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ABSTRACT 

 
 

There are many looking to connect human senses to quantifiable data. Scents are 

categorized by their descriptions into scent families. These include citrus, floral, and 

woody. Similar descriptors designate similar families, while different descriptors 

correlate with different families. Dravnieks compiled an Atlas of chemical descriptors 

[1]. Such descriptors are cinnamon, fruity, and cadaverous. By analyzing the applicability 

of these descriptors, the chemicals will be sorted into their scent families. 

Gas chromatography generates sample-specific signals of voltage over time. 

Chromatograms of known scents will serve as a basis for a convolutional neural network. 

This algorithm will be trained on these signals and tested with unknown scents to 

categorize scents with no human participation. We seek to generate verbal descriptions of 

scent through machine learning analysis of GC signals.  
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INTRODUCTION 

 
 

There are many working on the connection between the human experience and 

quantitative data. Tools that gather and analyze this data include electronic noses (“e-

Nose”) and electronic tongues (“e-Tongue”). Examples of usage for e-Tongues include 

tasting human sweat to determine stress levels [2] and categorizing components of cheddar 

cheese [3]. These e-Tongues utilize high performance liquid chromatography (HPLC). 

Chromatography practices generate signals of voltage over time specific to the chemical 

make-up of the sample. From these signals, the type of molecule, and the concentration of 

each type, can be found.  

Like e-Tongues, e-Noses have been studied for many different applications. e-

Noses have been studied for a while. In 1995, Rastogi applied GC techniques to analyze 

cosmetics [5]. More recently, Keller’s group set to predict how the shape of a molecule 

could predict the human perception of the molecule’s scent [4]. Their findings suggest that 

there is still no way to determine, from appearance alone, how a human olfactory system 

will perceive a chemical’s scent. The goal of this project is to utilize gas chromatography 

(GC) to create an algorithm that can categorize the scent of chemicals without the use of 

human participation. 

GCs work by taking a sample of gas, heating it up, and then allowing it to diffuse 

through a column. GC signals have two aspects, both sensor and substance-specific, as part 

of their signals. Retention time is how long it takes for a given substance to migrate through 

stationary phase, and the detection limit is the minimum amount of a specific substance 



 

2 

needed to confirm its presence. The width of the peak correlates to the resolution of the 

column. The thinner the peak, the more efficient the column.  

Scents are categorized into families by their descriptions. For example, a scent with 

notes of lemon or orange would be in the citrus family, and a scent with notes of oak and 

cedar would be woody. Much like the color wheel, those versed in scent categorization 

have a scent wheel, as shown in Fig. 1. The way that scents are categorized leads to those 

from the same family having similar descriptions, and those from different families having 

different descriptions.  

 

In 1985, Andrew Dravnieks published his Atlas of Odor Character Profiles. The 

Altas is a collection of 160 tables. The chemicals chosen are mostly scent or flavor 

additives. Each table is for a different chemical and measures the applicability of 146 

different descriptors on a scale of 0-5, 5 being entirely applicable and 0 being entirely non-

applicable. To obtain the applicabilities, Dravnieks had groups of about 130 people sniff 

Figure 1. Scent wheel showing the 
different scent families. 
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each chemical and fill out a survey, where they were asked to rate each applicability. The 

Atlas serves as the basis of the scent categorization utilized to create the algorithm, and 

choose chemicals to use as the known scents in the experimental portion of the project. [1]
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DESCRIPTION OF THE PROCESS 

 
 

To start, the chemicals from The Atlas were sorted into their respective scent 

families. Then, a bank of 160 data points existed, each 146 dimensional. The 

dimensionality made the data difficult to visualize. So, visualizations of the data, in two 

and three dimensions, were generated using Python to better understand the data. 

During this time, chemicals were also purchased for the experimental portion of the 

project. Nine chemicals were chosen, three chemicals each from three families. Those 

chosen were chemicals deemed to have the greatest alignment for their given family.  For 

each of these chemicals, the retention time and detection limit were found. The detection 

limit for the GC used in this project was determined to be the concentration of a sample 

that corresponds to a peak of 100 raw ADC units on the program created to gather the 

chromatographic data. These raw signal units can easily be converted to Volts for data 

analysis. As retention times differ, some samples needed to be run multiple times to find 

the actual retention time, as some occurred after the pre-set timing of acquisition for the 

GC device provided by API. 

Once these values were gathered for each of the nine experimental chemicals, the 

chromatographic data was used as the basis for the Convolutional Neural Network (CNN). 
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EXPERIMENTAL SETUP 

 
 

Our data was collected on a GC apparatus supplied by API at WKU. The GC’s 

work by heating up the sample and allowing it to diffuse over a detector. Diagrams of the 

apparatus are shown in Fig. 2 and 3. 

 

Samples are prepared by first filling a bag with 1L of filtered air. The volume of a 

substance needed for a specific concentration is calculated. Then, a gas tight syringe, as 

shown in Fig. 4, is used to inject the necessary volume of the substance into the bag. The 

bag is then connected to the sample inlet on the GC. 

