the orders of the common bottom-
up subtrees of the messages that characterize operations
which belong to different service interfaces are independent
identically distributed random variables. Based on this as-
sumption, for any interface si there is a nonzero probability
that there exists an interface sj, such that LoC∗(si) 6=
LoC∗(sj).

Property 2: (Nonuniqueness) There can exist interfaces
si, si, such that LoC∗(si) = LoC∗(sj).

Proof: As in the proof of Property 1 we can rely on
the assumption that the orders of the common bottom-up
subtrees of the messages that characterize operations which
belong to different service interfaces are independent iden-
tically distributed random variables. Thus, for any interface
si, there is a nonzero probability that there exists an interface
sj, such that LoC∗(si) = LoC∗(sj).

Property 3: (Design-details-importance) Given two inter-
faces si, sj, the fact that si and sj provide the same
functionalities does not imply that LoC∗(si) = LoC∗(sj).

Proof: In general, the definition of an interface that

provides certain functionalities is a design choice that is
not restricted in any sense. For the same functionality it is
possible, for instance, to define alternative operations whose
input/output messages are structured differently.

Property 4: (Monotonicity) There can exist service inter-
faces si, sj, such that LoC∗ is not monotonically increasing
with respect to their merging, i.e. the following inequality
may not hold: LoC∗(si) ≤ LoC∗(si

⋃
sj).

Proof: Let si, sj be the two interfaces that are going
to be merged. If due to design flaws the operations of si are
not related (communicationally or sequentially) with each
other, while certain of them are related with the operations
of sj, then obviously after merging the two interfaces we
shall have that LoC∗(si) > LoC∗(si

⋃
sj).

Property 5: (Nonequivalence) There exist service inter-
faces si, sj, sk such that, LoC∗(si) = LoC∗(sj) does not
imply that LoC∗(si

⋃
sk) = LoC∗(sj

⋃
sk).

Proof: Let si, sj, sk be three interfaces, such that
LoC∗(si) = LoC∗(sj). However, sk may be such that its
operations are related (communicationally or sequentially)
with the operations of si, but unrelated with the operations
of sj. Then, obviously LoC∗(si

⋃
sk) 6= LoC∗(sj

⋃
sk).

Property 6: (Increased-complexity) There can exist ser-
vice interfaces si, sj, such that the following inequality does
not hold: LoC∗(si) + LoC∗(sj) < LoC∗(si

⋃
sj).

Proof: Let si, sj be the two interfaces that are going to
be merged. If due to design flaws the operations of si are not
related (communicationally or sequentially) with each other,
while certain of them are related with the operations of sj,
and the same holds for sj, then obviously after merging the
two interfaces we shall have that LoC∗(si) + LoC∗(sj) >
LoC∗(si

⋃
sj).

As in the case of the LCOM metric [6], the fact that
the monotonicity and the increased-complexity properties are
not satisfied is not a negative result. In general, merging and
splitting interfaces are candidate solutions for improving the
cohesion of interfaces and the non-satisfaction of the afore-
mentioned properties shows that the benefits of applying any
of these solutions are reflected by the values of the metric.

C. Example: Lack of cohesion of MessageQueue.

Returning to the case of the SQS service, Fig-
ure 2 gives examples of operations provided by the
MessageQueue interface. An example that highlights
the negative effect of generic meta-data elements involves
the ResponseStatus element. ResponseStatus is
a complex element that contains general purpose re-
sponse meta-data; the element is included in all of
the output messages that are used in SQS. Then, for
the output messages of SetQueueAttributes and
DeleteQueue, for instance, there exists a common
bottom-up ResponseStatus subtree. In other words,
the output messages of the two operations appear to
be similar, despite the fact that their functionalities are

completely unrelated. According to the SQS specification,
the SetQueueAttributes operation manipulates cer-
tain queue attributes, while the DeleteQueue operation
deletes a particular queue. Applying the filtering discussed
earlier solves the problem. In particular, if we filter out
the ResponseStatus elements, the output messages
of SetQueueAttributes and DeleteQueue are no
longer similar to each other.

In our example, we can further observe a common
bottom-up subtree (solid-line) in the input message of the
SetQueueAttributes operation and the output message
of the GetQueueAttributes operation. This tree con-
sists of 3 vertices, while the union of the two messages
consists of 7 vertices. Hence, the similarity of the two
messages is 3

7 . On the other hand, the similarity between
the input message of GetQueueAttributes and the
output message of SetQueueAttributes is 0 because
these messages do not contain common bottom-up subtrees.
Therefore, the value of the sequential similarity OpSseq for
the operations is

3
7
2 .

Finally, we can observe a trivial common bottom-
up subtree (dashed-line) in the input message of the
SetQueueAttributes operation and the input message
of the GetQueueAttributes operation. The subtree
consists of a single vertex named Attribute. The union
of these two messages comprises 7 vertices. Therefore,
the similarity of the two messages is 1

7 . Since the output
messages of these two operations are not similar, the overall
communicational similarity OpScom for the operations is

1
7
2 .

