
HAL Id: hal-00575922
https://hal.archives-ouvertes.fr/hal-00575922

Submitted on 19 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connectedness and Local Search for Bicriteria Knapsack
Problems

Arnaud Liefooghe, Luis Paquete, Marco Simoes, José Figueira

To cite this version:
Arnaud Liefooghe, Luis Paquete, Marco Simoes, José Figueira. Connectedness and Local Search for
Bicriteria Knapsack Problems. 11th European Conference on Evolutionary Computation in Combi-
natorial Optimisation - EvoCOP 2011, Apr 2011, Torino, Italy. pp.48-59, �10.1007/978-3-642-20364-
0_5�. �hal-00575922�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50004376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00575922
https://hal.archives-ouvertes.fr

Connectedness and Local Search for

Bicriteria Knapsack Problems

Arnaud Liefooghe1, Lúıs Paquete2, Marco Simões2, and José R. Figueira3

1 Université Lille 1, LIFL – CNRS – INRIA Lille-Nord Europe, France
arnaud.liefooghe@univ-lille1.fr

2 CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
paquete@dei.uc.pt,msimoes@student.dei.uc.pt

3 INPL, École des Mines de Nancy, Laboratoire LORIA, France
jose.figueira@mines.inpl-nancy.fr

Abstract. This article reports an experimental study on a given struc-
tural property of connectedness of optimal solutions for two variants of
the bicriteria knapsack problem. A local search algorithm that explores
this property is then proposed and its performance is compared against
exact algorithms in terms of running time and number of optimal so-
lutions found. The experimental results indicate that this simple local
search algorithm is able to find a representative set of optimal solutions
in most of the cases, and in much less time than exact approaches.

1 Introduction

Stochastic local search algorithms have been applied successfully to many multi-
criteria combinatorial optimization (MCO) problems. It is widely accepted that
their sound performance is related to some structural properties of the solution
space that allow local search procedures to find reasonably good quality solu-
tions in an effective manner. However, little is known about which properties
these are and how they can affect the performance of this class of algorithms.

In this article, the notion of connectedness of the set of optimal solutions
for MCO problems (a.k.a. the efficient set) [3] is analyzed from an experimental
point of view, and related to the performance of a particular class of multicriteria
local search algorithms [9]. For a given efficient set of a MCO problem instance, a
graph can be constructed such that each node represents an optimal solution and
an edge connects two nodes if the corresponding optimal solutions are neighbors
for a given neighborhood structure. The efficient set is connected with respect
to that neighborhood structure if the underlying graph is also connected, that
is, there is a path between any pair of nodes. If the efficient set is connected
and the neighborhood structure is tractable from a computational point of view,
local search algorithms would be able to find the efficient set in a very effective
manner [9], by starting from at least one efficient solution. However, worst-case
results have shown that the efficient set for many MCO problems is not connected
in general with respect to different neighborhood structures [3, 5], except for
very few particular cases [6, 11]. Moreover, some recent results indicate that

2 A. Liefooghe, L. Paquete, M. Simões, and J. R. Figueira

approximate solutions that are obtained from independent metaheuristic runs
on the bicriteria traveling salesman problem are strongly clustered with respect
to small-sized neighborhood structures [10].

The degree of connectedness is here investigated experimentally for two vari-
ants of the bicriteria knapsack problem: The bicriteria unconstrained optimiza-
tion problem (BUOP) and the bicriteria knapsack problem with bounded car-
dinality (BKP-BC). Both problems are NP-hard and intractable in the general
case [2]. The experimental results suggest that the efficient set for the two prob-
lems above is very often connected with respect to elementary neighborhood
structures, despite of the negative results reported in the literature [5]. Based on
these positive findings, a local search algorithm is proposed and its performance
is compared with that of multicriteria dynamic programming algorithms in terms
of running-time and number of optimal solutions found. A special technique is
introduced that allows the early termination of the complete neighborhood ex-
ploration without harming algorithmic performance in terms of solution quality.

