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Abstract. This paper describes new attacks on pkcs#1 v1.5, a depre-
cated but still widely used rsa encryption standard.

The first cryptanalysis is a broadcast attack, allowing the opponent to
reveal an identical plaintext sent to different recipients. This is nontrivial
because different randomizers are used for different encryptions (in other
words, plaintexts coincide only partially).

The second attack predicts, using a single query to a validity checking
oracle, which of two chosen plaintexts corresponds to a challenge cipher-
text. The attack’s success odds are very high.

The two new attacks rely on different mathematical tools and underline
the need to accelerate the phase out of pkcs#1 v1.5.

Keywords: pkcs#1 v1.5, Encryption, Broadcast Encryption, Cryptanal-
ysis.

1 Introduction

pkcs stands for Public-Key Cryptography Standards [14]. pkcs is a large
corpus of specifications covering rsa encryption, Diffie-Hellman key agree-
ment, password-based encryption, syntax (extended-certificates, crypto-
graphic messages, private-key information and certification requests) and
selected attributes. pkcs was initially developed by rsa Laboratories,
Apple, Digital, Lotus, Microsoft, mit, Northern Telecom, Novell and Sun

⋆ An extended abstract of this paper will appear at acns 2010. This is the full version.
⋆⋆ This research was completed while the fourth author was visiting the Okamoto

Research Laboratory at the NTT Information Sharing Platform (Tokyo, Japan).



and regularly updated since. Today, pkcs has become part of several
standards and of a wide range of security products including Internet
Privacy-Enhanced Mail.

Amongst the pkcs collection, pkcs#1 v1.5 describes a particular en-
coding method for rsa encryption called rsaEncryption. In essence, the
protected data is first encrypted under a randomly chosen key κ using a
symmetric block-cipher (e.g. a triple des in cbc mode) then κ is rsa-
encrypted (wrapped) with the recipient’s public key.

In 1998, Bleichenbacher [4] published an adaptive chosen-ciphertext
attack against pkcs#1 v1.5 capable of recovering arbitrary plaintexts
from about half a million ciphertexts. Although active adversary models
are generally regarded as theoretical concerns, Bleichenbacher’s attack
makes use of an oracle that only detects conformance with respect to the
padding format, a real-life assumption that resulted in a practical threat.
pkcs#1 v1.5 was subsequently updated (release 2.0 [15]) and patches were
issued to users wishing to continue using the old version of the standard.
As we write these lines3 and despite its vulnerabilities, pkcs#1 v1.5 is

still widely used. Millions of (patched) pkcs#1 v1.5 programs remain
deployed. Provably secure algorithms such as rsa-oaep [10] and rsa-

kem are recommended replacements, but not widespread yet [16].

Independently, there exist several well-known chosen-plaintext attacks
on rsa-based encryption schemes [7, 5]. These typically enable an attacker
to decrypt ciphertexts at moderate cost without factoring the public mod-
ulus. The most powerful cryptanalytic tool applicable to low exponent
rsa is certainly an attack due to Coppersmith [6]. As a matter of fact,
one major reason for adding randomness to encrypted messages4 is to
thwart such attacks.

The last publication concerning pkcs#1 v1.5’s security [8] presented
a somewhat atypical attack allowing the opponent to retrieve plaintexts
ending by enough zero bits.

This paper describes two new weaknesses in pkcs#1 v1.5:

– The possibility to predict, using a single decryption query, which of
two chosen plaintexts corresponds to a challenge ciphertext. The at-
tack’s success odds are very high.

– A broadcast attack allowing to decrypt an identical message sent to
several recipients.

3 November 2009
4 Besides attempting to achieve indistinguishability.



From a mathematical perspective, the two techniques are totally dif-
ferent. The authors regard these as a wake-up call to accelerate the phase
out of pkcs#1 v1.5.

2 pkcs#1 v1.5 Encryption

We assume that the reader is familiar with the traditional public-key
encryption definitions and security model preliminaries. For the sake of
completeness we refer the reader to Appendix A.

