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Abstract

SEMANTIC COMPLETENESS OF INTUITIONISTIC

PREDICATE LOGIC

IN A FULLY CONSTRUCTIVE META-THEORY

A constructive proof of the semantic completeness of intuitionistic predicate logic is

explored using set-generated complete Heyting Algebra. We work in a constructive set

theory that avoids impredicative axioms; for this reason the result is not only intuitionistic

but fully constructive. We provide background that makes the thesis accessible to the

uninitiated.
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1 Introduction

Intuitionistic and Constructive Mathematics comes in many guises. Unfortunately, there is not

universal agreement on the what differentiates intuitionistic and constructive mathematics. We

will follow a particular precedent that is gaining popularity, but bear in mind that different

sources may follow alternative precedents and use terminology differently. We commence by

tracing out some of the history to give some insight. As a school of mathematical thought intu-

itionism arose around the time of the foundational crisis of mathematics in the early 20th cen-

tury. This early form of intuitionism is now referred to as Brouwer’s intuitionism. Brouwer’s

intuitionism outright rejects classical principles of mathematics and not surprisingly was met

with harsh criticism [3,8]. Later forms of intuitionism were much less contentious. Rather than

rejecting classical principles they simply abstained from them. They could be considered eco-

nomical versions of classical mathematics [8]. The type of intuitionism that this work refers

to can be classified as mathematics done with out assuming the Law of Excluded Middle or

LEM for short. Recall, LEM states for any statement φ , either φ holds or ¬φ holds. LEM

seems obvious to the classically trained mathematician, and abstention from it initially "causes

some anxiety" [8]. To ease this anxiety it is useful to think of Intuitionistic Mathematics as

an attempt at determining what can be achieved with less assumptions and only direct prin-

ciples. What results is a mathematics that has inherent computational value. Unfortunately,

when one gives up LEM, one must also give up equivalent principles (e.g. the double negation

elimination: ¬¬φ implies φ ) When we give up double negation elimination we lose proof by

contradiction and one direction of the contrapositive law: ¬ψ −→ ¬φ implies φ −→ ψ . We

also lose stronger principles (e.g. the full Axiom of Choice or AC for short). These princi-

ples are as familiar to the classical mathematician as LEM, so parting with them is equally

troubling. I will present Diaconescu’s proof (from [8]) that AC implies LEM in Section 2.

Although intuitionistic mathematics dispenses with a number of useful classical tools the re-

sulting mathematics is hardly deficient. Surprisingly, a large part of classical mathematics has

been retrieved intuitionistically. This was first seen by Errett Bishop in Constructive Analysis

[4] (also see [1], [2] and [3]). Notice we encounter our first clash in terminology but in fact

Bishop style mathematics also qualifies as constructive, a term we have yet to discuss. Bishop
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successfully reformulated the majority of modern analysis with intuitionistic foundations. Cer-

tain concepts look drastically different when viewed with these foundations, but the majority of

the landscape is familiar. Bishop’s monumental leap motivated many to pursue more universal

intuitionistic foundations for Bishop Style mathematics. Resultingly, intuintionistic alterna-

tives to Zermelo Fraenkel Set Theory (ZF for short) were proposed. Initially, Intuitionistic Set

Theroy (IZF for short), which has similar axioms to ZF with minor changes, was developed.

We will see a treatment of formal set theory in Section 5.

Constructivism, at its heart, is about building mathematics from the bottom up rather than

relying on platonic existence. Constructivism gained modest popularity during the times of the

foundational crisis as well. This period bore another school of mathematical thought that has

yet to take its final form: Predicativism (see [3,15,16,17]). Predicativism avoids troublesome

self-referential mathematical activity (i.e. definitions and constructions). Unfortunately, there

is no universal agreement on what is or is not troublesome. Sorting through the different ar-

guments is messy and quite frankly philosophical (see [17] for more). For now let us discuss

impredicativity informally. An impredicative statement invokes (mentions or quantifies over)

the set that is being defined or a set that contains the thing being defined [3,15]. A hallmark

example of an impredicative definition is the definition of the least upper bound [17]. The least

upper bound of a set A is a particular element x of the set of upper bounds of A. The set of upper

bounds necessarily includes x. Thus, to define the least upper bound of A we must quantify over

a set which contains it. The least upper bound as defined is hypothetical; meaning that we are

only describing a property that it has to possess but no existence claim is being made. If one

constructs a concrete candidate all we must do is check that it satisfies the necessary property.

For this reason impredicative definitions are often viewed as innocuous, from a constructive

perspective, as long as the construction of the object is predicative. There is precedence for

characterizing constructive mathematics as intuitionistic mathematics that avoids impredicative

constructions. We will follow [5,11] — opting to work within foundations that many agree are

constructive rather than trying to nail down what constructive mathematics is. A surprisingly

large amount of mathematics can be recovered using constructive systems [4,5,6,11,12,14,15],

like Martin Löf’s Type Theory (ITT), Homotopy Type Theory (HoTT) or Constructive Zer-

2



melo Fraenkel Set Theory (CZF), etc. CZF has similar axioms to IZF but avoids the Power Set

Axiom, which is a hallmark example of an impredicative construction (the Power Set Axiom

states: ∀a∃y∀x[x ∈ y←→ x ⊆ a]). The everyday mathematician does not concern themselves

with formalities of set theory, but they are familiar with the language and style of formal set

theory. For this reason CZF seems a natural choice for this thesis.

For any mathematical theory there is an underlying logic. Associated with classical math-

ematics is classical logic. A formal language or theory is a precise language that formalizes

such a logic. For classical logic there is: 1) Propositional logic which consists of propositional

symbols and rules for how other propositions are built out of the familiar logical connectives,

and 2) Predicate logic which extends propositional logic by adding predicates and quantifiers

(in predicate logic, sentences are called formulae) and additional rules for building formulae.

Historically, a logic was called a ‘calculus’. For example, Classical Propositional Calculus (or

CPC for short) and Classical Predicate Calculus (or CQC) (You may ask why do we use Q for

predicate in the acronym? Good question. Because P was already taken). We tend not to use

Calculi in place of Logic when speaking, but the acronyms have stuck around. One proceeds to

formalize the notion of provability in a formal language. Proof systems are typically developed

via Hilbert Style Systems or Natural Deduction. We will discuss Natural Deduction in Sec-

tion 4. At this stage a formal language is purely syntactic, meaning it consists only of symbols

and rules for manipulating symbols. No meaning or interpretation of the symbols is required.

To supply meaning one develops a semantics of a formal language. In (classical) propositional

logic, truth tables offer an elementary example of semantics. More generally, one assigns to

each propositional variable an element of a Boolean Algebra (with only two elements) and de-

fines how the assignment is extended to all propositions built out of the connectives. Recall, a

tautology is a proposition which is true under every possible assignment (true in every column

of the truth table). In (classical) predicate logic semantics can be defined similarly (i.e. Tarksi

Semantics). In predicate logic we call the analog of a tautology a valid formula. Notice, in a

formal language with a proof system and semantics one can now view propositions or formu-

lae themselves as mathematical objects. Then one commences an investigation of the formal

language itself. Such an investigation is often called meta-theory. Kurt Gödel, a logician and
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mathematician, was a prominent meta-theorist. Gödel has many famous meta-theoretic results

which is the basis of this work. The Semantic Completeness Theorem (for classical proposi-

tional logic) is a very simple statement: If a proposition φ is a tautology then it is provable.

Notice this meta-theoretic statement connects the semantics of CPC with the proof system of

CPC. There is a similar meta-theoretic statement for CQC: If a formula φ is valid then it is

provable. Gödel provided proofs of the semantic completeness of CPC and CQC but many

others have revisited and improved upon these results in a variety of ways. One thing to note is

that proofs in a meta-theory may be informal, but typically one chooses a formal theory that is

stronger than the theory of interest. For example to prove statements about CPC or CQC one

may work in ZF.

Once intuitionistic/constructive mathematics was established an underlying logic was soon

formalized, by Heyting [3] and others. The typical systems are called Intuitionistic Proposi-

tional Logic and Intuitionistic Predicate Logic, or IPC and IQC for short. The nomenclature is

a bit unfortunate, but stands for historical reasons. Notice at the level we are working there is no

formal notion of set. Therefore, notions of impredicativity do not arise. For this reason there is

no distinction between intuitionistic and constructive logic. Intuitionistic logic is weaker than

classical logic. More precisely, the theorems of IPC form a subset of the theorems of CPC and

similarly for IQC and CQC. If LEM (or any equivalent statement) is added to either IPC or

IQC the resulting logic is CPC or CQC, respectively. Symbolically, IQC ⊂ CQC and IQC

+ LEM = CQC. One develops provability and semantics in much the same way as classical

logic but with care not to introduce non-intuitionistic principles. In Section 4 we develop a

proof system of IQC using Natural Deduction. One thing to note is that the semantics of IPC

and IQC can be done in a variety of ways (e.g. Kripke Semantics, topological semantics, alge-

braic semantics, etc). The semantics chosen for this work is called Heyting Algebra semantics:

it assigns propositions (in IPC) or formulae (in IQC) to elements of a Heyting Algebra, which

is analogous to the semantics we discussed for CPC and CQC. We will explicitly define the

semantics of IQC in Section 7. Heyting Algebras are a generalization of Boolean Algebras

so this is a very natural choice for our semantics. We will see further development of Heyting

Algebra in Section 6. Not surprisingly, meta-theoretic questions involving IPC and IQC were
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eagerly pursued. There are many semantic completeness results for IQC which use classical

meta-theories (i.e. they employ LEM or an equivalent statement). For example, one commonly

proves the following statement: If a proposition φ is not provable then it is not valid, which

is classically equivalent to semantic completeness. Specifically, this is the contrapostive of se-

mantic completeness, which as you may recall is not, in general, admissible in intuitionistic

mathematics. This is a peculiar situation. It seems odd to prove a result about a logic using a

principle which the logic itself does not accept. One naturally looks for a completeness proof

which is ituitionistic or even constructive.

We now survey the existing work which directly informs this thesis and clearly state what

the thesis will achieve. As previously mentioned there are multiple semantics that can be used

for IQC. Kripke Semantics is used for the classical completeness proof mentioned above. A

modified version of Kripke Semantics is used in an intuitionistic completeness proof of IQC

in [9]. An intuitionistic argument using categorical logic and sheaf semantics is given in [10].

Finally, Troelstra gives a intuitionistic completeness proof of IQC (as well as IPC) in [1] using

Heyting Algebra semantics. The proof by Troelstra is done informally, but can be naturally

formalized in IZF. Recall IZF is the impredicative intuitionistic set theory. The intent of the

thesis is to develop all the existing preliminary background information, which includes: intu-

itionistic and constructive mathematics, formal languages (specifically IQC, IZF), set theory

(specifically CZF), theory of partially ordered sets (including Heyting Algebra) and Heyting

Algebra semantics. Then we will repackage the proof by Troelstra formally in IZF, which will

serve as a guide. We then analyze the intuitionistic proof in the interest of finding the deficien-

cies that lead to its constructive failure. We will uncover a shocking fact about the status of

complete lattices in CZF that will serve as an obstacle. This leads to the theory of partially

ordered classes and the notion of set-generated complete Heyting Algebra. Finally, we define

a semantics in this new setting and give a proof of the semantic completeness of IQC within

CZF; which is essentially a constructive extension of Troesltra’s proof. It is worth mention-

ing that the result will not come as a surprise to the audience which is trained in constructive

mathematics. It is well known that Heyting Algebras provide a model for intuitionistic logic.

In fact, there is a well developed correspondence between Intuitionistic Type Theory, Intuition-
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istic Predicate Logic and Heyting Algebra (from a Categorical perspective) which may offer a

more natural setting for this investigation. The thesis takes the naive approach that was previ-

ously laid out because the target audience is likely uninitiated to the subtleties of intuitionistic

and constructive mathematics (as well as Type Theory and Category Theory). The goal of the

thesis is to bore out the details of the relationship between Heyting Algebra and intuitionistic

logic in the most accessible way possible. To the author’s knowledge, no cited work has proved

the semantic completeness of IQC in CZF using Heyting Algebra semantics.

2 Intuitionistic and Constructive Mathematics

Intuitionism, as previously mentioned, is a philosophical school of mathematical thought. It

holds that mathematics should be based on the concept of knowledge and experienced truth. In

its least antagonistic form, intuitionistic and constructive mathematics abstains from many of

the indirect methods of classical mathematics: the law of excluded middle (LEM), proof by

contradiction, the axiom of choice, etc. In its most antagonistic form it outright rejects these

classical principles and many others. For this reason intuitionism has been criticised for restrict-

ing the mathematician unnecessarily and creating an unfamiliar mathematical landscape. As

constructivism subsumes intuitionism these criticisms are transitive. It is a well known fact that

many classical results are only provable by indirect methods (e.g. Trichotomy of real numbers,

Intermediate value theorem, Well-ordering theorem, etc). Astoundingly, many classical results

are recovered constructively with some effort and great care. This has lead to a program, taken

up by many, of constructivizing mathematics. Essentially, this program attempts to reformulate

results (or entire theories) so that they adhere only to intuitionistic/constructive principles. At

times the resulting reformulation looks drastically different than its classical counterpart. Some

of these differences have lead to insight that would have never been considered without an inter-

est in intuitionism (e.g. point-free topology, topos theory, etc.) while others have been studied

previously but arise naturally when one takes intuitionism and constructivism seriously. Propo-

nents view intuitionistic/constructive mathematics, at the very least, as a useful generalization

of classical mathematics. It allows one to investigate what is achievable from a restricted set
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of assumptions and leads to mathematics with undisputed algorithmic content. This insight is

dubbed Curry-Howard correspondence. Its mantra is ‘proofs as programs’ and says any proof

done with only constructive principles can be converted into a computer program. One may ex-

plore this correspondence extensively in an intuitionistic type theory (see [22] for more details).