Overall, for the MessageQueue interface there are 78
pairs of operations, that contribute to the values of the
proposed lack of cohesion metrics. Specifically, we have:
LoCS(MessageQueue) = 0.98 and
LoCC(MessageQueue) = 0.98. As expected, in both
cases, the values of the metrics are very close to 1, reflecting
the cohesion lack of the MessageQueue interface.

III. EVALUATION

The purpose of the evaluation is to assess the usefulness
of the proposed metrics in identifying potential cohesion
problems for real-world services. To automatically calculate
the value of the metrics, we implemented a prototype that
consists of two core components as depicted in Figure 3.
The ServiceParser component of the prototype takes as input
the WSDL-based specifications of services, and populates
a data structure that corresponds to the conceptual model
of Table I. The CohesionLackCalculator component of the
prototype can be customized so as to calculate the value of
any of the metrics given in Table II(5, 6).

In the rest of this section we describe the methodology
of the evaluation, the case studies that were used, and the
results that we obtained.

Figure 3. The prototype implementation.

A. Methodology of the Evaluation

To assess the capability of the proposed metrics to de-
termine cohesion problems, we experimented with services
provided by Amazon4. The issue is whether the values of the
metrics are indicative of the existence of potential cohesion
problems. To address the aforementioned issue, the strategy
of our evaluation process comprises two steps. Firstly, for
every interface the values of the communicational and the
sequential cohesion metrics are calculated. Secondly, if the
value of any of the two metrics is close to 1, we turn
to a manual inspection of the interface. The purpose of
the manual inspection is to check the relatedness of the
operations within the interface based on its documentation.

B. Case Studies

Amazon provides 21 services that are available through
the Web. Amongst these services, 16 were used for the
purpose of our evaluation. The remaining 5 services were ex-
cluded due to a technical constraint of our current prototype.
Our prototype accepts as input WSDL-based specifications
of service interfaces, while for the 5 services that were
excluded from the evaluation, Amazon does not provide
specifications in the aforementioned format. The 16 Amazon
services provide an overall number of 19 interfaces; 14 of
the examined services provide a single interface, while the
remaining 2 services (the Fulfilment Web Service (FWS)
and the SQS service that served as an example in previous
sections) provide 3 and 2 interfaces, respectively.

Hereafter, for reasons of simplicity we use identifiers A1-
A19 to refer to the interfaces of the Amazon services. The
mapping of identifiers to service interfaces and the sizes of
the interfaces (i.e., the number of provided operations) are
given in detail in Table III. In general, we can observe that
Amazon provide interfaces that consist of large numbers of
operations; more than 50% of the interfaces provide more

4Amazon services - http://aws.amazon.com/

than 10 operations, while the largest interface is A18 that
comprises 87 operations.

Table III
AMAZON SERVICE INTERFACES.

Service Interface

Name Size ID

CloudWatchPortType 2 A1
ElasticMapReducePortType 4 A2
AmazonFBAOutboundPortType 7 A3
AmazonSNSPortType 13 A4
MechanicalTurkRequesterPortType 27 A5
ElasticLoadBalancingPortType 13 A6
AmazonFPSPortType 27 A7
ImportExportPortType 5 A8
QueueService 2 A9
AmazonFWSInventoryPortType 4 A10
AmazonLSPortType 6 A11
AmazonSDBPortType 9 A12
MessageQueue 13 A13
AutoScalingPortType 13 A14
AmazonFWSInboundPortType 18 A15
AmazonVPCPortType 21 A16
AmazonRDSv2PortType 23 A17
AmazonEC2PortType 87 A18
AmazonS3 16 A19

C. Results

The results that we obtained are provided in detail in
Table IV. Starting from the largest interface (A18) of our
case studies, we observe that the values of LoCS and LoCC

are 0.99 and 0.98 respectively, indicating the existence of a
cohesion problem. Obviously, the problem was expectable
because of the very large number of operations (A18 con-
tains 87 operations). In this case, the interface contains lots
of unrelated operations leading to metric values very close
to 1.

Turning into the manual inspection of A18, its overall
purpose is to give access to a virtual computing
environment. The operations of A18 can be divided
into 22 groups. The operations of each group are more
similar to each other than to the operations of the other
groups. Indicatively, we enumerate the operations of two
groups. The first group consists of operations for the
manipulation of IP addresses: AllocateAddress(),
AssociateAddress(), DescribeAddresses(),
DisassociateAddress(), and
ReleaseAddress(). The second group concerns
the manipulation of account keys, and comprises the
operations: CreateKeyPair(), DeleteKeyPair(),
and DescribeKeyPairs().