The article is organized as follows. Section 2 and Section 3 give the connect-
edness results for BUOP and BKP-BC, respectively. Moreover, for each of the
sections above, the local search algorithms and the exact approaches for the cor-
responding problem are introduced. Numerical results are shown on a large set
of random instances of different structure and size. Finally, Section 4 presents
conclusions and further work.

2 The Bicriteria Unconstrained Optimization Problem

This section introduces a variant of the classical knapsack problem where the
capacity constraint is transformed into an additional criterion to be optimized.
Then, an experimental analysis on the connectedness property of the correspond-
ing efficient set is reported, as well as the performance of a local search algorithm
on several instances of the problem.

2.1 Problem Definition

The original (single-criterion) 0/1 knapsack problem is formulated as follows:

max

n
∑

i=1

pixi

s.t.

n
∑

i=1

wixi ≤ W

(1)

where p = (p1, p2, . . . , pj , . . . , pn) is the profit vector, pj representing the amount
of profit on item j, j = 1, . . . , n, and x = (x1, x2, . . . , xj , . . . , xn) with xj = 1
if the item j is included in the subset of selected items (knapsack) and xj = 0
otherwise; w = (w1, w2, . . . , wj , . . . , wn) is the weight vector, wj representing
the amount of investment on item j, j = 1, . . . , n; and W is the overall amount

Connectedness and Local Search for Bicriteria Knapsack Problems 3

available or budget. The sum of profits and the sum of weights of a given solution
x are denoted by p(x) and w(x), respectively.

By transforming the capacity constraint of Problem (1) into a criterion, the
following bicriteria unconstrained optimization problem [2] is obtained:

max (p(x),−w(x)) . (2)

A proper meaning to the operator “max” above is given as follows. Let X denote
the set of feasible solutions of Problem (2). The image of the feasible solutions
when using the vector maximizing function of Problem (2) defines the feasible
region in the criteria space, denoted here by Z ⊆ N

2. A feasible solution x ∈ X
is efficient if there does not exist another feasible solution x′ ∈ X such that
p(x′) ≥ p(x) and w(x′) ≤ w(x), with at least one strict inequality in one of
above (or (p(x′),−w(x′)) ≥ (p(x),−w(x))). A vector z ∈ Z is nondominated if
there is some efficient solution x such that z = (p(x),−w(x)). A vector z ∈ Z
dominates a vector z′ ∈ Z (or z′ is dominated by z) if z ≥ z′ holds; if neither
z 6≥ z′ nor z′ 6≥ z holds, then both are (mutually) nondominated. The set of all
efficient solutions and the set of nondominated vectors are called the efficient

set and the nondominated set, respectively. The usual goal of MCO is to find
a minimal complete set, that is, the smallest subset of the efficient set whose
image coincides with the nondominated set. This subset may not be unique.

2.2 Connectedness Analysis

This section describes an experimental analysis for investigating the influence of
problem size and degree of conflict between the two criteria on the connected-
ness property of the efficient set for BUOP. A multicriteria dynamic program-
ming (MDP-BUOP) algorithm is implemented to compute the efficient set. This
algorithm consists of the first phase of the Nemhauser-Ullman algorithm for the
single-criterion 0/1 knapsack problem [8]. It has shown to be theoretically effi-
cient for several input data distributions [1]. The MDP-BUOP sequential process
consists of n stages. At any stage i, the algorithm generates a set Si of states,
which represents a set of promising feasible solutions made up of the first i items,
i = 1, . . . , n. A state s = (sp, sw) ∈ Si represents a feasible solution of profits sp

and weight sw. The MDP-BUOP algorithm follows the recursion:

Si := vmax {(sp + pi, s
w − wi), s ∈ Si−1}

for i = 1, . . . , n, with the basis case S0 := (0, 0). Operator “vmax” returns the
states that are nondominated in Si. At the last stage n, the set Sn corresponds
to the nondominated set.

In order to obtain the efficient set with the MDP-BUOP algorithm, a binary
string is generated with each new state and updated accordingly during the se-
quential process. For this reason, the implementation keeps states with the same
component values. The removal of dominated states at each stage is performed
by the algorithm of Kung et al. [7]. Only two sets of states are maintained during
the overall sequential process since, at any stage i > 0, only set Si−1 is required.