The hallmark example is the fact that a constructive existence proof necessarily produces an

instance of the object which is claimed to exist. Intuitionistic mathematics has been described

by Robert Harper as mathematics as if humans matter. This is because intuitionistic mathe-

matics is proof driven. The BHK (Brouwer-Heyting-Kolmogorov) Interpretation makes the

philosophical notions of inuitionistism more precise by reinterpreting the logical connectives

and quantifiers in this spirit.

Definition 2.1. BHK interpretation

1. A proof of ⊥ does not exist.

2. A proof of φ ∧ψ is a proof of φ and a proof of ψ .

3. A proof of φ ∨ψ is a proof of φ or a proof of ψ and a specification of which is proven.

4. A proof of φ −→ ψ is a method which converts a proof of φ into a proof of ψ .

5. A proof of ¬φ is a proof of φ −→⊥.

6. A proof of ∃x ∈ A, φ(x) is an object x ∈ A together with a proof of φ(x).

7. A proof of ∀x ∈ A, φ(x) is a method which converts an object x ∈ A into a proof of φ(x).

This interpretation describes what constitutes a proof and puts the issue of platonic truth to

bed. Something cannot be considered true unless it has been proven from an intuitionistic point

of view.

Let us dispense with philosophy and actually look at some examples where intuitionistic

mathematics differs from classical mathematics. See [8] for more details. Taking on the BHK

interpretation it is not hard to see why LEM fails. We may not assert the truth of LEM with-

out first proving it. To prove LEM—under BHK— requires us to have a method for proving
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φ or ¬φ for an arbitrary formula φ . Such a method would allow us a certain amount of om-

niscience that leads to solutions to many of the toughest mathematical problems and hardly

anyone believes such a method exists. These notions are made precise by introducing Omni-

science Principles (see [4,8] for more details). This brings us to equivalents of LEM that must

be avoided when doing Constructive Mathematics. First, I want to discuss proof by contra-

diction. This technique is very close to the heart of the classical mathematician even if it is

viewed as a last resort. It must not be confused with proof of negation which is acceptable intu-

itionistically. The two are often confused classically because the double-negation elimination

makes the distinction invisible. Let us see how they differ. A proof of negation goes like this:

assume a proposition φ and begin reasoning with available principles. Eventually arriving at a

contradiction you must conclude φ can not be. So you conclude ¬φ . That is,

φ

...

⊥

¬φ

where ⊥ represents contradiction. This sounds a lot like proof by contradiction. Why? That

is because a proof by contradiction is a proof of negation combined with something called the

double negation law, which states: ¬(¬φ)←→ φ . The double negation law is a well-known

equivalent of LEM.

Proposition 2.2. LEM and the double negation law are equivalent.

Proof. On the basis of LEM we know for any φ holds we have φ or ¬φ holds. Thus, ¬(¬φ)

holds if and only if φ holds. Conversely, suppose the double negation law holds. For any

formula φ , suppose ¬(φ ∨¬φ) holds. Further, suppose φ holds. We then conclude φ ∨¬φ

holds. This is a contradiction, so by proof of negation ¬φ holds. But from this we may also

conclude φ ∨¬φ holds again. Which also leads to a contradiction. Thus, by proof of negation

¬¬(φ ∨¬φ) holds. By the double negation law φ ∨¬φ holds.
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It is often mistakenly assumed that Constructive mathematics refutes LEM. This is not the

case. In fact, under BHK we can prove ¬¬(φ ∨¬φ) by extracting the portion of the proof

above.

Proposition 2.3. ¬¬(φ ∨¬φ)

Proof. For any formula φ , suppose ¬(φ ∨¬φ) holds. Further, suppose φ holds. We then

conclude φ ∨¬φ holds. This is a contradiction, so by proof of negation ¬φ holds. But from

this we may also conclude φ ∨¬φ holds again. Which also leads to a contradiction. Thus, by

proof of negation ¬¬(φ ∨¬φ).

Let us return to proof by contradiction. A proof by contradiction proceeds as follows: we

wish to prove φ so we assume — for the sake of contradiction — ¬φ and proceed with available

reasoning. We arrive at contradiction and conclude ¬φ can not be. So using proof of negation

we conclude ¬¬φ and finally by the double negation law we conclude φ . That is,

¬φ

...

⊥

¬¬φ

φ .

It is only the last step, which appeals to double negation, that is not available to us intuitionis-

tically/constructively. Let us now discuss contrapositive another classical proof technique that

must be dispensed with, although not completely. Using BHK we can prove (φ −→ ψ) −→

(¬ψ −→¬φ).

Proposition 2.4. (φ −→ ψ)−→ (¬ψ −→¬φ)

Proof. Suppose φ −→ ψ holds. Further suppose ¬ψ holds. Finally, in the interest of proving

its negation suppose φ holds. Together with the first assumption we conclude ψ holds which
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is in clear contradiction with the second assumption so by proof of negation we conclude ¬φ

holds.

The issue, from our perspective, is with the converse direction of the implication. What is

provable intuitionistically (by similar reasoning as above) is (¬ψ −→¬φ)−→ (φ −→¬¬ψ)).

But without the double negation law we do not get the general form of the contrapositive. The

last principle I want to discuss is the Axiom of Choice (or AC). Many mistakenly believe that

this controversial axiom is at the heart of non-constructivity. This is in fact not the case. The

real issue with AC is that in its general form it implies LEM. We will now state the Axiom of

Choice and prove the above theorem.

Definition 2.5. For any set X , which is a family of sets, if no element of X is empty then there

exists a choice function, that is, a function f : X →
⋃

X such that for every A ∈ X , f (A) ∈ A.

Symbolically,

∀X [ /0 6∈ X −→ ∃ f : X →
⋃

X ∀A ∈ X( f (A) ∈ A)].

Theorem 2.6. The axiom of choice implies the law of excluded middle.

Proof. (See [8].) Suppose AC holds. Consider an arbitrary proposition P. Consider the sets

A = {x ∈ {0,1} | P∨ (x = 0)}

and

B = {x ∈ {0,1} | P∨ (x = 1)}.

Clearly, the collection {A,B} does not contain the empty set since 0∈A and 1∈B. By AC there

exists a function f : {A,B} → A∪B such that f (A) ∈ A and f (B) ∈ B. Now, A∪B = {0,1},

so by the definition of the function f (A) ∈ {0,1}. Thus, f (A) = 0 or f (A) = 1. Similarly,

f (B) ∈ {0,1} so f (B) = 0 or f (B) = 1. We may now consider cases:

1. If f (A) = 1 (it does not matter which case we consider for f (B) here) then 1 = f (A) ∈ A.

Thus, P∨ (1 = 0) which is equivalent to P.

2. If f (B) = 0 (it does not matter which case we consider for f (A) here) then 0 = f (B) ∈ B.

Thus, P∨ (0 = 1) which is equivalent to P.
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3. If f (A) = 0 and f (B) = 1. Now we preform a proof of negation (see discussion above).

If P holds, then A = {0,1} = B. By extensionality of functions 0 = f (A) = f (B) = 1, a

contradiction. Thus, ¬P holds.

In each case, we decide whether P or ¬P holds. Thus, LEM holds.

We often refer to this state of affairs by saying AC is stronger than LEM. Certain schools

of Constructive Mathematics accept weaker versions of choice (e.g. Countable Choice and

Dependent Choice) that do not imply LEM. Strangely, in different foundations for constructive

mathematics (i.e. Martin Löf Type Theory) the full version of AC is provable, but the subtleties

for this anomaly are beyond the scope of this thesis (differences between intensionality and

extensionality; see [22] for more details).

Many still find some of the ambiguity of BHK unsatisfactory. Resultingly, a formal theory

of intuitionistic logic was developed to lessen some of the ambiguity. Intuitionistic Proposi-

tional Calculus (IPC) is the formal intuitionstic theory based on the interpretations 1 - 5 from

Definition 2.1 while Inuitionstic Predicate Calculus (IQC) is the formal intuitionistic theory

resulting from adding interpretations 6 and 7 to IPC. We will formally define the language

IQC in Section 3, develop a proof system with in IQC in Section 4 and define a semantics for

IQC in Section 7.

Predicativism was introduced by Russell, Poincare and Weyl [15]. Initially this was a re-

sponse to the paradoxes of naive set theory, but has taken a life of its own. Informally, we can

say that predicative mathematics attempts to avoid circular reasoning. That is, no collection

can contains elements definable/constructable ONLY in terms of the collection [15]. Making

this principle precise is difficult but following [15] we can say that the comprehension axiom

∃x(y ∈ x←→ φ(y))

does not hold in general. Instead we can only infer the existence of x if the variables of φ(y) are

restricted to ranging over sets whose existence has been established. This insight rather imme-

diately allows us to see why the power set axiom is viewed, by many as, impredicative. More

explicitly, to construct the power set we must quantify over all sets and see how they stand
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in relation to a certain set. Unfortunately, there is no universal agreement on what constitutes

predicativism [15, 16]. So, we will follow the lead of Giovanni Curi in [11] and simply say con-

structive mathematics (mathematics that is both intuitionistic and predicative) is mathematics

done within CZF. We will formally define CZF in Section 5 and develop some consequences

of its axioms.

3 Language of IQC

The formal development of inuitionistic predicate logic (IQC) is similar to classical predicate

logic. One key difference between classical and intuitionistic logic is that no connective can

be defined in terms of another. We first need to define a formal language L , which consists

of an alphabet (a finite set of symbols) and a way to determine which strings formed from the

alphabet we want in our language. Such strings are typically called well-formed formulae but

we will simply call them formulae. For example we wish ∀x(φ ∧ψ) to be well-formed but not

x∃∧ yφ as it is nonsensical. See [3] for more details about the language of IQC.

The two types of expressions that occur are terms and formulae, which are strings of sym-

bols that make up the alphabet of the language. The alphabet is divided into logical and non-

logical symbols. Amongst the non-logical symbols are constants, functions, propositions and

predicates. Constants, variables and functions operate formally as they do informally and it is

not harmful to rely on your intuition. We call these objects terms. An n-place function takes

n≥ 0 terms as arguments and produces another term. Similarly, a proposition operates formally

as you would expect (it is simply a statement). A predicate is a generalization of a proposition:

predicates take terms as arguments and produce more complicated formula. An n-place predi-

cate takes n≥ 0 terms as arguments. For example, ‘Socrates is a man’ is a proposition, but ‘x is

a man’ is a 1-place predicate that take arguments. If we let P(x) be the predicate representing

‘x is a man’ and let c be a constant representing ‘Socrates’. Then P(c) represents ‘Socrates is a

man’.

Definition 3.1. The logical symbols of the language L consist of the logical connectives (∧, ∨

and −→), the quantifiers (∀ and ∃), punctuation symbols (parenthesis, brackets, commas, etc.),
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an infinite set of variables (x,y,z, . . .), and an equality symbol (=). The non-logical symbols

of the language L consist of function symbols and predicate symbols. For any n ≥ 0 there

is a collection of infinitely many n-place function symbols ( f n
0 , f n

1 , f n
2 , . . .) and infinitely many

n-place predicate symbols (Pn
0 ,P

n
1 ,P

n
2 , . . .). For n = 0, the function symbols represent constants

of the language and the predicate symbols represent the propositional variables of the language.

This defines the alphabet of L .

The set of terms is inductively defined as follows:

1. Any variable is a term.

2. For n ≥ 0, any n-place function f and terms t1, . . . , tn, the expression f (t1, . . . , tn) is a

term.

The set of formulae is inductively defined as follows:

1. For n≥ 0, any n-place predicate symbol P and terms t1, . . . , tn, the expression P(t1, . . . , tn)

is a formula.

2. For terms t1 and t2, the expression t1 = t2 is a formula.

3. For formulae φ and ψ the expressions φ ∧ψ , φ ∨ψ and φ −→ ψ are formula.

4. For formula φ and variable x the expressions ∀xφ and ∃xφ are formulae.

Formulae obtained from rules 1 and 2 are called atomic formulae. We define two special

propositional symbols⊥ and> and two notational conventions ¬φ will represent φ −→⊥ and

φ ←→ψ will represent (φ −→ψ)∧ (ψ −→ φ). It is a matter of convention to have an order of

operations for the logical constants, but we choose to employ parentheses in this work to avoid

confusion. The only variable binding operations we have in IQC are ∀ and ∃. We can define

free and bound variables inductively as follows:

1. A variable x is free in an atomic formula φ if and only if it occurs in φ . No bound

variables occur in atomic formula.

2. A variable x is free (bound respectively) in φ ∧ψ (φ ∨ψ or φ −→ ψ respectively) if and

only if x occurs in either φ or ψ .
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3. A variable x is free in ∀yφ (∃yφ respectively) if and only if it is free in φ and is not y. A

variable x is bound in ∀yφ (∃yφ respectively) if and only if it is bound in φ or is y.

The formal language just defined has some undesirable restrictions which are not neces-

sarily obvious outright. Tacitly assumed, in any model of a predicate logic, is a domain of

discourse. A domain of discourse is a set over which we quantify our variables (e.g. ∀n ∈ N).