2.1 The pkcs#1 v1.5 Encoding Function

pkcs#1 v1.5 describes a particular encoding method (rsaEncryption)
for rsa encryption [19]. Consider an rsa modulus N , and let k denote its
byte-length (i.e. 28(k−1) < N < 28k). Let m be an |m|-byte message with
|m| < k− 11. The pkcs#1 v1.5 padding µ(m) of m is defined as follows:

1. A randomizer r consisting in k−3−|m| ≥ 8 nonzero bytes is generated
uniformly at random;

2. µ(m) = µ(m, r) is the integer converted from the octet-string:

µ(m, r) = 000216||r||0016||m (1)

(the leading 00 octet guarantees that the encryption block is an integer
smaller than N).

The encryption of a message m of |m| < k − 11 bytes is defined as

c = µ(m, r)e mod N

for some randomizer r of k − 3− |m| nonzero bytes.

To decrypt c ∈ Z
∗
N , compute cd mod N , convert the result to a k-byte

octet-string and parse it according to equation (1). If the string cannot be
parsed unambiguously or if r is shorter than eight octets, the decryption
algorithm D outputs ⊥; otherwise, D outputs the plaintext m.

2.2 Previous attacks on pkcs#1 v1.5

In 1998, Bleichenbacher [4] published an attack on pkcs#1 v1.5 capa-
ble of recovering arbitrary plaintexts from a large number of ciphertexts



validation queries. This attack established that pkcs#1 v1.5 is not ℓ-
GOAL-ATTACK for a large5 ℓ, GOAL ∈ {OW, IND,NM} and ATTACK ∈
{VCA,CCA} (see Appendix A.3 for definitions of these security notions).

In 2000, Coron, Naccache, Joye and Paillier [8] introduced two new
CPAs on pkcs#1 v1.5. The first attack can be considered as a IND-CPA

when e is small (for plaintext ending by sufficiently many zeroes). The
second attack applies to arbitrary e, provided that |m| is large and most
message bits are zeroes. Thus pkcs#1 v1.5 is not GOAL-CPA for a small
e or a large |m|, for GOAL ∈ {IND,NM}.

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA

= Factoring
⇓ ⇓ ⇓

OW-CCA ⇐= (
(

(
(

OW-VCA ⇐= OW-CPA

large ℓ ([4])
⇓ ⇓ ⇓

IND-CCA ⇐= (
(

(
(

IND-VCA ⇐= (
(

(
(

IND-CPA

large ℓ ([4]) small e or large |m| ([8])
⇓ ⇓ ⇓

NM-CCA ⇐= NM-VCA ⇐= NM-CPA

Fig. 1. pkcs#1 v1.5 Security

The previous crytanalytic results are summarized in Figure 1. UBK-

CPA is equivalent to Factoring but establishing the UBK-VCA and UBK-

CCA security is equivalent to proving (or refuting) the equivalence of the
factoring and the RSA Problem (which is a long-standing open question
in cryptography). In the rest of the paper, we will study the remaining
security notions and prove that pkcs#1 v1.5 is:

– OW-CPA assuming the intractability of the RSA problem (§ 3);

– not OW-CCA for ℓ = 2 (§ 3);

– not NM-CPA (§ 4.1);

– not IND-VCA for ℓ = 1 (§ 4.2);

– not OW-CPA in a multi-user setting (§ 5).

3 On pkcs#1 v1.5’s OW-CPA-Security

In this paragraph, we prove the following result:

5 3 · 105
< ℓ < 2 · 106 for 512 < log2 N < 1024



Proposition 1. The OW-CPA security of pkcs#1 v1.5 is equivalent to
the RSA Problem.