4 A. Liefooghe, L. Paquete, M. Simões, and J. R. Figueira

Table 1. Percentage of BUOP instances connected with respect to the 1-flip neighbor-
hood (all instances are connected with respect to the 1-flip-exchange neighborhood)
and average size of the efficient set for each instance size and data correlation (%con
and avgs, respectively).

ρ = −0.8 ρ = −0.4 ρ = 0.0 ρ = 0.4 ρ = 0.8
size %con avgs %con avgs %con avgs %con avgs %con avgs

300 100.0 8 965 96.7 10 838 100.0 14 501 100.0 24 702 93.3 55 159
600 96.7 32 242 100.0 39 056 100.0 52 675 96.7 92 717 90.0 22 8427
900 90.0 69 208 93.3 83 357 86.7 112 598 76.7 201 642 60.0 495 154

1200 96.7 118 483 90.0 144 259 86.7 195 396 83.3 338 903 - 823 612
1500 90.0 179 932 93.3 217 230 86.7 301 845 - 526 029 - 1 352 817
1800 83.3 252 972 93.3 308 373 - 423 450 - 716 598 - 1 818 608
2100 76.7 337 443 - 409 771 - 563 840 - 969 069 - 2 431 715

These two sets are implemented as height-balanced binary search trees in order
to allow logarithmic-time operations. If the implementation does not terminate
before one hour of CPU-time, or if RAM resources available are exceeded, the
run is cancelled and the output is omitted. The code is written in C++.

BUOP instances are defined with two parameters: problem size (n) and cor-
relation between profit and weight vectors (ρ). Both parameters affect the size of
the efficient set. The positive (resp. negative) data correlation will increase (resp.
decrease) the degree of conflict between the two criteria. The size of the instances
ranges from 300 to 3000 and the correlations are ρ ∈ {−0.8,−0.4, 0.0, 0.4, 0.8}.
Profit and weight integer values are generated randomly according to a uniform
distribution in [1,M/n], where M denotes the maximum possible integer value.
The generation of correlated data follows the procedure given by Verel et al. [12].
For each problem size and each correlation degree, 30 different and independent
instances are randomly generated.

Two neighborhood structures are considered for the experimental analy-
sis: the 1-flip and 1-flip-exchange neighborhoods. Two feasible solutions are 1-
flip neighbors if they differ exactly on one assignment. In other words, a given
neighbor can be reached by adding or removing one item from a given solution.
Hence, this neighborhood structure is directly related to the Hamming distance
between binary strings. The 1-flip-exchange neighborhood is an extension of the
neighborhood above. Two feasible solutions are 1-flip-exchange neighbors if one
can be obtained from the other by exchanging two items, adding one item, or
removing one item. The size of the neighborhood is linear with n for the 1-
flip neighborhood structure, while it is quadratic in the case of 1-flip-exchange.
Both neighborhoods coincide with the neighborhood structures used by Gorski
et al. [5] for a similar class of problems.

For the connectedness analysis, MDP-BUOP outputs the efficient set for
every instance. For each neighborhood structure, an adjacency matrix is built,
indicating whether each two efficient solutions are neighbors or not. Based on
this matrix, the connectedness of the corresponding graph is tested. Since this

Connectedness and Local Search for Bicriteria Knapsack Problems 5

Algorithm 1 Pareto Local Search

Input: n ∈ N, p, w ∈ N
n, x0 := 0.

Output: Set VT

1: VF := {x0}
2: VT := ∅
3: while VF 6= ∅ do

4: select x⋆ from VF

5: VF := VF \ {x⋆}
6: VT := VT ∪ {x⋆}
7: for all x ∈ N(x⋆) do
8: if {x′ | x′ ∈ VF ∪ VT , (p(x

′),−w(x′)) ≥ (p(x),−w(x))} = ∅ then

9: VF := {x′ | x′ ∈ VF , (p(x),−w(x)) 6≥ (p(x′),−w(x′))}
10: VT := {x′ | x′ ∈ VT , (p(x),−w(x)) 6≥ (p(x′),−w(x′))}
11: VF := VF ∪ {x}
12: return VT

analysis involves a large usage of memory resources (more than 2Gb for large-
size instances), only results for a limited number of instance sizes and correlation
values are presented. Table 1 gives the percentage of instances with the efficient
set that is connected with respect to the 1-flip neighborhood, as well as the
average size of the efficient set, rounded to the nearest integer. Although the
correlation in the input data influences the size of the efficient set, it does not
seem to affect the connectedness results. However, the proportion of instances
with a connected efficient set slightly decreases with the increase of the instance
size. Finally, for those set of instances, the efficient set is always connected with
respect to the 1-flip-exchange neighborhood.