The formal theory just described only has models with a single domain of discourse, but for

many important areas of study a single domain of discourse is insufficient (e.g. Real Analysis:

∀ε ∈ R ∃N ∈ N . . .). To overcome this deficiency we introduce the notion of sorts with in a

formal language.

Definition 3.2. A formal theory has a countable set of sorts I . Each variable x has an asso-

ciated sort i ∈I . For n ≥ 1, each function f takes arguments of sort i1, . . . , in ∈I and has a

value of sort j ∈ I . Note that a constant c (function with n = 0) has a sort i ∈ I . Thus, all

terms have a sort. Note that we indicate the sort of a term with a superscript: a term t of sort i

is denoted t i (e.g. ∀xi indicates an arbitrary variable x of sort i). Now for n ≥ 1 a predicate R

takes arguments of sort i1, . . . , in ∈I . Note that a proposition φ (predicates with n = 0) has no

arguments.

Remark. Note that when a theory has a finite set of sorts one can introduce "sort predicates"

and additional axioms which allow us to reduce the theory to a single-sorted logic (see [23] for

more). Consider a language with two sorts 1 and 2. Let P1 and P2 be predicates with a single

argument such that P1(x) holds if and only if x is of sort 1 and similarly for P2(x). Now adding

∀x(P1(x)∨P2(x))∧¬∃x(P1(x)∧P2(x))

as an axiom to our language reduces it to a single sorted language (see Section 4 for a discussion

on axioms and inference rules). If we wish to quantify locally over a sort we simply include

it appropriately in the formula (e.g. ∃x(P1(x)∧φ(x)) says there exists a element of sort 1 that

satisfies φ(x)). For this reason we will typically work with single sorted theory for simplicity.

At this point we have defined a language for IQC, but at present we are only capable of

telling which strings of symbols from the alphabet are formulae. We have no means to actually
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determine which formulae are provable, valid, etc. For example, although φ ∧¬φ is a formula

we do not wish it to be provable. To determine provability we need a proof system and to

determine validity we need semantics.

4 Provability with Natural Deduction

We now formalize a proof system for IQC using an intuitionistic variant of Natural Deduction

(one could equivalently use a Hilbert Style system which uses more axioms and fewer inference

rules). See [3,7,18,19] for more details on provability and Natural Deduction. The driving force

behind proof is the notion of entailment, that is, when one formula follows some collection

of formulae (possibly empty). We now discuss the entailment relation ` in a general sense

before characterizing entailment in IQC. If the assumptions φ1, . . . ,φn, for n≥ 0, entails φ we

write φ1, . . . ,φn ` φ . We often condense this notation by writing Γ for the set of assumptions

φ1, · · · ,φn. If Γ ` φ we say Γ proves φ . It is traditional to call Γ the context. Note if Γ = /0

we write ` φ and say φ is provable. If we wish to add an assumption to a context we often

write Γ,φ ` ψ instead of Γ∪{φ} ` ψ . Deductions have the following form: a premise Γ1 ` φ

followed by a labeled bar which separates the premise from the conclusion Γ2 ` ψ , where φ

and ψ are formulae built up from atomic formulae, logical connectives and quantifiers. For

example:

Γ1 ` φ
(Rule Name).

Γ2 ` ψ

Often the context of the premise and the conclusion are the same (e.g. Γ1 = Γ2), but this is

not necessarily so. It is our desire for entailment to satisfy the following

(Reflexivitity)
φ ` φ

Γ ` φ Γ,φ ` ψ
(Transitivity)

Γ ` ψ

Γ ` φ
(Weakening)

Γ,ψ ` φ

Γ,φ ,φ ` ψ
(Contraction)

Γ,φ ` ψ
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Γ ` φ
(Exchange).

πΓ ` φ

Remark. π is a permutation operator of the set Γ. That is, it takes the set Γ and exchanges the

order of its elements. One could of course right out the correct form of exchange by expressing

Γ as φ1, . . . ,φn.

It is unproductive to refute reflexivity and transitivity of entailment. Additionally, one might

find it difficult to attest to the remaining three properties of entailment but one could imagine

an interest in a logic that does not satisfy them. This is not something we plan to explore.

A formal proof in Natural Deduction is a finite tree of entailments where each branch fol-

lows from a preceding branch using a rule of inference. What follows are the collection of

inference rules that characterize the proof system of IQC. The rules come in two flavors: in-

troduction and elimination. These two flavors assist our navigation of formal proofs within

the formal system by allowing us to introduce or eliminate a certain connective, quantifier,

etc. In some sense the introduction and elimination harmonize to allow for no loss or gain of

information. We now characterize the inference rules of IQC using deductions.

Definition 4.1. (IQC Inference Rules)

For any set of formulae Γ the inference rules are:

(> Intro)
Γ ` >

(φ Intro)
Γ,φ ` φ

Γ,φ ` ψ
(−→ Intro)

Γ ` φ −→ ψ

Γ ` φ Γ ` φ −→ ψ
(−→ Elim)

Γ ` ψ

Γ ` φ Γ ` ψ
(∧ Intro)

Γ ` φ ∧ψ

Γ ` φ ∧ψ
(∧ ElimL)

Γ ` φ

Γ ` φ ∧ψ
(∧ ElimR)

Γ ` ψ
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Γ ` ⊥ (⊥ Elim)
Γ ` φ

Γ ` φ
(∨ IntroL)

Γ ` φ ∨ψ

Γ ` ψ
(∨ IntroR)

Γ ` φ ∨ψ

Γ ` φ ∨ψ Γ ` φ −→ θ Γ ` ψ −→ θ
(∨ Elim)

Γ ` θ

Γ ` φ
(∀ Intro)

Γ ` ∀x(φ)

Γ ` ∀x(φ)
(∀ Elim)

Γ ` φ [t/x]

Γ ` φ [t/x]
(∃ Intro)

Γ ` ∃x(φ)

Γ ` ∃x(φ) Γ ` φ −→ ψ
(∃ Elim)

Γ ` ψ

Γ ` t = t −→ φ
(= Refl)

Γ ` φ

Γ ` φ [t/x] Γ ` t = s
(= Repl)

Γ ` φ [s/x]

Notice there is no elimination rule for > and not introduction rule for ⊥. The absence of

each maintains the harmony between the rules that was mentioned earlier. Recall, ¬φ stands

for φ −→⊥ and φ ←→ψ stands for (φ −→ψ)∧(ψ −→ φ). The notation φ [t/x] is intended to

express a formula φ where are all free occurrences of the variable x are replaced with the term

t. If no such x occurs then there is nothing to replace. This thesis will not address the subtle

notions of substitution and avoidance of variable capture (see [3,24] for more details).

We now demonstrate two proofs in Natural Deduction as an illustration. For more examples

of Natural Deduction proof trees see [5,18,19]. We first demonstrate the proof tree method by

deriving commutativity of ∧.

Theorem 4.2. ` (φ ∧ψ)−→ (ψ ∧φ).

Proof. We construct a proof tree.
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(φ ∧ψ Intro)
φ ∧ψ ` φ ∧ψ

(∧ ElimR)
φ ∧ψ ` ψ

(φ ∧ψ Intro)
φ ∧ψ ` φ ∧ψ

(∧ ElimL)
φ ∧ψ ` φ

(∧ Intro)
φ ∧ψ ` ψ ∧φ

(−→ Intro)
` (φ ∧ψ)−→ (ψ ∧φ)

We now wish to prove transitivity of→ using Natural Deduction inference rules. This will

be useful later.

Theorem 4.3. ` ((φ −→ ψ)∧ (ψ −→ θ))−→ (φ −→ θ).

Proof. We construct a proof tree. Let α represent the formula (φ −→ ψ)∧ (ψ −→ θ) for the

purpose of condensing the proof tree.

(φ Intro)
α,φ ` φ

(α Intro)
α,φ ` α

(∧ ElimL)
α,φ ` φ −→ ψ

(−→ Elim)
α,φ ` ψ

(α Intro)
α,φ ` α

(∧ ElimR)
α,φ ` ψ −→ θ

(−→ Elim)
α,φ ` θ

(−→ Intro)
α ` φ −→ θ

(−→ Intro)
` ((φ −→ ψ)∧ (ψ −→ θ))−→ (φ −→ θ)

Often times it is enough to simply state which rules one uses to achieve a certain result with

out explicitly giving the proof tree.

5 Constructive Set Theory

We now give a brief treatment of Zermelo Fraenkel Set Theory (ZF for short) and the intuition-

istic and constructive variant (IZF and CZF for short). This section is very involved. We advise

skimming it on a first reading but pay due attention to the axioms of CZF, Proposition 5.11,

Theorem 5.16 and 5.17. We shall follow the treatment given by Aczel in [5,6] very closely. ZF

(or ZFC, which is ZF with the Axiom of Choice) is the formal system that underpins classical

mathematics. The axioms of set theory are formal statements that capture intuitive ideas about

sets that working mathematician are familiar with. For example the pairing axiom asserts that

for any sets A and B there exists a set C = {A,B}. Some of these axioms formalize notions

that are less familiar but under the right reading are still very intuitive. Unfortunately, these
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axioms are very dense and difficult to read. When focusing on a particular axiom, it is helpful

to identify the set which we are asserting to exist. This is typically the set we are ‘forming’.

Doing this allows you to establish a point of reference and interpret the rest of the axiom more

clearly. After the axioms are stated we will discuss them further. See [5,6] (or any standard

treatment of ZF) for more details.

Definition 5.1. ZF is formulated in the language of first-order logic (which we have been

calling classical predicate logic or CQC) with equality and a single non-logical symbol, the

binary connective ∈. We use a⊆ b to abbreviate the following formula ∀u(u∈ a−→ u∈ b). We

use the abbreviation ∀x ∈ Aφ(x) for ∀x(x ∈ A−→ φ(x)) and ∃x ∈ Aφ(x) for ∃x(x ∈ A∧φ(x)).

Such formulae are called bounded because they are not free to quantify over all sets. We use

the abbreviation ∃!x ∈ Xφ(x) for ∃x ∈ X∀y ∈ X(φ(y)←→ x = y). The set theoretic axioms of

ZF are as follows:

Extensionality

∀a∀b[∀x(x ∈ a←→ x ∈ b)−→ a = b]

Pairing

∀a∀b∃y∀x[x ∈ y←→ (x = a∨ x = b)]

Union

∀a∃y∀x[x ∈ y←→∃u ∈ a(x ∈ u)]

Power set

∀a∃y∀x[x ∈ y←→ x⊆ a]

Infinity

∃a[∃x ∈ a∧ (∀x ∈ a∃y ∈ a(x ∈ y))]

Foundation

∀a[∃x ∈ a−→ ∃x ∈ a∀y ∈ a(y 6∈ x)]

Separation

∀a∃y∀x[x ∈ y←→ x ∈ a∧φ(x)]
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for any formula φ where y is not free in φ .

Replacement

∀a[∀x ∈ a∃!yφ(x,y)−→ ∃b∀y[y ∈ b←→∃x ∈ a(φ(x,y))]]

for any formula φ where b is not free in φ .

These axioms are dense and difficult to intuit. Let us discuss them, briefly. The extensional-

ity axiom essentially gives a way of showing equality of sets, while the converse is not required

as an axiom because it can be acquired using the substitution property of equality. The pairing

axiom assures that we can take two objects and construct a set that consists of only those two

objects. The union axiom guarantees the existence of a set y that consists of all the elements of

an indicated family of sets a, in agreement with our intuition. The power set axiom guarantees

the existence of a collection y of all subsets of a set a. The axiom of infinity guarantees the

existence a non-empty set a such that for each element x of a there exists an element y of a that

contains x. This gives an infinitely ascending sequence of elements of a and as such guarantees

the existence of an infinite set. The foundation axiom assures the set containment does not

descend infinitely and as such guarantees the existence of an element that is not a member of

any other element. We call a statement an axiom schema if it involves an arbitrary formula.

Technically, an axiom schema is not a single axiom but infinitely many axioms, one for each

formula. The separation axiom schema guarantees the existence of set y whose elements are

elements of a and satisfy φ(x) for some formula φ . This assures us that we can specify subsets

of a set. We often represent the subset y as {x ∈ a | φ(x)}. The replacement axiom schema

is the most complicated axiom of ZF. It states that if you are given a function captured by the

formula φ(x,y) then the image of the function is itself a set.

The axioms of ZF together with the AC form ZFC. We will not include the axiom of choice

in any intuitionistic or constructive variant because the full axiom of choice implies the law of

excluded middle and is deemed non-intuitionistic (see Section 2). Although certain schools

of constructive mathematics do allow weaker versions of choice (i.e. countable choice and

dependent choice).
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We will now define IZF (Intuitionistic Set Theory) which is the natural intuitionistic ex-

tension of ZF. The axioms of IZF are identical to those in ZF except we will be replacing the

Axioms of Foundation and Replacement with Set Induction Schema and Collection, respec-

tively. See [5,6] for more details on IZF.

Definition 5.2. IZF is formulated using the language of Intuitionistic First-Order Logic (which

we have been calling Intuitionistic Predicate Logic or IQC), with equality and a single non-

logical symbol, the binary connective ∈. We use similar abbreviations in IZF as in ZF. The set

theoretic axioms of IZF are as follows:

Extensionality

∀a∀b[∀x(x ∈ a←→ x ∈ b)−→ a = b]

Pairing

∀a∀b∃y∀x[x ∈ y←→ (x = a∨ x = b)]

Union

∀a∃y∀x[x ∈ y←→∃u ∈ a(x ∈ u)]

Powerset

∀a∃y∀x[x ∈ y←→ x⊆ a]

Infinity

∃a[∃x ∈ a∧ (∀x ∈ a∃y ∈ a(x ∈ y))]

Set Induction

∀a[(∀x ∈ aφ(x))−→ φ(a)]−→ ∀aφ(a)

for any formula φ .