In [9, Lemma 2], Coron, Joye, Naccache and Paillier proved that for
suitable parameters, the existence of an algorithm that on input y ∈
Z
∗
N outputs the k1 least significant bits of yd mod N is equivalent to

the existence of an rsa inverter. Following their approach, we prove the
following lemma:

Lemma 1. Let A be a OW-CPA-adversary against pkcs#1 v1.5 with
success probability ε within time τ , with uniformly distributed messages
of (maximum) length k − 11. There exists an algorithm B that solves the
RSA Problem with success probability ε′ within time τ ′, where:

{
ε′ ≥ η2 · ε2 − 2−kε

τ ′ ≤ 2 · τ + poly(k)

where η is a constant independent of k and η ≥ 5 · 10−8.

Proof. Let A be a OW-CPA-adversary against pkcs#1 v1.5 with success
probability ε within time τ . We construct an algorithm B that on input
y ∈ Z

∗
N outputs yd with success probability ε′ within time τ ′:

1. B picks α ∈ Z
∗
N uniformly at random;

2. B sets y0 = y and y1 = y · αe

3. Let us denote, for i ∈ {0, 1}:

yd
i = ωi · 2β + mi

with β = 8(k − 11). yi is a valid pkcs#1 v1.5 ciphertext if ωi =
0002||ri||00 where ri is a 8-(nonzero)-octet string. This happens with
probability η ≥ (255/256)8 · 2−24. If this happens, then with proba-
bility ε, A will return mi on input yi (for i ∈ {0, 1}).

4. Therefore with probability at least (ηε)2, we obtain:

α(ω0 · 2β + m0) = ω12
β + m1 mod N.

Letting c1 = 2−β(αm0−m1) mod N , we get the equation in (ω0, ω1):

ω1 − α · ω0 = c1 mod N (2)

From [9, Lemma 3], there exists an algorithm that given this system
will output a solution (ω0, ω1) (should such a solution exist) with proba-
bility at least 1− 2−k on the choice of α. ⊓⊔



Using the same technique, this can be extended to messages of differ-
ent length, with a possibly higher constant loss in the reduction.

As a byproduct of the previous proof one immediately gets that:

Proposition 2. pkcs#1 v1.5 is not 2-OW-CCA.

Proof. Thanks to rsa’s homomorphic properties, an adversary can mask
the challenge ciphertext c as c′ = cre for some random r and with two
decryption oracle queries, compute the e-th root x′ of c′ as in the previous
proof. Then x = x′/r is the e-th root of c from which, the adversary
retrieves readily the plaintext. ⊓⊔

4 pkcs#1 v1.5 Malleability and Indistinguishability

We now show that µ is neither NM-CPA-secure nor IND-VCA-secure. The
general idea is the following. Let m be some message to be encrypted,
and µ(m) a corresponding pkcs#1 v1.5 padded encryption block. If m
has Z > 2 trailing zero bits, then µ(m) is divisible by 2Z , and µ(m) −
µ(m)/2Z mod N has a good probability of still being a valid encryption
block. This is not usually the case when the Z lsbs of m are not all zero.

Let c = µ(m)e mod N be a ciphertext of some message m. If m has
Z > 2 trailing zeroes, c′ = c · (1 − 2−Z)e mod N will often be a valid
ciphertext of some other message m′ which can be related to m: this
contradicts non-malleability under chosen plaintext attack. Moreover, if
one is granted one query to a validity oracle, it is possible to distinguish
ciphertexts of plaintexts with trailing zeroes and ciphertexts from plain-
texts whose lsbs are not all zero: this contradicts indistinguishability
under validity checking attack. Note that if i queries are allowed, the dis-
tinguishing success odds can quickly approach one by iterating the test
with c′i = c · (i− 2−Z)e mod N for i = 1, 2, . . .

We will develop this idea in further detail in the coming sections.

4.1 On pkcs#1 v1.5’s NM-CPA Security

Let k be the byte-size of N , Z = 4k, and M a positive integer such that
M + Z + 1 is a multiple of 8 and (M + Z + 1)/8 < k − 11. We consider
messages of the following form:

m = m̄
︸︷︷︸

M bits

‖12‖ 0 · · · 02
︸ ︷︷ ︸

Z zero bits



Let M denote the uniform distribution over messages of this form.
Furthermore, we define a relation R over messages of length l = M +
Z +1 as follows: for any l-bit two messages m1,m2 (not necessarily of the
previous form), R(m1,m2) holds if and only if the M msbs of m1 and
m2 coincide. In particular, for any given message m2, there is exactly one
m1 ∈M such that R(m1,m2).