2.3 Local Search for BUOP

The local search algorithm for BUOP (PLS-BUOP) is based on the Pareto Local
Search [9]. The pseudo-code is given in Algorithm 1. For simplification purpose,
it is assumed that all feasible solutions have a distinct image in the criterion
space. Two archives of nondominated solutions are maintained, VT and VF , re-
spectively. Archive VT contains the set of solutions whose neighborhood has
already been explored, while VF contains the remaining ones. PLS-BUOP starts
with an efficient solution that initializes the archive. Then, at each iteration, a
solution is chosen from VF , and its neighborhood is explored (N (x) denotes the
neighborhood of a given solution x ∈ X). All the nondominated neighboring
solutions are used to update VF and dominated solutions are discarded from
VF and VT . The algorithm terminates once VF is empty. This algorithm stops
naturally when a Pareto local optimum set is found, it does not cycle, and if
connectedness of the efficient set holds, it is able to identify it by starting from
at least one efficient solution (with a proper change of the conditions in Algo-
rithm 1) [9]. In the following, some particular details of the implementation are
described.

6 A. Liefooghe, L. Paquete, M. Simões, and J. R. Figueira

Fig. 1. Initial dominance-depth ranking of items for the exploration of the neighbor-
hood (left: ranking for adding, right: ranking for deleting).

– Initialization. The algorithm starts with the efficient solution x0 = 0. This
solution maps, in the criteria space, to an extreme point from the nondomi-
nated set, with null profit and weight values.

– Selection. At each iteration of the algorithm, the solution from VF with the
smallest profit value is selected (Algorithm 1, line 4).

– 1-flip neighborhood exploration. In order to perform the 1-flip neighborhood
exploration in an efficient manner, a preliminary step ranks the items into
different layers, with respect to the dominance-depth ranking [4]. Two dif-
ferent ranks are required to cover the cases of adding and deleting an item.
This step is illustrated in Fig. 1. Let Li denote the set of items in the i-th
layer and let u ∈ Li and v ∈ Lj , j > i. Then, for the case of the addition, it
holds that (pv,−wv) 6≥ (pu,−wu). Therefore, the neighborhood exploration
starts by examining the items in the first layer, and proceeds with the items
in the subsequent layers. Within the same layer, the exploration follows the
nondecreasing order of the weights. The exploration stops after verifying
that no item of a given layer belongs to the current solution. Indeed, any
neighboring solution constructed from the subsequent layers is dominated
by at least one neighboring solution built from this layer. For the case of
deletion, a similar reasoning applies with the corresponding changes.

– 1-flip-exchange neighborhood exploration. For this neighborhood, the same
reasoning as above applies when adding or removing an item. In order to
exchange pairs of items more efficiently, the following pre-processing proce-
dure is applied: First, for each item i ∈ {1, . . . , n}, a tuple records the profit
and weight difference with respect to each different item j. Then, the n− 1
tuples are sorted in terms of dominance-depth ranking. When considering
the exchange of item i with another item, the exploration follows the order
given by the dominance-depth ranking, with the nondecreasing order of the
weighs for tuples within the same layer; the exploration stops once the items
corresponding to all tuples of a given layer can be exchanged with i. The
exploration is iterated for every item in the knapsack.