Separation

∀a∃y∀x[x ∈ y←→ x ∈ a∧φ(x)]

for any formula φ where y is not free in φ .

Collection

∀a[∀x ∈ a∃yφ(x,y)−→ ∃b∀x ∈ a∃y ∈ bφ(x,y)]
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for any formula φ with b not free in φ .

We will now briefly discuss the new axioms we have introduced. The axiom of set in-

duction allows us to induct on the membership relation. The axiom of collection is similar to

replacement but we do not require y to be unique. Essentially it asserts that we can collect the

elements of the right component of a relation into a set.

CZF (Constructive Set Theory) is a constructive set theory similar to IZF but has axioms of

differing strengths. CZF uses bounded seperation instead of normal seperation, it uses strong

collection instead of normal collection and finally replaces the power set axiom with the subset

collection axiom. We will define CZF and state its axioms. Following this we will commence

a deep discussion of some of the consequences of CZF. See [5,6] for more on CZF and related

results.

Definition 5.3. CZF is formulated in the language of IQC, with equality and a single non-

logical symbol, the binary connective ∈. We use similar abbreviations in CZF as in ZF. The

set theoretic axioms of CZF are as follows:

Extensionality

∀a∀b[∀x(x ∈ a←→ x ∈ b)−→ a = b]

Pairing

∀a∀b∃y∀x[x ∈ y←→ (x = a∨ x = b)]

Union

∀a∃y∀x[x ∈ y←→∃u ∈ a(x ∈ u)]

Infinity

∃a[∃x ∈ a∧ (∀x ∈ a∃y ∈ a(x ∈ y))]

Set Induction

∀a[(∀x ∈ aφ(x))−→ φ(a)]−→ ∀aφ(a)

Bounded Separation

∀a∃y∀x[x ∈ y←→ x ∈ a∧φ(x)]
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for any bounded formula φ where y is not free in φ . A formula is bounded if all of its

quantifiers are bounded (i.e. ∀x ∈ y or ∃x ∈ y.)

Subset Collection

∀a∀b∃c∀u[∀x ∈ a∃y ∈ b(ψ(x,y,u))

−→ ∃d ∈ c(∀x ∈ a∃y ∈ d(ψ(x,y,u))∧∀y ∈ d∃x ∈ a(ψ(x,y,u)))]

for any formula ψ .

Strong Collection

∀a[∀x ∈ a∃yφ(x,y)−→ ∃b(∀x ∈ a∃y ∈ b(φ(x,y))∧∀y ∈ b∃x ∈ a(φ(x,y)))]

for any formula φ .

Bounded separation is clearly just a weakened version of separation. That is, all formulae

that we wish to use in an application of bounded separation must be bounded. This is important

because we do not want to form subsets of sets whose formulae allow unbounded quantification

(quantification over all sets). Such formulae can lead to impredicative constructions. Strong

collection on the other hand strengthens the collection axiom to compensate for the weaken-

ing of separation. With strong collection one can prove collection and replacement. This is

because strong collection and collection have the same hypotheses but collection has a weaker

conclusion and strong collection has a hypothesis weaker than replacement but the conclusion

of replacement follows naturally from the conclusion of strong collection. Strong collection is

a well-known theorem of ZF. From the axioms of infinity, set induction and extensionality we

can deduce that there exists a unique set x such that ∀u[u∈ x←→ (u = 0∨∃v∈ x(u = v∪{v}))]

[13]. One often denotes this set ω and thinks of it as the natural numbers without any arith-

metic structure. This is essentially the Von Neumann construction of the natural numbers (i.e.

0 ≡ /0,1 ≡ { /0} = {0},2 ≡ { /0,{ /0}} = {0,{0}} = {0,1}, etc). Any inductively defined collec-

tion can be put into a correspondence with ω and is a set by replacement.

The axioms of CZF (or any formal set theory) tell us precisely which collections ARE

sets. But for any formula φ(x) there is no issue with thinking of a collection A such that
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x ∈ A←→ φ(x), even if A is not provably a set. We call collections that are not provably sets

proper classes. We often abbreviate the class A as {x | φ(x)}. For classes A and B we say

A⊆ B if ∀x(x ∈ A−→ x ∈ B) and A = B if ∀x(x ∈ A←→ x ∈ B). One must be cautious working

with classes, because they do not formally exist. We must always be able discuss them within

the language of our formal system. For example: there is no harm in saying y ∈ {x | φ(x)}

because in the formal language we would simple say φ(y). Similarly, there is no harm in

saying {x | φ(x)}= {y | ψ(y)} because formally we would say ∀z(φ(z)←→ ψ(z)).

We now develop some basic set theoretic constructions. Using class notation one can con-

struct all kinds of more complicated classes. Then using the axioms of CZF we can prove these

constructions are sets under certain circumstances.

From the pairing axiom we can infer for any sets a and b the existence of a set y such that

∀x(x ∈ y←→ (x = a∨ x = b))

and by extensionality the set is unique so we call it {a,b}. Now we may pair a with itself and

form {a}= {a,a}. This is the set with only the element a as a member, the singleton set.

Definition 5.4. We define the ordered pair of sets a and b to be the set

〈a,b〉 ≡ {{a},{a,b}}.

Clearly, the ordered pair is a unique set by the pairing axiom and extensionality.

Proposition 5.5. If 〈a,b〉= 〈c,d〉 then a = c and b = d.

Proof. A classical proof would use the law of excluded middle. Observe that the cases consid-

ered are exhaustive by virtue of the definition of an ordered pair. The proof is very subtle.

Since {a} ∈ 〈a,b〉 then it must be that {a} ∈ 〈c,d〉. By definition of the ordered pair either

{a}= {c} or {a}= {c,d}. In either case a = c.

Now since {a,b} ∈ 〈a,b〉 then it must be that {a,b} ∈ 〈c,d〉. By similar reasoning as before

either {a,b} = {c} or {a,b} = {c,d}. Now either b = c or b = d. If b = c then from the

previous paragraph we know that a = c = b. Which implies {c} = {c,d}. Thus c = d and
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hence b = d. So we conclude b = d in either case.

Definition 5.6. Let A,B,C be classes and a,a1, . . . ,an be sets. We form the following classes.

1. {a1, . . . ,an}= {x | x = a1∨ . . .∨ x = an}. When n = 0 this is the empty class.

2.
⋃

A = {x | ∃y ∈ A(x ∈ y)}

3. A∪B = {x | x ∈ A∨ x ∈ B}

4. a+ = a∪{a}

5. Pow(A) = {x | x⊆ A}

6. {x ∈ B | φ(x)}= {x | x ∈ B∧φ(x)}

7. V = {x | x = x}

If A is a set the union axiom asserts the
⋃

A is a set. If A and B are sets then by the pairing

axioms {A,B} is a set. Thus, A∪B =
⋃
{A,B} is a set. Additionally, if a is a set the pairing

axiom asserts {a} is a set (in this case we pair a with itself.) Thus a+ = a∪{a} is a set. Finally,

if n > 0 and ai is a set for 1≤ i≤ n then {ai} is a set. Thus, the finite union, {a1, . . . ,an} is a set.

Why do we not form the two classes
⋂

A = {x | ∀y∈ A(x ∈ y)} and A∩B = {x | x ∈ A∧x ∈ B}?

This is due to a subtlety with the empty set.

Definition 5.7. If A is a class and θ(x,y) a formula then for each a ∈ A we form the class

Ba = {y | θ(a,y)} and call (Ba)a∈A a family of classes over A. If (Ba)a∈A is a family of classes

over A we form the classes ⋃
a∈A

Ba = {y | ∃a ∈ A(y ∈ Ba)},

⋂
a∈A

Ba = {y | ∀a ∈ A(y ∈ Ba)}.

Consider, as an example, the ‘class’ R and formula x ≤ y < ∞. In this case, Ba = {y | a ≤

y < ∞}. Thus,
⋃

a∈A
Ba = R and

⋂
a∈A

Ba = /0.

Remark. One can prove R is a set in CZF [5,6] after choosing a particular representation (i.e.

Dedekind reals, Cauchy reals, etc.) but this is not necessary for our work.
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Definition 5.8. For classes A and B form the class A×B = {z | ∃x ∈ A∃y ∈ B(z = 〈x,y〉}. For

r = 1,2, . . . we can form the r-fold product of A by A1 = A and Ak+1 = Ak×A.

We now introduce the union-replacement scheme which is a combination of the union ax-

iom and the replacement scheme. Recall, that strong collection of CZF implies Replacement.

Union-Replacement

∀x ∈ a∃b∀y(y ∈ b←→ φ(x,y))−→ ∃c∀y(y ∈ c←→∃x ∈ aφ(x,y))

for any formula φ .

Proposition 5.9. Given extensionality and pairing the union-replacement scheme is equivalent

to the conjunction of the union axiom and replacement scheme.

Proof. Assume union-replacement. Let a be a set. We show replacement by supposing ∀x ∈

a∃!yφ(x,y). We have shown that singleton classes are sets. So letting b = {y} we have

∀x ∈ a∃b∀y(y ∈ b←→ φ(x,y))

and by union-replacement

∃c∀y(y ∈ c←→∃x ∈ aφ(x,y)).

Hence, replacement holds. The union axiom follows from the instance of union-replacement

where φ(x,y) is replaced with y ∈ x. Trivially,

∀x ∈ a∃x∀y(y ∈ x←→ y ∈ x).

So by union-replacement we have

∃c∀y(y ∈ c←→∃x ∈ a(y ∈ x)).

Thus, union holds. Now assume the union axiom and replacement scheme. Let a be a set and

suppose ∀x∈ a∃b∀y(y∈ b←→ φ(x,y)). Let b and b′ be sets satisfying the previous expression.
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By extensionality b = b′, so that

∀x ∈ a∃!b∀y(y ∈ b←→ φ(x,y)).

By replacement there exists a set d such that for any set z we have

z ∈ d←→∃x ∈ a(∀y(y ∈ z←→ φ(x,y))).

By the union axiom we form the union of this set d. That is there exists a set c such that for

any set y

y ∈ c←→∃z ∈ d(y ∈ z).

Now by the previous statement we then have

y ∈ c←→∃x ∈ aφ(x,y).

Thus, union-replacement holds.

We now show certain classes under certain circumstances are sets using union-replacement.

Definition 5.10. Let A be a class and R⊆ A×A. R is said to be an equivalence relation on A if

the following holds for all a,b,c ∈ A:

1. aRa (R is reflexive).

2. if aRb then bRa (R is symmetric).

3. if aRb and bRc then aRc (R is transitive).

For any a ∈ A we can form the equivalence class

[a]R = {x ∈ A | xRa}.

Proposition 5.11. If A is a set and R is a equivalence relation on A (and thus also a set), then
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for each a ∈ A, [a]R is a set. Moreover, the quotient of A with respect to R,

A/R = {[a]R | a ∈ A},

is a set.

Proof. In showing that [a]R is a set it suffices to show that xRa can be given by a bounded

formula, the result is then achieved by applying bounded separation. Observe, xRa if and only

if ∃z ∈ Rz = 〈x,a〉. Recall, 〈x,a〉= {{x},{x,a}}, so the formula is bounded and [a]R is a set.

Now for each a ∈ A there exists [a]R such that ∀y ∈ [a]RyRa, thus by strong collection we

can form the quotient set A/R.

Definition 5.12. For classes A and B if R⊆ A×B we call R a class-relation and if 〈a,b〉 ∈ R we

often write aRb. We also form the classes dom(R) = {x | ∃y ∈ B(xRy)} and ran(R) = {y | ∃x ∈

A(xRy)}. If R⊆ A×B is a relation such that ∀a ∈ A∃b ∈ B(〈a,b〉 ∈ R) we call R a multi-valued

class-function. If f ⊆ A×B such that ∀a ∈ A∃!b ∈ B(〈a,b〉 ∈ f ) we call f a class-function

and write f (a) = b. If f is a class function such that dom( f ) = A and ran( f ) ⊆ B we write

f : A→ B.

Remark. Formally f does not exist, but by assumption f ⊆ A×B— f is a sub-class of A×B

— so there exists a representative formula θ(z) of f such that ∀z(z ∈ f ←→ θ(z)). Letting

φ(x) and ψ(y) be the representative formulas of the classes A and B respectively, we would say

in the language of set theory f is a class-function if ∀aφ(a)∃!bψ(b)θ(〈a,b〉). This formally

captures that definition of a class-function but makes no mention of any class. This serves as a

reminder that all mention of classes CAN be formally removed, but an example of how useful

the notion can be.

Proposition 5.13. If A is a class and ∀x ∈ A∃!yφ(x,y) then there exists a unique class function

F with dom(F) = A such that ∀x ∈ Aφ(x,F(x)). Moreover if A is a set so is F.

Proof. Suppose ∀x ∈ A∃!yφ(x,y). Then

∀x ∈ A∃!zθ(x,z)
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where θ(x,z) is ∃y(z = 〈x,y〉∧φ(x,y)). The required class function is

F = {z | ∃x ∈ Aθ(x,z)}.

Now z ∈ F if and only if ∃x ∈ A∃y(z = 〈x,y〉 ∧ φ(x,y). But we know ∀x ∈ A∃!yφ(x,y). So

dom(F) = A and by letting F(x) = y we have ∀x ∈ Aφ(x,F(x)). Suppose there exists G that

satisfies dom(G) = A and ∀x ∈ Aφ(x,G(x)). By assumption ∀x ∈ AF(x) = G(x), that is F is

unique. Finally, if A is a set then by replacement F is a set.