Now, consider m←M. We can write µ(m) · (1− 2−Z) as:

000216‖r‖0016‖m̄‖12‖ 0 · · · 02
− 000216‖r‖0016‖m̄‖12
= 000216‖r‖0016‖m̄‖02‖ some digits · · · some digits

Hence, µ(m) · (1 − 2−Z) = µ(m′) for some message m′ 6= m such that
R(m,m′).

Consider, the NM-CPA adversary A which outputs sampling algorithm
M in the setup stage, and transforms a challenge ciphertext c into c′ =
c · (1− 2−Z)e mod N . A’s advantage is:

AdvNM-CPA
A = Pr[R(m,m′)]− Pr[m0

$←M;R(m0,m
′)] = 1− 2−M ≥ 1/2

which is non-negligible. Therefore, pkcs#1 v1.5 encryption is not NM-

CPA-secure.
Noted that A’s advantage is, in fact ∼ 1. For a 1024-bit modulus and

a 128 bit randomizer, we have M = 383, making it exceedingly unlikely
that A will ever fail.

4.2 On pkcs#1 v1.5’s IND-VCA Security

We now show how to contradict ciphertext indistinguishability under va-
lidity checking attack using a single oracle query. There are two natural
types of validity oracles: one which determines whether a given query is
a valid ciphertext associated to a plaintext of any length, and the other
which also checks message length. We can always contradict IND-VCA-
security in the non-length-checking case (which is the one considered in
Bleichenbacher’s attack [4]) with a single oracle query. Furthermore, if the
byte-length of the randomizer is constant, as permitted by the pkcs#1
v1.5 standard, it is also possible to break IND-VCA-security with a single
query to a length-checking oracle. Both attacks stem from the following
result.

Proposition 3. Let c = µ(m)e mod N be the ciphertext associated to
some byte-string message m, ω the byte-length of the randomizer and
c′ = c · (1− 2−4)e mod N .



1. If the least significant nibble of m is not 016, then c′ is never a valid
ciphertext.

2. If m is a message consisting of a string of 0016 bytes, then c′ is a
valid ciphertext with probability at least 0.47. c′ is a valid ciphertext
corresponding to a message of the same length as m with probability
at least:

64

1445

(
239

255

)ω−1

Proof. Starting with the first assertion, consider a message m such that
c′ is a valid ciphertext. This implies that µ(m) − µ(m) · 2−4 mod N is
a valid encoding string that, in particular, begins with the same 000216

pattern as µ(m).

If, for an integer x, we denote by x̄ the only integer in (−N/2, N/2)
such that x ≡ x̄ mod N , it follows that:

|µ(m) · 2−4 mod N | < 28k−16

Consider the set S of residue classes x mod N such that |x̄| < 28k−16.
Clearly, |S| = 28k−15− 1. On the other hand, let T+ be the set consisting
of k-byte strings of the form 00016‖u‖016, and T be the union of T+ and
−T+ (where opposites are taken mod N). We also have |T | = 28k−15 − 1
and T maps into S under multiplication by 2−4 mod N . Since multipli-
cation by 2−4 is a permutation of ZN , we infer that (y · 2−4 mod N) ∈ S
if and only if y ∈ T .

In particular, if c′ is a valid ciphertext, we get µ(m) ∈ T . By inspection
of its top bits, we see that µ(m) cannot be in −T+, so it has to be in T+.
Its least-significant nibble must thus be 016 as required.

Turning now to the second assertion, let m be the zero-message of
some fixed byte-length. Write the encryption block µ(m) as follows:

µ(m) = 000216‖r2ω−1‖r2ω−2‖ · · · ‖r1‖r0‖0016‖00 · · · 0016
where r0, . . . , r2ω−1 are randomizer’s nibbles. Recall that the randomizer
bytes r2j‖r2j+1 are chosen uniformly and independently at random in the
range 0116, . . . , FF16.