Connectedness and Local Search for Bicriteria Knapsack Problems 7

 0.1

 1

 10

 100

 1000

 500 1000 1500 2000 2500 3000

C
P

U
 ti

m
e

(s
ec

on
ds

)

instance size

DP
PLS

 0.1

 1

 10

 100

 1000

 10000

 500 1000 1500 2000 2500 3000

C
P

U
 ti

m
e

(s
ec

on
ds

)

instance size

DP
PLS

Fig. 2. CPU time in seconds (average value and standard deviation, given in log scale)
of MDP-BUOP and PLS-BUOP using the 1-flip neighborhood for instances with data
correlation ρ = −0.4 (left) and ρ = 0.4 (right).

– Data structures. Archives VF and VT are implemented as height-balanced bi-
nary search trees. The removal of dominated solutions follows the algorithm
of Kung et al. [7].

MDP-BUOP and two PLS-BUOP versions, each one for each neighborhood
structure, were run on the instances described in Section 2.2. The implementa-
tion of MDP-BUOP was modified in order to output a minimal complete set.
All the algorithms share the same programming language, data structures, com-
pilation options and were run in the same machine with a time bound of one
hour. The PC used for the experiments was an iMac with Mac OS X v10.5.5
(Leopard), 2.4 GHz Intel Core with 4MB L2 Cache and 2GB SDRAM. All codes
were compiled with g++ version 4.0.1 using the -O3 flag. The CPU-time taken
by MDP-BUOP and PLS-BUOP with 1-flip neighborhood for instances with
correlation ρ = −0.4 and ρ = 0.4 is reported in Fig. 2. In order to distinguish
the differences of performance, the CPU-time is presented in log scale. Simi-
lar relationship between performance of both implementations was obtained for
the remaining correlation values. Table 2 presents the percentage of efficient
solutions and the total number of solutions returned by PLS-BUOP using 1-
flip neighborhood, averaged over results obtained in 30 instances for each size
and correlation. Since PLS-BUOP using the 1-flip-exchange neighborhood took
always more time than MDP-BUOP, the results of the former are omitted.

Although the experimental analysis indicated the existence of instances with
unconnected efficient set with respect to the 1-flip neighborhood (see Table 1),
the results show that the local search approach using the same notion of neigh-
borhood is able to identify a minimal complete set in many cases. For other
instances, it leads to the identification of more than 99.9% of the efficient set.
Furthermore, the local search performs very efficiently in comparison to the dy-
namic programming approach in terms of computational time. Indeed, the larger
the instance size, the larger the gap between PLS-BUOP and MDP-BUOP in

8 A. Liefooghe, L. Paquete, M. Simões, and J. R. Figueira

Table 2. Average percentage of efficient solutions and average number of solutions
found by PLS-BUOP using the 1-flip neighborhood (%ef and avgs, respectively).

ρ = −0.8 ρ = −0.4 ρ = 0.0 ρ = 0.4 ρ = 0.8
size %ef avgs %ef avgs %ef avgs %ef avgs %ef avgs

300 100.0 8 965 99.9 10 838 100.0 14 501.2 100.0 24 702 99.9 55 159
600 99.9 32 242 100.0 39 056 100.0 52 675.4 100.0 92 717 100.0 228 427
900 99.9 69 208 99.9 83 357 99.9 112 597.3 99.9 201 642 99.9 495 153

1200 100.0 118 483 99.9 144 259 99.9 195 395.6 100.0 338 903 99.9 823 611
1500 99.9 179 932 100.0 217 230 100.0 301 844.6 99.9 526 029 99.9 1 352 816
1800 99.9 252 972 100.0 308 373 99.9 423 450.0 99.9 716 598 99.9 1 818 607
2100 99.9 337 443 99.9 409 770 99.9 563 839.5 99.9 969 068 99.9 2 431 713
2400 100.0 434 333 99.9 530 843 100.0 719 388.3 99.9 1 300 909 - 3 358 473
2700 99.9 541 046 100.0 661 676 100.0 900 284.3 100.0 1 560 123 - 4 158 499
3000 99.9 658 680 100.0 806 236 100.0 1 100 882.2 99.9 2 022 463 - 4 846 109

terms of CPU time. However, PLS-BUOP appears to be much more efficient
for negatively correlated data, while MDP-BUOP was not able to solve all the
instances for positively correlated profit and weight values.