Proposition 5.14. If A is a set and F : A→ B then F is a set (and thus F is simply a function.)

Proof. Since ∀x ∈ A∃!y〈x,y〉 ∈ F Proposition 5.13 implies there is a unique function f with

dom( f ) = A and ∀x ∈ A(〈x, f (x)〉 ∈ F . Thus, F = f and F is a set.

Remark. In Proposition 5.14 B may be a class or a function.

The subset collection axiom is among the most intricate axioms in any of the set theories

we have encountered. Because of this we are going to introduce the concept of fullness to aid

our intuition about subset collection. See [13] for further details.

Definition 5.15. For sets A and B let BA be the class of all functions with domain A and range

contained in B. Let mv(BA) be the class of all multi-valued functions from A to B. A set C is

full in mv(BA) if C ⊆ mv(BA) and

∀R ∈ mv(BA)∃S ∈C(S⊆ R).

Remark. Notice in Definition 5.12. S can not be empty because there is no empty element in

mv(BA). Recall, the definition of a multi-valued class-function requires us to identify at least

one b ∈ B for every a ∈ A.

We now state some additional axioms and proceed to prove some relationships between

them, subset collection and power set.

Fullness

For all sets A and B there exists a set C such that C is full in mv(BA).
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Exponentiation

For all sets A and B the class BA is a set. More formally,

∀a∀b∃c∀ f [ f ∈ c←→ ( f : a→ b)].

Let CZF− be CZF without subset collection.

Theorem 5.16. (CZF−) The following hold:

1. Subset collection and fullness are equivalent.

2. Fullness implies exponentiation.

3. The powerset axiom implies subset collection

Proof. We follow [5,6].

1. Suppose subset collection holds. Let A and B be sets and φ(x,y,u) be the formula for

y ∈ u∧∃z ∈ B(y = 〈x,z〉). For all R ∈ mv(BA) we have ∀x ∈ A∃z ∈ B(〈x,z〉 ∈ R) which is

equivalent to ∀x ∈ A∃y ∈ A× Bφ(x,y,R). By subset collection there exists C such that the

previous line implies ∃S ∈ C(∀y ∈ S∃x ∈ Aφ(x,y,R)) but recall φ says y ∈ R. Thus, we may

conclude there exists a C such that ∀R ∈ mv(BA)∃S ∈ C(S ⊆ R), that is there exists C full in

mv(BA).

Now suppose fullness holds. Let A and B be sets and C be full in mv(BA). For any set u

suppose ∀x∈A∃y∈B(φ(x,y,u)). Let ψ(x,z,u) be the formula for ∃y∈B(z= 〈x,y〉∧φ(x,y,u)).

Then ∀x ∈ A∃z(ψ(x,z,u)). By strong collection there exists v⊆ A×B such that

∀x ∈ A∃z ∈ v(ψ(x,z,u))∧∀z ∈ v∃x ∈ A(ψ(x,z,u)).

The first conjunct can be expanded to

∀x ∈ A∃z ∈ v∃y ∈ B(z = 〈x,y〉∧φ(x,y,u))
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which of course is equivalent to

∀x ∈ A∃y ∈ B∃z ∈ v(z = 〈x,y〉∧φ(x,y,u)).

Now ∃z ∈ v(z = 〈x,y〉) implies 〈x,y〉 ∈ v (elimination of the existential quantifier) so we may

dispense with mention of z and simply conclude

∀x ∈ A∃y ∈ B(〈x,y〉 ∈ v∧φ(x,y,u)).

The second conjunct can be expanded to

∀z ∈ v∃x ∈ A∃y ∈ B(z = 〈x,y〉∧φ(x,y,u)).

Now for any x ∈ A and y ∈ B suppose 〈x,y〉 ∈ v. Then (by universal quantifier elimination) we

conclude φ(x,y,u) that is

∀x ∈ A∀y ∈ B(〈x,y〉 ∈ v−→ φ(x,y,u)).

As C is full there exists w ∈C such that w⊆ v. Define ran(w) = {y | ∃x(〈x,y〉 ∈ w} ⊆ B. Then

since w ∈mv(BA) we have for all x ∈ A there is y ∈ B such that 〈x,y〉 ∈ w⊆ v and by the above

φ(x,y,u) holds. That is,

∀x ∈ A∃y ∈ ran(w)φ(x,y,u)

and by definition we have for all y ∈ ran(w) there is x ∈ A such that 〈x,y〉 ∈ w ⊆ v and by the

above φ(x,y,u) holds. That is,

∀y ∈ ran(w)∃x ∈ Aφ(x,y,u).

Thus, D = {ran(c) | c ∈C} witnesses the instance of subset collection pertaining to φ . Notice

that C being a set together with strong collection implies D is a set.

2. Suppose C is full in mv(BA). Let f ∈ BA ⊆ mv(BA). By Fullness ∃R ∈C(R ⊆ f ). Now
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suppose 〈x,y〉 ∈ f and 〈x,y′〉 ∈ R. Since R⊆ f we have 〈x,y′〉 ∈ f . Since f is a function, y = y′

and 〈x,y〉 ∈ R (and f ⊆ R.) So by extensionality R = f . Thus, f ∈ BA iff f ∈ C and f is a

function or BA = { f ∈C | f : A→ B}. Since C is a set we conclude, by bounded separation,

that BA is a set.

3. It suffices to show that the power set axiom implies fullness. Let A and B be sets. By

the power set axiom Pow(A×B) is a set. Let π1 : A×B→ A via π1(〈a,b〉) = a for a ∈ A

and b ∈ B. For U ∈ Pow(A×B) define π1(U) = {x ∈ A | ∃u ∈U(π1(u) = x)}. Let C = {U ∈

Pow(A×B) | π1(U) = A}. By bounded separation C is a set. We claim C = mv(BA). Suppose

U ∈ C. Let x ∈ A = π1(U) then there exists u ∈ U such that π1(u) = x. But for any such

u ∈U there exists y ∈ B such that u = 〈x,y〉. So, there exists y ∈ B such that π1(〈x,y〉) = x.

Thus, for any x ∈ A there exists y ∈ B such that 〈x,y〉 ∈ U and we conclude U ∈ mv(BA).

Suppose, conversely, U ∈ mv(BA). For any x ∈ A there exists a y ∈ B such that 〈x,y〉 ∈U and

π1(〈x,y〉) = x. So, π1(U) = A and we conclude U ∈C. Clearly, mv(BA) is full in itself.

Theorem 5.17. The following hold:

1. In CZF− the power set axiom is equivalent to the statement ∀A∀B∃C(C = mv(BA)).

2. CZF does not prove the power set axiom.

3. CZF does not prove ∀A∀B∃C(C = mv(BA)).

Proof. 1. From [13]. In proving 3. from the previous theorem we showed that power set

implies that for all sets A and B, mv(BA) is a set. So it remains to show the converse. Suppose

for all sets A and B, mv(BA) is a set. Let C be any set and D = mv({0,1}C). By assumption

D is a set. To every subset X of C assign X∗ = {〈u,0〉 | u ∈ X}∪{〈z,1〉 | z ∈C}. As a result

X∗ ∈ D. For each S ∈ D let pr(S) = {u ∈C | 〈u,0〉 ∈ S}. We then have X = pr(X∗) for every

X ⊆C, thus Pow(C) ⊆ {pr(S) | S ∈ D}. Let S ∈ D. Clearly, pr(S) ⊆C so pr(S) ∈ Pow(C) .

Thus Pow(C) = {pr(S) | S ∈D}. Since, for every S ∈D there exists pr(S) such that pr(S)⊆C,

by strong collection {pr(S) | S ∈ D} is a set. Thus Pow(C) is set.

2. This proof may be beyond the scope of the thesis. But by [6] the strength of CZF

supplemented with the power set axiom exceeds the proof theoretic strength of second order

arithmetic while the strength of CZF is only a fraction of second order arithmetic.
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3. Follows from 1. and 2.

Essentially subset collection allows us to prove the collections of functions between sets

form a set, i.e. the exponentiation axiom. Subset collection is not strong enough to prove the

power set axiom so in that sense CZF is deficient to IZF, but because of this deficiency CZF

is a good foundation for constructive (i.e. predicative) mathematics.

Until further notice we will be working within IZF. Recall IZF does not have the replace-

ment axiom, instead it has the weaker collection axiom. Notice, all the class and set construc-

tions NOT involving replacement can be justified in IZF exactly as in CZF. For constructions

that require replacement one can typically make use of power set, collection and separation

(e.g. in IZF quotients class are sets via power set and separation.) We will not get into any

set constructions for IZF here. This activity would be worthwhile but it is sufficient to observe

that CZF is a strictly weaker theory than IZF and as such all theorems of CZF are theorems of

IZF. Thus, from here on we operate under the reasonable assumption that the justification of a

collection being a set in CZF is enough to justify it is a set in IZF. We will use the results of

Section 5 freely (and likely with out reference) for the remainder of the thesis.

Using IZF we will work toward a semantic completeness proof of IQC. This proof will be

intuitionistic but since it is done within IZF it will be impredicative. In Section 9 we will turn

to CZF for the remainder of the thesis and work toward a semantic completeness proof that is

predicative and hence constructive.

6 Posets, Lattices and Heyting Algebra

We commence this section with the definition of a partial order. A partial order is relation on

a set that is reflexive, transitive and anti-symmetric and generalizes the notion of order on the

familiar number systems. With the notion of a partially ordered set in hand we may define a

lattice. A lattice may be studied dually from an order theoretic or algebraic perspective and

we rely on this duality. We then investigate special lattices: bounded, complete, etc. We

then give a definition of a Heyting Algebra and complete Heyting Algebra. The notion of

completeness is of utmost importance. Notice that in this thesis the term ‘completeness’ is
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slightly overloaded. Completeness of a lattice, not to be confused with semantic completeness

of a logic, is a property that is very much a generalization of the conditional completeness of

the real numbers. In fact, if we supplement the real numbers with positive and negative infinity

(i.e. R∪{−∞,+∞}) we have a complete lattice as defined in this section.

Definition 6.1. A partial order on a set X is a relation R⊆ X×X satisfying

1. ∀a ∈ X , aRa (reflexivity).

2. ∀a,b,c ∈ X , aRb and bRc implies aRc (transitivity).

3. ∀a,b ∈ X , aRb and bRa implies a = b (anti-symmetry).

A partially ordered set (poset) is a set equipped with a partial order (X ,R).

Definition 6.2. Given a poset (X ,≤) and M ⊆ X we say s ∈ X is a supremum (or join) of M if

it satisfies

1. ∀m ∈M, m≤ s.

2. ∀x ∈ X (∀m ∈M, m≤ x implies s≤ x).

If a supremum exists it is unique. We may define the infimum similarly. We will often use join

and supremum interchangeably, similarly with meet and infimum.

Remark. We will favor the meet/join terminology.

Definition 6.3. A lattice is a poset (X ,≤) such that for every a,b ∈ X the infimum of {a,b}

denoted a∧b and the supremum of {a,b} denoted a∨b both exist. A lattice is bounded if there

exist 0,1 ∈ X such that ∀x ∈ X , 0 ≤ x ≤ 1. A lattice is complete if every subset has infimum

and supremum denoted
∧

A and
∨

A for A⊆ X .

Remark. Notice that a complete lattice is bounded.

Definition 6.4. A Heyting Algebra is a bounded lattice with a binary operation → satisfying

x≤ a→ b iff x∧a≤ b. We refer to the operation with the above property as a Heyting operation.

Define the psuedo-complement of x to be ¬x ≡ x→ 0. Notice this implies x∧¬x = 0. A

complete Heyting Algebra is a Heyting Algebra that is complete as a lattice.

34



When the context becomes less clear we subscript the operations and bounds of the Heyting

Algebra.

Remark. In a Heyting Algebra H given a,b ∈ H we have a→ b =
∨
{x ∈ H | x∧ a ≤ b}. By

definition x∧a≤ b is equivalent to x≤ a→ b. So, a→ b is an upperbound of {x∈H | x∧a≤ b}.

Observe, a→ b∈ {x∈H | x∧a≤ b} since a→ b≤ a→ b implies (a→ b)∧a≤ b. So, if there

exists a z ∈ H such that y≤ z for all y ∈ {x ∈ H | x∧a≤ b} we have, in particular, a→ b≤ z.

Lemma 6.5. Given a lattice L and a,b,c ∈ L if a≤ b then a∧ c≤ b∧ c and a∨ c≤ b∨ c.

Proof. First, note that a∧ c ≤ a ≤ b and a∧ c ≤ c. Since b∧ c is the infimum of b and c we

must have a∧ c≤ b∧ c.

Now, note that a≤ b≤ b∨c and c≤ b∨c. Since a∨c is the supremum of a and c we must

have a∨ c≤ b∨ c.

Proposition 6.6. A Heyting Algebra is a poset (H,≤) together with two distinguished elements

0 and 1 as well as binary operations ∧, ∨ and→ which satisfy

1. x≤ 1

2. x∧ y≤ x and x∧ y≤ y

3. if z≤ x and z≤ y then z≤ x∧ y

4. 0≤ x

5. x≤ x∨ y and y≤ x∨ y

6. if x≤ z and y≤ z then x∨ y≤ z

7. x→ x = 1

8. x∧ (x→ y) = x∧ y

9. (x→ y)∧ y = y

10. x→ (y∧ z) = (x→ y)∧ (x→ z)

for all x,y,z ∈ H.
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Proof. Since H is bounded lattice properties 1-6 are obvious.