Continuing with the medium sized interfaces (A5, A7,
A15-A17, and A19), whose number of operations is between
15 and 30, we observe that the values of the metrics range
from 0.84 to 0.95. Even if the size of the interfaces is almost
the 25% of the size of A18, the lack of cohesion values

Table IV
RESULTS FOR THE CASE STUDIES.

Cohesion Type

ID LoCS LoCC

A1 0.86 1.00
A2 0.94 0.97
A3 0.94 0.94
A4 0.97 0.96
A5 0.84 0.91
A6 0.97 0.93
A7 0.97 0.91
A8 0.96 0.93
A9 1.00 0.90
A10 0.99 0.83
A11 0.97 0.95
A12 0.97 0.94
A13 0.98 0.98
A14 0.98 0.96
A15 0.96 0.93
A16 0.98 0.95
A17 0.96 0.91
A18 0.99 0.98
A19 0.97 0.88

are still very high. Again, the manual inspection showed
cohesion problems that justify the values of the metrics. For
instance, the A16 interface provides a secure and seamless
bridge between a company’s existing information technol-
ogy (IT) infrastructure and the cloud of Amazon. In this
case, we identified 6 groups of closely related operations.
Indicatively, we enumerate the operations of two groups.
The first group consists of operations for the manipulation
of a connection between a company’s infrastructure and
the Amazon cloud: CreateVpc(), DeleteVpc(), and
DescribeVpcs(). The second group concerns the manip-
ulation of subnets within the Amazon cloud, and comprises
the operations: CreateSubnet(), DeleteSubnet(),
and DescribeSubnets().

Turning to the small sized interfaces (A1-A4, A6, A8-
A14), we were intuitively expecting lower values of the
metrics than the cases of the medium sized interfaces.
However, we observe that this assumption does not hold
because the values of the metrics range in nearly the same
level as before (from 0.83 to 0.98). The inspection of the
interfaces showed that although the size of the interfaces is
small, their operations are not similar to each other.

As an example, we discuss the A13 interface, which also
served as an example in previous sections. We observe
that the value of both metrics is equal to 0.98 indicating
a cohesion problem. Based on the documentation, we
identified 4 groups of tightly related operations. The first
group comprises operations for adding/removing/listing
access permissions for a particular queue: AddGrant(),
ListGrants(), and RemoveGrant(). The second
group concerns getting/setting certain queue timeouts, and
consists of the operations: GetVisibilityTimeout(),

and SetVisibilityTimeout()). The third
group consists of operations for sending mes-
sages to a queue, receiving/deleting messages
from a queue and changing the visibility of
messages: SendMessage(), PeekMessage(),
ReceiveMessage(), DeleteMessage(), and
ChangeMessageVisibility(). The last group
enables the deletion of a queue and consists of only one
operation: DeleteQueue().

Overall, based on our results we can conclude in the
following point: the proposed metrics succeed in indicating
cohesion problems for real-world service interfaces. More-
over, in our services set, we observed that the definition
of cohesive interfaces was not a primary priority of the
designers. This does not necessarily mean that the design
of the services is flawed. However, cohesion should not
be neglected from the design of widely used services,
given that the effects of cohesion lack may affect numerous
applications all over the Web that depend on these services.

IV. RELATED WORK

The metrics proposed in this paper are inspired from
various cohesion metrics that have been proposed in the
context of OO software development. In particular, in [6]
the authors propose the well known LCOM metric (Lack
of Cohesion of Methods), which is defined in terms of the
number of pairs of class methods that use common class
attributes and the number of pairs of class methods that
do not use common class attributes. Moreover, in [8] the
authors propose metrics of cohesion lack defined in terms
of the number of methods that use each one of the attributes
of a given class. In [9], [3] the authors propose metrics that
further take into account class methods which use other class
methods. In [2] the authors propose a cohesion metric that
is based on the parameter types of the methods that belong
to a given class. Given the variety of OO metrics that have
been proposed in the literature, certain approaches proposed
unified frameworks for the quality analysis of software [1]
and frameworks for the comparison of existing metrics [4],
[7].

In the context of service-oriented development, the afore-
mentioned OO metrics can be used to assess the internal
implementation of services. However, they can not be used
to reflect the relevance of the operations of service interfaces.
Generally, in SOA the state of the art on cohesion metrics for
service interfaces is limited to the work of Perepletchikov et
al. [10], [11], [12]. In this line of research the authors con-
sider various notions of cohesion and propose corresponding
metrics. Specifically, certain metrics focus on measuring
the cohesion between a service interface and the internal
service implementation (SIIC). The values of these metrics
are calculated as a function of the number of operations
that use the same internal implementation elements. Certain
other metrics concentrate on the cohesion between the users

of a service and the service (SIUC). In this case, the values
of the proposed metrics are calculated as a function of the
number of service consumers that use all of the operations.