3 The Bicriteria Knapsack Problem with Bounded

Cardinality

This section reports a similar analysis on a variant of the previous problem,
where an additional cardinality constraint is considered.

3.1 Problem Definition

The bicriteria knapsack problem with bounded cardinality is a variant of the
BUOP that is obtained by limiting the number of chosen items by a cardinality
bound (k). The formulation of BKP-BC is as follows:

max (p(x),−w(x))

s.t.
n
∑

i=1

xi ≤ k
(3)

In the problem above, the operator “max” follows the same meaning as in Prob-
lem (2). The same terminology and notation will be used for this problem.

3.2 Connectedness Analysis

The efficient set is computed by means of a multicriteria dynamic program-
ming (MDP-BKP-BC) algorithm that extends the MDP-BUOP algorithm given
in Section 2.2. This algorithm has k × n stages. At each stage, the algorithm

Connectedness and Local Search for Bicriteria Knapsack Problems 9

generates the set T(i,j) of states, which represents a set of potential efficient so-
lutions made up of the first i items, i = 1, . . . , n, with cardinality j, j = 1, . . . , k.
A state t = (tp, tw) ∈ T(i,j) represents a feasible solution of profits tp and weight
tw. This approach follows the recurrence relation:

T(i,j) := vmax
(

T(i−1,j) ∪
{

(ts + pi, t
w − wi), t ∈ T(i−1,j−1)

})

for i = 1, . . . , n and j = 1, . . . , k, with the basis cases T(i,0) := (0, 0), for i =
0, . . . , n and T(0,j) := (0, 0) for j = 0, . . . , k. The nondominated set of states

is given by the set vmax
(

T(n,0) ∪ · · · ∪ T(n,k)

)

. The implementation follows the
same principles presented in Section 2.2 for the MDP-BUOP algorithm. However,
the implementation of MDP-BKP-BC has to keep 2(k+1) sets during the overall
process, since at each state i, the sets T(i,j) and T(i−1,j), for j = 0, . . . , k are
required. For this reason, MDP-BKP-BC should take more time than MDP-
BUOP for the same instance size.

A similar set of instances to those used for the previous problem is generated.
In addition to the instance size (n) and to the data correlation (ρ), several
different values for the cardinality bound (k) are considered: n/10, n/5, and
n/2. For each problem size, correlation and cardinality bound, 30 different and
independent instances are generated randomly, as explained in Section 2.2. The
two neighborhood structures described in Section 2.2 were also considered for
this problem. The use of the 1-flip-exchange neighborhood for this problem is
motivated by the conjecture that many efficient solutions may have the same
cardinality, due to the additional cardinality constraint.

Due to limited memory resources, results were only obtained for instances of
limited size (these instances can be inferred from Table 3). Differently from the
connectedness results obtained in the first problem (see Table 1), no instance
with an efficient set that is connected with respect to the 1-flip neighborhood
was found. However, the efficient set for all the instances were connected with
respect to the 1-flip-exchange neighborhood. These results corroborate those of
Gorski et al. [5] for much smaller instances (up to 100 items).

3.3 Local Search for BKP-BC

Given the positive results reported in the previous section, a local search (PLS-
BKP-BC) was developed under the same reasoning of PLS-BUOP (see Sec-
tion 2.3). The only difference is in the neighborhood exploration since a maxi-
mum number of items has to be ensured in the solution when considering the
possibility of adding an item.

MDP-BKP-BC and two versions of PLS-BKP-BC were run in the same in-
stances defined in the previous section. The experiments were performed in a
computer cluster with 6 nodes, each with an AMD Phenom II X6 processor
with 3.2GHz, 3 and 6 MB L2 and L3 Cache, respectively, and 12 MB DDR3
SDRAM. The operating system was Ubuntu 8.04 LTS. Both codes were com-
piled with gcc version 4.2.4 using the -O3 flag.