7. We know x→ x≤ 1, by 1. By 2. we have 1∧ x≤ x. Using the definition of the Heyting

operation we have 1≤ x→ x.

8. Clearly, x∧ (x → y) ≤ x. We also have x → y ≤ x → y and by the definition of the

Heyting operation x∧ (x→ y) ≤ y. Thus, x∧ (x→ y) ≤ x∧ y by 3. On the other hand,

since y∧ x≤ y so y≤ x→ y. By Lemma 6.6, x∧ y≤ x∧ (x→ y).

9. We know (x→ y)∧ y ≤ y by 2. From the above we know y ≤ x→ y and y ≤ y. Thus,

y≤ (x→ y)∧ y by 3.

10. Let a ∈ H. We know a ≤ x→ (y∧ z) is equivalent to a∧ x ≤ y∧ z. Which by 2. and 3.

is equivalent to a∧ x≤ y and a∧ x≤ z. Using the Heyting operation this is equivalent to

a≤ x→ y and a≤ x→ z. By 2. and 3. this is equivalent to a≤ (x→ y)∧ (x→ z). The

desired result follows.

This characterization of a Heyting Algebra looks mechanically similar to the system IPC.

This can be seen by interpreting the distinguished elements 0 and 1 as absurdity ⊥ and truth

> the binary operations as the binary connectives, and the order relation as provability. Under

this reading, we can combine Property 2. and 8. to arrive at x∧ (x→ y)≤ y, which represents

modus ponens! In fact, Heyting Algebra was invented as a means of formalising intuitionistic

propositional logic. We can further justify this choice by considering the three element Heyting

Algebra H = {0,1/2,1} ordered by 0 < 1/2 < 1. We can define the operations of join and

meet on H in an obvious way. Let us partially work out the Heyting operation for H. Using

Definition 6.4 we can determine that 0→ 0 = 1 since 1∧0 = 0 ≤ 0 implies 1 ≤ 0→ 0. Next,

1/2→ 0 = 0 since 1/2→ 0 = 1/2 implies 1/2 = 1/2∧ 1/2 ≤ 0 which of course cannot be.

Finally, 1→ 0 = 0 since 1→ 0 = 1/2 implies 1/2 = 1/2∧ 1 ≤ 0 which cannot be. Note we

can only use indirect reasoning here because with finite sets equality is decidable. Now for

a = 1/2 we have ¬a = a→ 0 = 0 and a∨¬a = 1/2. This provides a counter model to the law

of excluded middle and as such LEM is not valid (see Section 7 for more on validity). Within
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the framework of model theory, Heyting Algebras are called models of IPC. Unfortunately,

to model IQC, a Heyting Algebra is not quite enough. We need to restrict our attention to

complete Heyting Algebras. In fact, complete Heyting Algebras are stronger than necessary —

we only require a Heyting Algebra with enough arbitrary meets and joins. This is because we

only need certain arbitrary meets and joins which allow us to model the quantifiers. But this

restriction is somewhat arbitrary so we opt to use complete Heyting Algebras as our models

for IQC. We now give a useful characterization of complete Heyting Algebras and proceed to

show how any Heyting Algebra can be extended to a complete Heyting Algebra. This latter

result justifies our the choice of a model for IQC.

Proposition 6.7. A complete lattice L is a complete Heyting Algebra iff the following distribu-

tive law

a∧
∨

S =
∨
{a∧ s | s ∈ S}

holds for a ∈ L and S⊆ L.

Proof. Suppose that we have a complete Heyting Algebra H. Let a ∈ H and S ⊆ H. We

now show the distributive law holds. First note that a∧ s ≤ a∧
∨

S for s ∈ S, by Lemma 6.6,

since s ≤
∨

S. By definition of supremum we have
∨
{a∧ s | s ∈ S} ≤ a∧

∨
S. Now, note

that a∧ s ≤
∨
{a∧ s | s ∈ S} for all s ∈ S. By definition of the Heyting operation we have

s ≤ a→
∨
{a∧ s | s ∈ S} for all s ∈ S. By definition of supremum we have

∨
S ≤ a→

∨
{a∧

s | s ∈ S}. Finally, the definition of the Heyting operation yields a∧
∨

S≤
∨
{a∧ s | s ∈ S}. So

the distributive law, a∧
∨

S =
∨
{a∧ s | s ∈ S}, holds in any complete Heyting Algebra.

Now suppose that the distributive law holds for a complete lattice L. We define a Heyting

operation as a→ b ≡
∨
{x ∈ L | x∧ a ≤ b}. If c∧ a ≤ b then c ∈ {x ∈ L | x∧ a ≤ b} and

thus c ≤ a→ b. Now, if c ≤ a→ b =
∨
{x ∈ L | x∧ a ≤ b} then by Lemma 6.6 we have

c∧ a ≤
∨
{x ∈ L | x∧ a ≤ b}∧ a =

∨
{x∧ a ∈ L | x∧ a ≤ b} by the distributive law. Finally,

since b is an upper bound of the set we have
∨
{x∧ a ∈ L | x∧ a ≤ b} ≤ b and thus c∧ a ≤ b.

So, L is a Heyting Algebra. Since it is complete as a lattice then it is in fact a complete Heyting

Algebra.

Remark. If bi denotes an element of a complete lattice (or Heyting Algebra) for each i in some
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index set I then we often use ∨
i∈I

bi and
∧

i∈I
bi

as abbreviations for
∨
{bi | i ∈I } and

∧
{bi | i ∈I } respectively. Also, note that an arbitrary

subset can always be indexed over itself. For example, given a lattice L and S ⊆ L we have

S = {s | s ∈ S} and so ∨
S =

∨
s∈S

s.

In light of this the distributive law can be similarly stated as

a∧
∨
s∈S

s =
∨
s∈S

a∧ s.

for a ∈ L and S⊆ L.

Theorem 6.8. For any Heyting Algebra H there exists an embedding into a complete Heyting

Algebra H ′ that preserves the bounds, all operations and existing arbitrary meets and joins of

H.

Proof. (see Troelstra [1])

Let H be a Heyting Algebra. A complete ideal (or c-ideal) of H is a subset I ⊆ H that satisfies

1. 0 ∈ I

2. b ∈ I and a≤ b implies a ∈ I

3. X ⊆ I and
∨

H X exists (in H) implies
∨

H X ∈ I.

Now let H ′ be the set of complete ideals of H. We first show H ′ is a complete lattice. Let

J = {Iα ∈ H ′ | α ∈J } where J is an arbitrary index. J has an arbitrary meet given by the

set theoretic intersection, that is,
∧

α∈J
Iα =

⋂
α∈J

Iα . J has arbitrary join given by
∨

α∈J
Iα =

{
∨

H X | X ⊆
⋃

α∈J
Iα and

∨
H X exists}.

We show that these objects are complete ideals and are in fact meet and join, respectively.

Clearly, 0 ∈ Iα for each α ∈J , so that 0 ∈
⋂

α∈J
Iα . Let b ∈

⋂
α∈J

Iα and a ≤ b, then b ∈ Iα

for each α ∈J . Thus a ∈ Iα for each α ∈J , so that a ∈
⋂

α∈J
Iα . Now let X ⊆

⋂
α∈J

Iα

38



and suppose
∨

H X exists. Then X ⊆ Iα for each α ∈ J. Thus
∨

H X ∈ Iα for each α ∈J ,

so that
∨

H X ∈
⋂

α∈J
Iα . Thus,

⋂
α∈J

Iα is a c-ideal. To see it is the meet we first observe that⋂
α∈J

Iα ⊆ Iβ for each β ∈J . Suppose there exist some other c-ideal M such that M ⊆ Iβ for

each β ∈J . Then M ⊆
⋂

α∈J
Iα . Thus,

⋂
α∈J

Iα is the desired meet of J.

Now we start by letting Q = {
∨

H X | X ⊆
⋃

α∈J
Iα and

∨
H X exists}. Observe that /0 ⊆⋃

α∈J
Iα and

∨
H /0 = 0 exists in H, so that 0 ∈ Q. Now let b ∈ Q and a ≤ b. Since b ∈ Q there

exists X ⊆
⋃

α∈J
Iα such that

∨
H X = b. So a ≤

∨
H X gives us a = a∧

∨
H X . By Lemma 6.6,

a∧ x≤ a∧
∨

H X for all x ∈ X , so that a∧
∨

H X is an upper bound for {a∧ x | x ∈ X}. Observe

for any y ∈ H

∀x ∈ X ,a∧ x≤ y

is equivalent to

∀x ∈ X ,x≤ a→ y

by applying the definition of the Heyting operation. This is equivalent to

∨
H X ≤ a→ y

using property of join. This is equivalent to

a∧
∨

H X ≤ y.

So a = a∧
∨

H X =
∨

H{a∧ x | x ∈ X}. Observe that if x ∈ Iα then since a∧ x ≤ x we have

a∧x ∈ Iα . Then, we have {a∧x | x ∈ X} ⊆
⋃

α∈J
Iα and conclude that a ∈Q. Now, given a ∈Q

let Sa = {w ∈
⋃

α∈J
Iα | w ≤ a}. Clearly, a is an upper bound of Sa. Let m be any other upper

bound of Sa. Since a ∈ Q there exists X ⊆
⋃

α∈J
Iα such that a =

∨
H X . Notice X ⊆ Sa so m

is also an upper bound for X . Thus a ≤ m so that a =
∨

H Sa. Now let X ⊆ Q such that
∨

H X

exists. Notice that Sx ⊆
⋃

α∈J
Iα for every x ∈ X so

⋃
x∈X

Sx ⊆
⋃

α∈J
Iα . Now for any w ∈

⋃
x∈X

Sx we

have for some x ∈ X , w≤ x≤
∨

H X . So,
∨

H X is an upper bound of
⋃

x∈X
Sx. Finally observe

∀w ∈
⋃
x∈X

Sx(w≤ z)
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is equivalent to

∀x ∈ X∀w ∈ Sx(w≤ z)

which is equivalent to

∀x ∈ X(x≤ z), since x =
∨

H Sx

which is equivalent to ∨
H X ≤ z.

That is,
∨

H
⋃

x∈X
Sx =

∨
H X . We conclude that

∨
H X ∈ Q. So Q is a c-ideal. Now it remains to

show that Q is the join J. If x ∈ Iα for any α ∈J then {x} ⊆
⋃

α∈J
Iα and x =

∨
H{x} so x ∈Q.

Thus, Iα ⊆ Q for any α ∈J . Let M ∈ H ′ be any other upper bound of J. Let x ∈ Q, then

x =
∨

H Sx. Now Sx ⊆
⋃

α∈J
Iα ⊆M. Realizing that M is a c-ideal we utilize Condition 3 of the

definition of c-ideal to obtain x ∈M so that Q⊆M. Thus, Q is the desired join of J. So, H ′ is

a complete lattice.

Now to show H ′ is a complete Heyting Algebra (see Proposition 6.7) we show that the

infinite distributive law holds. Recall that that meet in H ′ is simply the intersection. Now

x ∈
∨

α∈J
(I∧ Iα) is equivalent to

x =
∨

H X ,X ⊆
⋃

α∈J
(I∧ Iα) =

⋃
α∈J

(I∩ Iα) = I∩
⋃

α∈J
Iα

which is equivalent to

x =
∨

H X ,X ⊆ I and X ⊆
⋃

α∈J
Iα

which is equivalent to

x ∈ I and x ∈
∨

α∈J
Iα

which is equivalent to

x ∈ I∩
∨

α∈J
Iα = I∧

∨
α∈J

Iα .

So we conclude that I∧
∨

α∈J
Iα =

∨
α∈J

(I∧ Iα). By Proposition 6.7, H ′ is a complete Heyt-

ing Algebra.

We now define the embedding i : H → H ′ via i(x) = {y ∈ H | y ≤ x} and show that i
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preserves ∧H ,∨H ,→H ,0H ,1H , and all existing
∨

H and
∧

H . It suffices to show that i preserves∨
H and

∧
H since for any a,b ∈H we have a∨H b =

∨
H{a,b}, a∧H b =

∧
H{a,b}, 0H =

∨
H /0,

1H =
∧

H /0 and a→H b =
∨

H{x ∈ H | x∧ a ≤ b} (see Remark following Definition 6.4.) Let

X ⊆ H and suppose
∧

H X exists in H. We show that i(
∧

H X) =
∧

x∈X
i(x). Now z ∈ i(

∧
H X) is

equivalent to

z≤
∧

H X

which is equivalent to

z≤ x,∀x ∈ X

which is equivalent to

z ∈ i(x),∀x ∈ X

which is equivalent to

z ∈
⋂
x∈X

i(x) =
∧
x∈X

i(x).

Thus, i(
∧

H X) =
∧

x∈X
i(x). Now suppose

∨
H X exists in H. We show that i(

∨
H X) =

∨
x∈X

i(x).

Now

z ∈ i(
∨

H X)

is equivalent to

z≤
∨

H X .

Now for any x ∈ X we have x ∈ i(x). Thus, X ⊆
⋃

x∈X
i(x) so by the definition of the join in H ′ we

have
∨

H X ∈
∨

x∈X
i(x). By Property 2 of c-ideals this implies z ∈

∨
x∈X

i(x). To show the opposite

implication suppose z ∈
∨

x∈X
i(x). Thus, z =

∨
H Y for some Y ⊆

⋃
x∈X

i(x). For any y ∈ Y there

is an x ∈ X such that y ∈ i(x). This yields y ≤ x ≤
∨

H X . That is,
∨

H X is an upper bound

for Y . Thus, we have z =
∨

H Y ≤
∨

H X . Hence, we conclude i(
∨

H X) =
∨

x∈X
i(x). As desired

the embedding preserves the existing meets and join and by our observation all operations and

bounds of the Heyting Algebra. This concludes the proof.