Figure 2. Diagram of GC Figure 3. Picture of the GC with 
labels 
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When the apparatus is run, a subsample of the prepared sample is injected into the 

apparatus. This sample is then heated by the oven and allowed to diffuse over the detector. 

The detector, then, will create a signal of raw ADC data over time, which can be converted 

to a Voltage over time signal, based on the specific sample. 

Figure 2. Picture of gas-tight syringe 



7 

EXPERIMENTAL DATA 

 

The chemicals from The Atlas were sorted into their scent families. It was found 

that the number of samples from each family was different. For example, only three 

chemicals would fit into the citrus family, but forty align with a woody family 

description. To better identify these scents, spider plots were generated using Python to 

test the similarity between families. The citrus spider plot is shown in Fig. 5, but the 

others are all shown in Appendix A. In the plot, each color corresponds to a different 

chemical.  As previously stated, three are citrus, so there are three different plots in Fig. 

5. The distance from the center on each line corresponds to one quarter of the percent 

applicability for each descriptor along the edge of the shape. As shown, the terms with 

high applicability for one chemical tended to also have high applicability for the other 

Figure 5. Spider graph for the citrus family 
Figure 6. Spider graph of 
Limonene and Patchouli Oil 
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chemicals within this family. This trend carried through each family. 

In contrast, the plots for chemicals from different families tended to have spikes 

for one chemical with none for the other, as shown in Fig. 6. In this plot, the blue 

corresponds to Limonene, a citrus scent, and the orange is patchouli oil, a woody scent. 

There is very little overlap between two scents of different families. The only true 

crossovers are “Fragrant” and “Aromatic,” which are not family specific for these 

chemicals. More data visualizations are shown in Appendix A, including an LDA (Linear 

Discriminate Analysis) plot. 

The nine chemicals chosen for this project are shown in Table 1. Several trials 

were performed to determine the retention time and detection limit. Once a detection 

limit was found, the sample bag was cleaned using lab air, and the GC was run with 

filtered air samples. To make sure they were accurate for each chemical, the detection 

limits were then tested again, using the clean bags.  

In Fig. 7, multiple chromatograms are shown for different concentrations of 

acetone. The detection limits for this column were chosen to be the concentatrations of 

substances at which the peak was 100 units (in the raw ADC units) above the baseline to 

account for noise. Each color corresponds to a different concentration. As shown, the 

correlation between concentration and peak height is non-linear, as the jump in 

concentration is the same for each. The peaks all occur at the same time, at the retention 

time for acetone. The smallest curve is at acetone’s detection limit, which is 48 parts per 

million (ppm). So, for every million parts of that sample, there were 48 acetone molecules. 

For this visual, the raw ADC has been converted to Volts.  
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Table 1.  Chemicals purchased from the Atlas and their families 

Chemical Retention Time (s) Detection Limit Family 

1-Hexanal 1486 61 ppt Green 

Diphenyl Oxide 1490 .28 ppt Green 

Haxanol 270 13 ppt Green 

(-) Menthol 550 10 ppm Aromatic 

Eucalyptol 541 .25 ppt Aromatic 

Methyl Salicylate 584 9 ppm Aromatic 

Acetophenone 52 2089 ppb Floral 

Hydroxy Citronellol 546 328 ppt Floral 

Phenyl Ethanol 227 13 ppb Floral 

Figure 3. Peaks corresponding to different 
concentrations of acetone 
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Due to the limited sample size, the correlation between family and retention time 

might be unreliable. Also, some chemicals have multiple peaks, so the primary peak is the 

one used in the table. Graphically, as seen in Fig. 8 and 9, there seems to be a correlation 

between the retention time and the scent families of molecules. To substantiate this claim, 

there would need to be further samples run, and more chemicals from each scent family for 

comparison’s sake.  

In Fig. 5 and 6, the horizontal lines show the detection limit of the sensor. So, any 

peak below that line is considered noise, and not part of the chemical specific portion of 

the chromatogram. Experimental data for all other chemicals can be found in Appendix 

B. 

The gathered chromatograms were used as the basis for a machine learning 

algorithm to determine scent.

Figure 8. Experimental data for Hydroxy 
Citronellol and Methyl Salicylate 

Figure 9. Experimental data for Hexanol 
and Diphenyl Oxide 
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MACHINE LEARNING 

 
 
 The chromatograms were correlated to their scent family, and the algorithm was 

trained on that correlation. The algorithm was fed plotted chromatograms, and these 

served as the basis of the algorithm. The algorithm took in the whole signal, including 

any noise. Due to the difference in run times for samples, some signals had to be 

lengthened for the algorithm to train on the experimental data. Otherwise, the algorithm 

would take a chromatogram gathered over 250 seconds, and directly compare it to a 

signal taken for 2500 seconds, even though the signal has a factor of ten times the 

number of data points. Iterations of the algorithm have an average accuracy of 85% in 

correlating the correct scent family to a chromatogram from the three families used for 

data collection. 