Regarding sequential and communication cohesion, which
are amongst the most desirable fundamental notions of co-
hesion [13], [17], the authors proposed two metrics, namely
SISC and SIDC. According to SIDC, a service interface is
cohesive if its operations are characterized by common types
of input parameters and common types of output parameters.
Similarly, regarding SISC, a service interface is cohesive
if its operations are sequentially dependent, in the sense
that the types of certain output parameters of one operation
match the types of certain input parameters of another oper-
ation. SISC and SIDC are quite coarse grained, compared to
the metrics that we proposed in this paper. In particular, in
the case of our metrics the relatedness between operations is
measured with respect to the similarity of their input/output
data types, while in SISC and SIDC the relatedness between
operations is measured with respect to exactly matching
input/output data types. As already discussed (Section 1),
the latter requirement (i.e., exactly matching input/output
data types) may lead to the overestimation of cohesion
lack. Another problem that may also negatively affect the
precision of SISC and SIDC is that the approach proposed
in [10], [11], [12] for the calculation of the metrics values
does not make any distinction between normal input/output
data and meta-data that are common in all operations.

V. CONCLUSION AND FUTURE WORK

This paper investigated the notion of cohesion in ser-
vice interfaces. We proposed two fine-grained metrics that
measure the lack of communicational and sequential cohe-
sion. The metrics were formally defined with respect to
the structural similarity of the input/output data types of
interface operations, and analytically validated with respect
to fundamental properties of software metrics. Moreover, we
evaluated the capability of the metrics to identify cohesion
problems in real-world services.

An interesting issue that we currently work on is to
provide automated support for improving the cohesion of
a service interface. A possible way to do it is to develop
a restructuring mechanism that makes use of the proposed
metrics in order to divide the interface into groups of closely
related operations. Each group corresponds to a separate
interface which is more cohesive than the original one.
To this end, we plan to investigate the use of hierarchical
clustering algorithms along with the metrics that have been
proposed in this paper.

REFERENCES

[1] J. Bansiya and C. G. Davis. A hierarchical model for object-
oriented design quality assessment. IEEE Transactions on
Software Engineering, 28:4–17, January 2002.

[2] J. Bansiya, L. H. Etzkorn, C. G. Davis, and W. Li. A class
cohesion metric for object-oriented designs. JOOP, 11(8):47–
52, 1999.

[3] J. M. Bieman and B.-K. Kang. Cohesion and Reuse in an
Object-Oriented System. ACM SIGSOFT Software Engineer-
ing Notes, 20:259–262, 1995.

[4] L. C. Briand, J. W. Daly, and J. Wüst. A unified frame-
work for cohesion measurement in object-oriented systems.
Empirical Software Engineering, 3(1):65–117, 1998.

[5] J. Cardoso and A. Sheth. Semantic Web Services, Processes
and Applications. Springer, 2006.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, 1994.

[7] S. Counsell, S. Swift, and J. Crampton. The interpretation and
utility of three cohesion metrics for object-oriented design.
ACM Transactions on Software Engineering and Methodol-
ogy, 15(2):123–149, 2006.

[8] B. Henderson-Sellers, L. L. Constantine, and I. M. Graham.
Coupling and cohesion (towards a valid metrics suite for
object-oriented analysis and design). Object Oriented Sys-
tems, 3:143–158, 1996.

[9] M. Hitz and B. Montazeri. Measuring Coupling and Cohesion
in Object-Oriented Systems. In Proceedings of the Interna-
tional Symposium on Applied Corporate Computing, 1995.

[10] M. Perepletchikov, C. Ryan, and K. Frampton. Cohesion
Metrics for Predicting Maintainability of Service-Oriented
Software (QSIC). In Proceedings of the 7th IEEE Interna-
tional Conference on Quality Software, pages 328–335, 2007.

[11] M. Perepletchikov, C. Ryan, K. Frampton, and H. W. Schmidt.
Formalising service-oriented design. JSW, 3(2):1–14, 2008.

[12] M. Perepletchikov, C. Ryan, and Z. Tari. The impact of
service cohesion on the analyzability of service-oriented soft-
ware. IEEE Transactions on Services Computing, 3(2):89–
103, 2010.

[13] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured
design. IBM Systems Journal, 13(2):115–139, 1974.

[14] E. Thomas. Service-Oriented Architecture: Concepts, Tech-
nology, and Design. Prentice Hall, 2005.

[15] G. Valiente. Simple and efficient subtree isomorphism. Tech-
nical Report LSI-00-72-R, Technical University of Catalonia,
Department of Software, 2000.

[16] E. J. Weyuker. Evaluating Software Complexity Measures.
IEEE Transactions on Software Engineering, 14(9):1357–
1365, 1988.

[17] E. Yourdon and L. Constantine. Structured Design. Prentice-
Hall, 1979.