The completion of a Heyting Algebra is universal in the categorical sense, that is, for any

other complete Heyting Algebra A and map g from H into A there exists a unique map f such
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that i◦ f = g. We can represent this fact by the following commutative diagram.

H H ′

A

i

g
! f

The previous proof was very involved but absolutely necessary for later work.

7 Validity with H-Valuations

In this section we define validity of formulae using Heyting Algebra semantics. We commence

by defining valuations — maps from formulae of IQC into a Heyting Algebra/ We can take

the idea of truth tables in a classical logic as a starting point. Where tautologies are statements

which are true in every column of the truth table. We identify the top element of a complete

Heyting Algebra with truth. Then we will consider formulae which map to the top element, 1,

of every Heyting Algebra to be valid.

For simplicity we consider a single-sorted theory of IQC without equality. We follow [1]

closely but make slight alterations for improved clarity.

Definition 7.1. An H-valuation on IQC is a map from IQC, the set of formula of IQC, to

a generic complete Heyting Algebra H, that is v : IQC → H. To do this we first give an

assignment for the terms, functions and predicates. We then extend this assignments to all

formulas. To the single-sort i we assign an arbitrary set D. An H-valued relation on Dn is a

mapping Dn → H. We assign each n-place relation symbol R with arguments of sort i to an

H-valued relation v(R) on Dn. We assign the proposition P (predicate with n = 0) to v(P) ∈H.

We assign each n-place function symbol f with arguments and value of sort i to a function

v( f ) : Dn→ D. We assign the constant c (function with n = 0) of sort i to v(c) ∈ D. We assign

a variable x of sort i to v(x) ∈ D. Thus, we can assign any term t of sort i to v(t) ∈ D. We

summarize the valuation for terms:

• v(x) ∈ D where x is a variable of sort i.

• v(c) ∈ D where c is a constant of sort i.
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• v( f (t1, . . . , tn)) = v( f )(v(t1), . . . ,v(tn)) where v( f ) : Dn → D and t1, . . . , tn are terms of

sort i

and extend the valuation to all formulae:

• v(⊥) = 0H

• v(>) = 1H

• v(P) ∈ H where P is a proposition symbol.

• v(R(t1, . . . , tn)) = v(R)(v(t1), . . . ,v(tn)) where v(R) : Dn → H and t1, . . . , tn are terms of

sort i.

• v(φ ∧ψ) = v(φ)∧H v(ψ)

• v(φ ∨ψ) = v(φ)∨H v(ψ)

• v(φ −→ ψ) = v(φ)→H v(ψ)

• v(∀x(φ)) =
∧

H{v(φ [d/x]) | d ∈ D}

• v(∃x(φ)) =
∨

H{v(φ [d/x]) | d ∈ D}

for any formula φ ,ψ ∈ IQC.

The subscripts are meant to assist the audience in differentiating between logical con-

stants/connectives of IQC and elements/operations in the complete Heyting Algebra H. H-

valuations on many-sorted languages would be defined similarly, but we one would see a com-

plication of the valuation extension for terms, function and relation symbols and quantifiers.

Note that for a (not necessarily complete) Heyting Algebra, H, a partial H-valuation on IQC

can be defined, but we may not be able to extend the valuation to the quantifiers. This is because

in general a Heyting Algebra may not have sufficient arbitrary meets and joins.

Definition 7.2. Given a Heyting Algebra H and a partial H-valuation v : IQC→H on IQC, we

say that the partial H-valuation is quantifier complete if whenever v(φ [d/x]) ∈ H for all d ∈ D

we have
∧

H{v(φ [d/x]) | d ∈ D} ∈ H and
∨

H{v(φ [d/x]) | d ∈ D} ∈ H.
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Definition 7.3. We say a formula φ of IQC is H-valid for a complete Heyting Algebra H,

denoted |=H φ , if v(φ) = 1H for every H-valuation v : IQC→ H. Further, we say φ is valid,

denoted |= φ , if |=H φ for every complete Heyting Algebra H.

8 Intuitionistic Completeness of IQC

In this section we commence a discussion about semantic completeness. One thing to note,

the term completeness is overloaded here, as mentioned in Section 6. This is an unfortunate

‘coincidence’ of conflicting terminology of the logical theory and lattice theory which we just

so happen to be simultaneously employing. We will try to be intentional with the phrasing but

fortunately the context will usually keep us out of trouble. A logic is semantically complete

if every valid formulae is provable. Soundness is the converse of semantic completeness. To-

gether, soundness and semantic completeness provide a correspondence between validity and

provability. We commence by stating, without proof, the soundness theorem.

Theorem 8.1. IQC is sound, that is every formula that is provable is also valid. Symbolically,

if ` φ then |= φ .

Proof. See [1] for details. One proceeds with induction on the size of natural deduction proofs

and shows that validity is preserved by the inference rules.

We now prove semantic completeness for single-sorted IQC without equality.

Lemma 8.2. There exists a Heyting Algebra H and quantifier complete H-valuation v such that

if v(φ) = 1H then ` φ .

Proof. Consider the following Heyting Algebra defined on the set IQC of IQC formula. To

construct this Heyting Algebra we define an equivalence relation on F as such

φ ∼ ψ iff ` φ ←→ ψ.

Define a Heyting Algebra H ≡ F/∼ to be the set of equivalence classes [φ ] = {ψ ∈ F | ψ ∼ φ}.

Order H with

[φ ]≤H [ψ] iff ` φ −→ ψ.
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Now set 0H = [⊥] and 1H = [>] and define

• [φ ]∧H [ψ] = [φ ∧ψ]

• [φ ]∨H [ψ] = [φ ∨ψ]

• [φ ]→H [ψ] = [φ −→ ψ]

• if it exists
∧

H{[φ [d/x]] | d ∈ D}= [∀x(φ)]

• if it exists
∨

H{[φ [d/x]] | d ∈ D}= [∃x(φ)].

We now define a partial H-valuation v : IQC→ H via v(φ) = [φ ]. We claim the H-valuation is

quantifier complete (see Proposition 8.3). Now, by assumption we have [φ ] = v(φ) = 1H = [>].

By properties of equivalence classes (see Definition 5.10) we have φ ∼ >. That is, by our

equivalence relation we have ` φ ←→>. Now, using (> Intro), (∧ ElimR) on the previous line

and (−→ Elim) (from Section 4) we conclude ` φ .

Proposition 8.3. The H-valuation defined in the previous proof is quantifier complete.

Proof. Let d ∈ D. Note that ` ∀xφ −→ φ [d/x] (by ∀ Elim and −→ Intro). Thus, [∀xφ ] ≤H

[φ [d/x]] for all d ∈ D. We have established that [∀xφ ] is a lower bound of {[φ [d/x]] | d ∈

D}. Now, suppose [ψ] ≤H [φ [d/x]] for all d ∈ D. So we have ` ψ −→ φ [d/x] for all d ∈

D. Then in particular, for some variable y not occurring free in ψ we have ` ψ −→ φ [y/x].

This is essentially variable renaming so we have ` ψ −→ φ . Thus, ` ψ −→ ∀xφ (by ∀ Intro,

Transitivity of −→, and −→ Elim from Section 4). Finally, we conclude that [ψ] ≤H [∀xφ ].

We have established that [∀xφ ] is the greatest lower bound of {[φ [d/x]] | d ∈ D}. That is,∧
H{[φ [d/x]] | d ∈ D}= [∀x(φ)].

Again let d ∈ D. Note that ` φ [d/x]−→ ∃xφ (by ∃ Intro). Thus, [φ [d/x]]≤H [∃xφ ] for all

d ∈ D. We have established that [∃xφ ] is a upper bound of {[φ [d/x]] | d ∈ D}. Now, suppose

[φ [d/x]] ≤H [ψ] for all d ∈ D. So we have ` φ [d/x] −→ ψ for all d ∈ D. Then, for some

variable y free in ψ we have ` φ [y/x]−→ ψ . Again, this is just variable renaming so we have

` φ −→ ψ . Finally we have ` ∃xφ −→ ψ (by ∃ Elim and −→ Intro from Section 4). Finally,

we conclude that [∃xφ ] ≤H [ψ]. We have established that [∃xφ ] is the least upper bound of

{[φ [d/x]] | d ∈ D}. That is,
∨

H{[φ [d/x]] | d ∈ D}= [∃x(φ)].
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Theorem 8.4. IQC is semantically complete, that is every formula that is valid is also provable.

Symbolically, if |= φ then ` φ .

Proof. Suppose |= φ . Let H be the free Heyting Algebra on F and H ′ the universal completion

of H (Theorem 6.8) and consider the H ′-valuation v(φ) = i([φ ]), where [φ ] is the quantifier

complete valuation on H (see Lemma 8.2) and i is the inclusion map for the universal com-

pletion (see Theorem 6.8). Clearly, we have |=H ′ φ . Thus, i([φ ]) = 1H ′ . Since the universal

completion preserves bounds we can infer that [φ ] = 1H . Applying Lemma 8.2 we conclude

that ` φ .

By following Troelstra (see [1]) we have established the semantic completeness of IQC. As

we will see in the next section this proof can only be formalized in IZF as it requires a critical

use of the power set axiom.

9 Motivation for Partially Ordered Classes

To proceed constructively will first require us to choose a system that is intuitionistic and pred-

icative. The obvious candidate is CZF as it is the predicative variant of IZF. Using CZF as

a meta-theory leads to some serious obstacles. Fortunately, quotients can be constructed in

CZF (see Proposition 5.11). The real issue is that without the power set, axiom performing

completions of a lattice (see Proposition 6.8) does not provide a set (see below). A proper class

is a collection that is not provably a set. The standard completion requires us to form a certain

collection of subsets of a lattice. Typically this collection is provably a set by an appeal to the

power set axiom and the axiom of bounded separation. Mathematicians prefer to work with

sets. But, the way through this difficulty is to forgo comfort and simply work with the resulting

proper classes, albeit carefully. Fortunately, there is a rich theory of partially ordered classes

treated in [11] which we have at our disposal. We will follow the standard treatment closely

in Section 10, but please refer to [5,6,11] for further details. What follows is an outline of the

next few Sections:

1. Develop the theory of partially ordered classes (poclass) and investigate complete lattices

and Heyting Algebras in this setting.
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2. Identify a special type of complete lattice that arise from a set sized lattice and have more

familiar properties.

3. Define an appropriate semantics for IQC using this type of complete Heyting Algebras.

4. Prove the semantic completeness of IQC with in this framework.

Before we initiate the plan outlined above we will give a proof that no (non-trivial) complete

lattice (and thus no complete Heyting Algebra) is provably a set in CZF. This will serve as

motivation for what follows as it is not at all obvious that the route outlined above is necessary

without such a glaring result. This proof, by Giovanni Curi among others, is given below and

will follow the slides given in [12]. We have been introduced to the set theories of CZF, IZF

and ZF. Reference Section 5 for the subtle distinctions in the axioms of these theories. Recall,

the set of theorems of CZF form a proper subset of the theorems of IZF and the theorems of

IZF form a proper subset of the theorems of ZF. That is, CZF ⊂ IZF ⊂ ZF. When the Law of

Excluded Middle (LEM) is added to either CZF or IZF the set of theorems of either coincides

with the theorems of ZF. Additionally if the axioms of full Separation (Sep) and power set

(Pow) are added to CZF then its theorems coincide with IZF. Symbolically, CZF + LEM =

IZF + LEM = ZF and CZF + Sep + Pow = IZF. We will be working in CZF and modest

extensions from here on out.

First recall that for any set X , the collection Pow(X) is not provably a set in CZF, that is to

say it is a proper class. Two principles which have been shown to be consistent with CZF (see

[20] for details) are:

Troelstra’s principle of uniformity

If (∀x)(∃n ∈ ω)φ(x,n), then (∃n ∈ ω)(∀x)φ(x,n).

Subcountablility of every set

(∀x)(∃U ∈ Pow(ω))(∃ f ) f : U � x, where f : A � B indicates that f is onto.

These two principles are in fact inconsistent with classical mathematics. This thesis does

not wish to discuss the philosophical nature of these principles. Rather we wish to use them

to put a restriction on CZF (which as you recall does not have any anti-classical principles).

Combing these two principles one arrives at:
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Generalized Uniformity Principle (GUP)

For every set a, if (∀x)(∃y ∈ a)φ(x,y), then (∃y ∈ a)(∀x)φ(x,y).

Since Troelstra’s Principle of Uniformity and Subcountability of every set are consistent

with CZF, GUP is also consistent with CZF. In fact it is consistent with various extensions of

CZF that do not exceed the proof-theoretic strength of IZF [12]. Such arbitrary extensions of

CZF will be denoted CZF*.

It is now time to give a particularly useful application of GUP. We will give a full treatment

of partially ordered classes in Section 10. But out of necessity we now define a large join

semi-lattice.

Definition 9.1. A (large)
∨

-semilattice is a partially ordered class that has suprema for arbitrary

subsets. A
∨

-semilattice is degenerate if it only contains one element.

Remark. We call a collection large to emphasize that it is a proper class rather than a set.

Proposition 9.2. No non-degenerate
∨

-semilattice L can be proved to have a set of elements

in CZF*.