 

Figure 4. Diagram showning Machine Learning Architecture 
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CONCLUSION AND FUTURE WORK 

 
 

The project is still ongoing, as the algorithm is only 85% accurate. If more 

chromatograms were gathered and more chemicals were used from the Atlas, the algorithm 

would be more accurrate. The time for running each sample could also have been more 

streamlined, although the amount of data collected was limited by the time constraints of 

the semester and the GC device being used. Some samples required the machine to collect 

data for half an hour, but between the cool down time and the actual run time, those samples 

took almost an hour each. Despite this, there does seem to be some correlation between 

retention time and human scent perception, although this would require further testing to 

state. 

This project can also be expanded in the future in several ways. For example, this 

couls have connections in agriculture. For ten weeks in the summer of 2021, I worked at 

Alabama A&M’s agricultural research station where we treated industrial hemp with low 

temperature plasma (LTP) to test the affects on growth. Industrial hemp is Cannabis sativa 

within a certain threshold of THC (Tetrahydrocannabinol), measured in relation to CBD 

(Cannabidiol). When farmers grow industrial hemp, they must make sure that the 

percentage of THC in their crops is not over the threshold. In Alabama, this threshold was 

0.3%. Once a crop surpasses this limit, the entire batch is considered a controlled substance 

and is destroyed by the state as such. Currently, the only way to test THC content in the 

plants is through a destructive process. If an e-Nose could be fashioned to determine THC 
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content through non-destructive means, many harvests can be planned when the crops 

approach the limit so an entire season’s work is not lost. 

Throughout this process, I have learned a lot about both experimental physics and 

myself. I have discovered that I like working in a lab, and doing things with my hands, 

rather than only theory. I discovered the importance of coding in an experimental project, 

and that I was not made to directly interpret 146 dimensions. Also, I found that I prefer a 

lab with windows, despite the beauty of API. Moreover, I found that I love research in the 

field, and this process has led me to pursue a Ph.D. in physics. 

The goal of the project was to connect GC to scent, and to generate verbal 

description of scents without the use of a human nose. That has been accomplished in a 

rudimentary sense. I hope that, at some point, someone takes this to the point where we 

can generate more descriptive verbal descriptors for scents using this process.
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APPENDIX A: ATLAS VISUALIZATIONS 

 
 

Plots were generated in Python to analyze the raw data from the Atlas. Two-

Dimensional Slices, Parallel Coordinates, Principal Component Analysis (PCA), Linear 

Discriminate Analysis (LDA), t-distributed Stochastic Neighbor Embedding (t-SNE), and 

spider (radar) plots were used to visualize the raw data.  

Two-Dimensional slices take only two of the 146 dimensions for each point. For 

example, we plotted Vanilla v. Lemon, but this would work for any of the descriptors in 

the atlas. There is a point for each chemical, color coded to its scent family. 

 

 

 

Figure 5. 2-D slice with Lemon and Vanilla descriptors 
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Parallel Coordinates has a point on the x-axis for each descriptor, and the 

applicabilities on the y-axis. Then, there is a shape plotted for each chemical. These are 

scatterplots where the points are connected linearly. 

 
PCA is used to reduce data dimensionality. PCA can be plotted in two or three 

dimensions. PCA plots clusters of like points, color coded for their group. The downside 

to PCA is that the distance between these groups is arbitrary. The clusters, however, do 

show correlation. 

Figure 6. LDA plot 

Figure 7. PCA plot 
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LDA is like PCA, but the tool looks to separate the classes, not just the data 

points. The plots still look like clusters of points color coded by group identifier. 

 
 

Also, like PCA, t-SNE is a data reduction tool that can be used in two or three 

dimensions. It also appears to be clusters of data points color coded by a group identifier. 

Unlike PCA, the distance between clusters is not meaningless. 

Spider plots are the most dissimilar, as explained in the introduction. 

 

 

Figure 8. t-SNE plot 



 

18 

  

Figure 12. Oriental spider plot Figure 11. Floral spider plot 

Figure 10. Woody spider plot Figure 9. Citrus spider plot 
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Figure 19. Leather spider plot Figure 13 Aromatic spider plot 
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APPENDIX B:  EXPERIMENTAL CHROMATOGRAMS 

 
 
 Experimental GC Data was gathered for all purchased chemicals. Included in this 

appendix are nine such chromatograms, one for each chemical. 

 
 

Figure 14. Menthol(-) chromatogram 
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Figure 15. 1-Hexanol chromatogram 

Figure 16. Haxanal chromatogram 
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Figure 17. Acetophenone chromatogram 

Figure 18. Diphenyl Ether chromatogram 
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Figure 19. Eucalyptol chromatogram 

Figure 20. Methyl Salicylate chromatogram 
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Figure 21. Phenyl Ethanol chromatogram 
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