The CPU-time taken by the three approaches is plotted in Fig. 3 for four
different instance parameter settings. In order to distinguish the differences of

10 A. Liefooghe, L. Paquete, M. Simões, and J. R. Figueira

 0.01

 0.1

 1

 10

 100

 1000

 200 400 600 800 1000 1200 1400 1600

C
P

U
 ti

m
e

(s
ec

on
ds

)

instance size

DP
PLS-flip-ex

PLS-flip

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 400 600 800 1000 1200

C
P

U
 ti

m
e

(s
ec

on
ds

)

instance size

DP
PLS-flip-ex

PLS-flip

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 400 600 800 1000 1200

C
P

U
 ti

m
e

(s
ec

on
ds

)

instance size

DP
PLS-flip-ex

PLS-flip

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 300 400 500 600 700 800 900 1000

C
P

U
 ti

m
e

(s
ec

on
ds

)

instance size

DP
PLS-flip-ex

PLS-flip

Fig. 3. CPU time in seconds (average value and standard deviation, given in log scale)
of the three approaches for instances with parameters k = n/10 (top) and k = n/5
(bottom), ρ = −0.4 (left) and ρ = 0.4 (right).

performance, the CPU-time is presented in log scale. Clearly, both PLS-BKP-
BC versions take much less time than MDP-BKP-BC to terminate. Similar re-
sults hold for the remaining instances. Table 3 reports the percentage of efficient
solutions found by the two versions of PLS-BKP-BC. As expected from the con-
nectedness analysis reported in the previous section, PLS-BKP-BC using the
1-flip-exchange neighborhood was always able to find a minimal complete set
for all instances up to 1800 items in less than one hour of CPU-time. PLS-BKP-
BC using 1-flip neighborhood is, in many cases, able to find more than half of a
minimal complete set in less than one second.

4 Concluding Remarks

This article describes an experimental analysis on the structure of the efficient
set, in terms of connectedness, for two MCO problems. Despite of the negative
results reported in the literature for similar problems [3, 5], the experimental
analysis for the problems investigated in this paper are quite promising. For
both bicriteria versions of the unconstrained optimization problem and knapsack
problem with a bounded cardinality constraint, the experiments suggest that
small-sized neighborhood structures give rise to connected efficient sets quite

Connectedness and Local Search for Bicriteria Knapsack Problems 11

Table 3. Average percentage of efficient solutions found by PLS-BKP-BC using the
1-flip and the 1-flip-exchange neighborhood structures (%ef1 and %ef2, respectively).

ρ = −0.8 ρ = −0.4 ρ = 0.0 ρ = 0.4 ρ = 0.8
size card. %ef1 %ef2 %ef1 %ef2 %ef1 %ef2 %ef1 %ef2 %ef1 %ef2
300 n/10 72.6 100.0 54.1 100.0 42.0 100.0 44.2 100.0 47.7 100.0

n/5 83.9 100.0 63.0 100.0 53.5 100.0 54.4 100.0 56.3 100.0
n/2 95.6 100.0 88.6 100.0 85.3 100.0 83.1 100.0 84.7 100.0

600 n/10 75.3 100.0 50.9 100.0 41.6 100.0 41.6 100.0 47.6 100.0
n/5 84.2 100.0 63.3 100.0 51.3 100.0 50.0 100.0 55.3 100.0
n/2 95.4 100.0 88.3 100.0 83.1 100.0 83.4 100.0 - -

900 n/10 75.6 100.0 50.1 100.0 39.6 100.0 40.5 100.0 47.0 100.0
n/5 83.1 100.0 61.0 100.0 50.4 100.0 51.5 100.0 - -

1200 n/10 75.6 100.0 50.5 100.0 40.2 100.0 39.9 100.0 - -
n/5 82.3 100.0 60.0 100.0 50.9 100.0 - - - -

1500 n/10 75.4 100.0 50.5 100.0 40.3 100.0 - - - -
n/5 83.1 100.0 - - - - - - - -

1800 n/10 75.4 100.0 - - - - - - - -

frequently, and independently of the size and of the structure of input data.
In fact, it is not yet clear what structure of the input data may generate, in
general, an unconnected efficient set under the 1-flip-exchange neighborhood
that was used in this article.