Proof. Suppose L is a set. Then for any set y the collection

{x ∈ L | 0 ∈ y}

is a set by bounded separation. Therefore, since L is a
∨

-semilattice, (∀y)(∃a ∈ L)a =
∨
{x ∈

L | 0 ∈ y}. In CZF*+GUP one may conclude

(∃a ∈ L)(∀y)a =
∨
{x ∈ L | 0 ∈ y}.

Since this is true for any set y let us first consider y = 0. In this case, a =
∨

/0 = ⊥. Next

consider y = {0}. In this case, a =
∨

L =>. So we are forced to conclude ⊥= a => and thus

L is degenerate. Applying the constructively viable form of the contrapositive we conlcude that

if L is not degenerate then it is not a set in CZF* + GUP. Thus, as to remain consistent with

GUP, if L is not degenerate then L is not provably a set in CZF*.
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One may ask themselves how can such a result hold? Surely finite sets, such a the Boolean

Algebra {0,1}, are complete and provably sets. For sure, {0,1} is provably a set in CZF but it is

not intuitionistically complete (for the completeness of {0,1} implies the weak law of exlcuded

middle). In fact no finite set can be complete in an intuitionistic setting (see [21]).

10 Set-Generated Heyting Algebra

We now generalize the concepts of Section 6 to proper classes. Recall that proper classes do not

formally exist but it is possible to discuss statements about them within the language of CZF

(see Section 5). We first define a partially ordered class. In light of the results of Section 9,

we quickly move towards more interesting matters such as (large) join complete semilattices,

which we denote
∨

-semilattice. Recall we say large to indicate that the collection is not a

set but a proper class. We then commence an investigation of set-generated semilattices, which

have similar behavior to lattices in the impredicative setting. Finally, we define (large) complete

Heyting Algebras and specify when they are set-generated. The section concludes with some

results which are of importance going forward. Refer to [11] for further details.

Definition 10.1. A partially ordered class (poclass) (X ,≤) is a class X together with a class-

relation ≤ that satisfies ∀x,y,z ∈ X

1. x≤ x (Reflexivity)

2. x≤ y and y≤ x implies x = y (Anti-Symmetry)

3. x≤ y and y≤ z implies x≤ z (Transitivity).

Definition 10.2. Given a poclass (X ,≤) and a subset A⊆ X the join s ∈ X of A satisfies

1. ∀a ∈ A,a≤ s

2. ∀x ∈ X(∀a ∈ A,a≤ x implies s≤ x).

The infimum (or meet) of A is defined analogously.
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Definition 10.3. A (large)
∨

-semilattice is a poclass (L,≤) where every subset of L has a join.

A (large)
∧

-semilattice is defined similarly. (Note that a
∨

-semilattice is not necessarily a
∧

-

semilattice and vice-versa). If a poclass is both a
∨

-semilattice and a
∧

-semilattice then we

call it a (large) complete lattice.

Remark. Every
∨

-semilattice L has a bottom element. To see this, observe /0 ⊆ L so we know∨
/0 exists. Any x ∈ L is vacuously an upper bound of /0 so we have

∨
/0≤ x. We define 0≡

∨
/0.

We typically say that a structure that is provably a set is ‘carried’ by a set and otherwise it

is ‘carried’ by a proper class. As we are working in CZF where no non-degenerate semilattice

is carried by a set we will not always specify the largeness of a semilattice.

The CZF counterpart to the classical notion of a semilattice (carried by a set) is the concept

of a set-generated
∨

-semilattice.

Definition 10.4. A
∨

-semilattice L is set-generated if it has a subset B ⊆ L such that for all

x ∈ L,

1. ↓B x≡ {b ∈ B | b≤ x} is a set,

2.
∨
↓B x = x.

We call such a set B a generating set.

Remark.
∨

-semilattice may have more than one generating set. Notice if B is a generating set

of L then B∪{0} is also a generating set of L. For this reason we often assume a generating set

contains the bottom element.

The power class Pow(X) for a set X ordered by inclusion is the prototypical example of a

set-generated
∨

-semilattice, with generating set B = {{x} | x ∈ X}.

Proposition 10.5. B as defined above is a generating set for Pow(X).

Proof. First we need to show B is a set. Clearly a function from X to B can be defined. For

example f : X → B via f (x) = {x}. Thus, for every x ∈ X there exists a y ∈ B such that f (x) =

y, with y = {x}. By strong collection with φ(x,{x}) being the formula for f (x) = {x} and

extensionality we conclude B is a set. (More explicitly, by strong collection we have there
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exists a set B′ such that ∀x ∈ X∃{x} ∈ B′( f (x) = {x}) and ∀{x} ∈ B′∃x ∈ X( f (x) = {x}) and

by extensionality B=B′ thus B is a set.) Let S∈Pow(X) or S⊆X . Note that ↓B S≡{b∈B | b⊆

S}= {b∈ B | b = {x}∧x∈ S} is a set by bounded separation. Now clearly, S is an upper bound

for ↓B S. Let S′ ⊆ X such that b ⊆ S′ for all b ∈ ↓B S. Let z ∈ S that is {z} ⊆ S. This implies

{z} ∈ ↓B S which implies {z} ⊆ S′. Thus z ∈ S′ and we have S⊆ S′. Thus,
∨
↓B S = S.

Proposition 10.6. A set-generated
∨

-semilattice is a complete lattice.

Proof. Let (L,≤) be a
∨

-semilattice generated by a set B which contains ⊥ (see remark after

Definition 10.4) and S⊆ L. Consider the collection Y ⊆ B of lower bounds of S. That is l ∈Y if

and only if l ∈ B and l ≤ s for all s ∈ S. Notice Y is non-empty since⊥≤ s for all s ∈ S (see the

remark following Definition 10.4). Clearly, Y is a set by Bounded Separation so by assumption∨
Y exists. We claim

∨
Y is the meet of S. Any s ∈ S is an upper bound of Y so by definition∨

Y ≤ s for all s ∈ S. Thus,
∨

Y is a lower bound of S. Let m be another lower bound S, that is

m≤ s for all s ∈ S. Now ↓B m is a set and ↓B m⊆ Y . So we have m =
∨
↓B m≤

∨
Y and hence

conclude
∧

S =
∨

Y .

Definition 10.7. A (large) complete Heyting Algebra is a (large) complete lattice satisfying the

infinite distributive law. That is, a complete lattice H is a complete Heyting Algebra if

a∧
∨
s∈S

s =
∨
s∈S

a∧ s

for a ∈H and S⊆H. If the underlying lattice is set-generated then we say H is a set-generated

complete Heyting Algebra.

Remark. Notice that we have foregone the standard definition of a Heyting Algebra here. This

choice is in no way essential but rather a matter of convenience.

Note that in CZF a (non-complete) Heyting Algebra may or may not provably be a set.

Fortunately, the Heyting Algebra that semantic completeness hinges on forms a set in CZF, as

the next proposition states.

Proposition 10.8. The Heyting Algebra on IQC (defined in Lemma 8.2) forms a set in CZF.
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Proof. IQC is of course a set, as it is inductively defined (see paragraph after Definition 5.3),

so by Proposition 5.11 the collection IQC/∼ forms a set.

In CZF we can still perform a universal completion of a Heyting Algebra but without the

power set axiom the result is a proper class and thus a (large) complete Heyting Algebra. The

next theorem will show that this (large) complete Heyting Algebra is in fact set-generated.

Theorem 10.9. Given a set H that is a Heyting Algebra there exists an embedding into a set-

generated complete Heyting Algebra H ′ that preserves the existing joins and meets of H.

Proof. A rehashing of Theorem 6.8 will give us an embedding of H into a (large) complete

Heyting Algebra H ′ that preserves existing meets and joins. It remains to show that H ′ is in

fact set-generated. Recall, H ′ is the collection of c-ideals of H. We claim that B = {↓ x | x∈H}

generates H ′, where ↓ x = {y ∈ H | y≤ x}. We first need to show that B is a set. Clearly there

exists a function from elements of H to B (explicitly f : H → B via f (x) = ↓ x.) Similarly to

Proposition 10.5 we can apply strong collection and extensionality to show B is a set. Now let

I ∈ H ′, that is, suppose I is a complete ideal of H. Consider ↓B I = {b ∈ B | b ⊆ I} = {b ∈

B | b =↓ x∧∀y ≤ x,y ∈ I} which is a set by bounded separation. Clearly, I is an upper bound

of ↓B I. Let J ∈ H ′ be any other upper bound. That is, b ⊆ J for all b ∈ ↓B I. Now let x ∈ I.

Since I is a complete ideal we have ↓ x⊆ I so that ↓ x ∈ ↓B I. Now, by assumption ↓ x⊆ J. In

particular, x ∈ J so that I ⊆ J. We then conclude
∨
↓B I = I.

11 Constructive Completeness of IQC

In this section we define a semantics for IQC on the collection of set-generated complete

Heyting Algebras. This is a generalization of the concepts of Section 7. Following this we

will proceed to prove the constructive version of semantic completeness of IQC. In Section 10

we established the necessary behavior of a set-generated complete Heyting Algebra so we may

now proceed as we did in the intuitionistic proof of semantic completeness of IQC (see Section

8).

Definition 11.1. Given a set-generated complete Heyting Algebra H we define an H-valuation
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v : IQC→ H just as in Section 7. Given a Heyting Algebra H we also define a partial H-

valuation and a quantifier complete H-valuation just as before.

Definition 11.2. Given a set-generated complete Heyting Algebra H we say a formula φ of

IQC is H-valid, denoted |=H φ , if v(φ) = 1H for every H-valuation v : IQC→ H. We say φ is

valid, denoted |= φ , if |=H φ for every set-generated complete Heyting Algebra H.

It may seem unnecessary to restrict the semantics to set-generated complete Heyting Alge-

bra, but a ‘collection’ of (not necessarily set-generated) complete Heyting Algebra is in some

sense too large to consider in their entirety in any meaningful way. This is because we have no

means of formally discussing collections of proper classes, only collections of sets. Formally,

with in the language of CZF, we could describe the class of all sets which generate a complete

Heyting Algebra with a formula. We would then associate a set-generated Heyting Algebra

with its generating set. See Section 5 for more information on how we treat classes in CZF.

What follows is a constructive — in the sense that it is done within CZF — proof of the

semantic completeness of IQC.

Theorem 11.3. The theory IQC is semantically complete, that is every formula that is valid is

also provable. Symbolically, if |= φ then ` φ .

Proof. Suppose |= φ . Let H be the Heyting Algebra on F and H ′ the universal set-generated

completion of H (see Theorem 10.9) and consider the H ′-valuation v(φ) = i([φ ]), where [φ ] is

the quantifier complete valuation on H (see Proposition 8.3) and i is the inclusion map for the

universal completion (see Theorem 6.8). By Definition 11.2 we have |=H ′ φ and thus i([φ ]) =

1H ′ . Since the universal completion preserves bounds we can infer that [φ ] = 1H . We conclude

(by Lemma 8.2) that ` φ .

Conclusion

The goal of the thesis, a constructive proof of the semantic completeness of intuitionistic pred-

icate logic (IQC), has been achieved. In Section 2, we explored intuitionistic and construc-

tive mathematics and how this perspective differs from classical mathematics. We concluded
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roughly that intuitionistic mathematics abstains from the law of excluded middle (LEM) and

constructive mathematics is done with predicative constructions. The latter point rules out po-

tential foundations for constructivism that possess the power set axiom. In Section 3,4 and

7, we discussed formal languages with proof systems and semantics (with a primary focus on

intuitionistic predicate logic). In Section 5, we developed some preliminary set theoretic re-

sults in Constructive Zermelo Fraenkel set theory (CZF) and began a critical discussion on

axiomatic strength and proper classes. In Section 6, we developed some order theory with the

intention of defining a Heyting Algebra. The notion of Heyting Algebra is quintessential to

this thesis and is the crux of the definition of semantics for intuitionistic logic, given in Section

7. In Section 8, we gave an intuitionistic proof of the semantic completeness of intuitionistic

predicate logic inspired by Troesltra [1]. This proof fails to be fully constructive because it

requires the power set axiom; which is not available in CZF or any constructive foundation. In

Section 9, we motivated the need for a theory or partially ordered classes. This motivation came

from the shocking result that no complete lattice is provably a set in any predicative extension

of CZF. We then formally introduced the theory of partially ordered classes in Section 10. In

Section 11, we redefined a semantics for IQC using set-generated complete Heyting Algebra

and proved the semantic completeness of IQC constructivly.

Potential for future work ranges in difficulty. A natural next step is to extend the semantic

completeness result for full IQC (i.e. many-sorted IQC with equality). The proof would be

similar, although some complications arise by adding many-sorts and equality. Alternatively

one could explore the possibility that there are quantifier complete Heyting Algebra that are

provably sets in CZF (of primary interest is the Heyting Algebra of Lemma 8.2). If this were

the case one may achieve a constructive result with out an appeal to a theory of partially ordered

classes. The semantics would need to be defined on a collection that contains the quantifier

complete Heyting Algebra but no complete Heyting Algebra. My suspicion is that this is not

going to be the case, but active investigation is underway. Finally one could formalize the proof

in a proof assistant for verification (e.g. Lean). Formalizing the proof in a proof assistant is

doable but likely will require a timeline of 6+ months. Learning Lean and developing packages

that support CZF are initial roadblocks. The process of formalization would be its own battle.

54



An alternative would be to take up the suggestion given in the introduction and approach the

problem from the perspective of Type Theory. This setting is more amenable to mechanization

and may be fruitful in the process of formalization.
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