Although the large number of connected instances motivates the use of lo-
cal search algorithms, it is still an open question whether those approaches are
efficient enough as compared to exact algorithms. The experimental analysis re-
ported in this article gives a clear positive answer for the second problem. For
the first problem, without cardinality constraint, some preliminary results indi-
cated that the local search proposed in this article under the same neighborhood
that (empirically) provides connectedness would not be worthwhile in terms of
running time. Still, using a smaller neighborhood structure allows the same al-
gorithm to find more than 99.9% of the efficient set in a significantly less amount
of time than the exact approach.

The simplicity of the local search approach proposed in this article is very
appealing for implementation purpose, needs no definition of parameters and
requires a minimum number of modifications in order to be applied to other
type of knapsack problems. For instance, the same principles can be applied
to the multicriteria knapsack problem (with several maximizing profit criteria
and one capacity constraint) by ignoring (or penalizing) infeasible neighboring
solutions. However, finding appropriate definitions of neighborhoods that give
rise to a large number of connected efficient sets for knapsack problems with
capacity constraints is still under investigation.

A natural question is whether it is possible to derive analytical results for
MCO problems that would prove connectedness by assuming some structure or
distribution on the input data. Connections with neighborhood structures arising

12 A. Liefooghe, L. Paquete, M. Simões, and J. R. Figueira

in the context of the linear programming formulation of the MCO problem may
provide further insights [5]. Moreover, the derivation of bounds on the run-time
of multiobjective evolutionary algorithms that start from efficient solutions are
also of interest. For instance, the size of the efficient set for the first problem is
polynomially bounded for many input data distributions [1]. This suggests that
a polynomial run-time bound may be achieved by such type of algorithms.

Acknowledgements. The authors acknowledge Jochen Gorski for the discussion on the
main topic of this article. This work was partially supported by the Portuguese Foun-
dation for Science and Technology (PTDC/EIA-CCO/098674/2008) and the project
“Connectedness and Local Search for Multiobjective Combinatorial Optimization”
funded by the Deutscher Akademischer Austausch Dienst and Conselho de Reitores
das Universidades Portuguesas. The third author acknowledges a CEG-IST grant from
Instituto Superior Técnico (PTDC/GES/73853/2006).

References

1. Beier, R., Vöcking, B.: Probabilistic analysis of knapsack core algorithms. In: Proc.
of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004). pp.
468–477 (2004)

2. Ehrgott, M.: Multicriteria optimization, Lecture Notes in Economics and Mathe-
matical Systems, vol. 491. Springer (2000)

3. Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria
combinatorial optimization. European Journal of Operational Research 97(1), 159–
166 (1997)

4. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Boston, MA, USA (1989)

5. Gorski, J., Klamroth, K., Ruzika, S.: Connectedness of efficient solutions in multiple
objective combinatorial optimization. Tech. Rep. 102/2006, University of Kaiser-
slautern, Department of Mathematics (2006)

6. Gorski, J., Paquete, L.: On a particular case of the multi-criteria unconstrained op-
timization problem. Electronic Notes on Discrete Mathematics 36, 135–142 (2010)

7. Kung, H., Luccio, F., Preparata, F.: On finding the maxima of a set of vectors.
Journal of ACM 22(4), 469–476 (1975)

8. Nemhauser, G., Ullman, Z.: Discrete dynamic programming and capital allocation.
Management Science 15(9), 494–505 (1969)

9. Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective com-
binatorial optimization problems. Annals of Operations Research 156(1), 83–97
(2007)

10. Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective
combinatorial optimization: An experimental analysis. In: Multiobjective Program-
ming and Goal Programming, Lecture Notes in Economics and Mathematical Sys-
tems, vol. 618, pp. 69–77. Springer (2009)

11. da Silva, C.G., Cĺımaco, J., Figueira, J.R.: Geometrical configuration of the Pareto
fronteir of the bi-criteria 0-1-knapsack problem. Tech. Rep. 16/2004, INESC, Coim-
bra, Portugal (2004)

12. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: Analyzing the effect of objective
correlation on the efficient set of MNK-landscapes. In: Proc. of the 5th Conference
on Learning and Intelligent OptimizatioN (LION 5). Lecture Notes in Computer
Science, Springer (2011), to appear