Assuming that r2ω−1 is at least 4 (which happens with probability
(256 − 4 × 16)/255 = 64/85, and which we will henceforth assume), we
can write (1− 2−4)µ(m) as:

000216 ‖ r2ω−1 ‖ r2ω−2 ‖ · · · ‖ r1 ‖ r0 ‖ 0016 ‖ 00 · · · 0016
− 000016 ‖ 216 ‖ r2ω−1 ‖ · · · ‖ r2 ‖ r1 ‖ r0‖016 ‖ 00 · · · 0016
= 000216 ‖ r′2ω−1 ‖ r′2ω−2 ‖ · · · ‖ r′1 ‖ r′0 ‖ s ‖ 00 · · · 0016



where r′j ≡ rj − rj+1 − κj mod 16 for some carry bit κj .

Then, µ′ = (1− 2−4)µ(m) is a valid encoding block if and only if the
first 8 randomizer bytes, namely r′2ω+1−2j‖r′2ω−2j , j = 1, . . . , 8, are all
nonzero. µ′ is a valid encoding block for a message of the same length as
m (or for short, “strongly valid”) if and only if s = 0 and all the padding
bytes r′2j+1‖r′2j , j = 0, . . . , ω − 1, are nonzero. We will find an explicit
lower bound for the probability of these events.

Note first that a sufficient condition for r′2j+1‖r′2j to be nonzero is
that r′2j+1 6= 0. This nibble is zero if and only if r2j+2 ≡ r2j+1 − κ2j+1.
Now r2j+2 is picked independently of r2j+1, since they belong to different
bytes; it is also independent of κ2j+1, which only depends on lower order
bytes. Consequently:

Pr[r′2j+1 = 0] =
15∑

ρ=0

Pr[r2j+2 = ρ] · Pr[r2j+1 − κ2j+1 ≡ ρ mod 16]

≤ max
ρ

Pr[r2j+2 = ρ] =
16

255

and this bound still holds conditionally to any assignment of the lower
order nibbles r′2i+1, i < j. Therefore:

Pr[µ′ is valid] ≥ Pr[r2ω−1 ≥ 4 ∧ r′2ω−3 6= 0 ∧ r′2ω−5 6= 0 ∧ · · · ∧ r′2ω−15 6= 0]

≥ 64

85
·
(

1− 16

255

)7

≥ 0.47

Furthermore:

Pr[µ′ is strongly valid] ≥ Pr[r2ω−1 ≥ 4 ∧ r′2ω−3 6= 0 ∧ · · · ∧ r′1 6= 0 ∧ r0 = 0]

≥ 64

85
·
(

1− 16

255

)ω−1

· 15

255
=

64

1445
·
(

239

255

)ω−1

The corresponding validity assertions for c′ follow immediately. ⊓⊔
Consider the IND-VCA adversary A defined as follows. In the setup

stage, A outputs two equal-length messages m0,m1 with m1 not zero-
terminated (e.g. 00 · · · 000116) and m0 consisting of 0016 bytes only. Then,
upon receiving a challenge ciphertext c = µ(mb)

e mod N , A makes a
single oracle query and outputs b′ = 0 or 1 according to whether c′ =
c · (1− 2−4) mod N is a valid ciphertext or not. Its advantage is then:

AdvIND-VCA
A = Pr[b′ = 0|b = 0]− Pr[b′ = 1|b = 0] = Pr[b′ = 0|b = 0]− 0

≥
{

0.47 if the oracle doesn’t check message length
64

1445 ·
(

239
255

)ω−1
otherwise



which is non-negligible. In the length-checking case, it is over 2.8% (resp.
1.6%) for 64-bit (resp. 128-bit) randomizers.

In the non-length-checking case, we can obtain an even better advan-
tage using c′ = c · (1− 2−8) mod N (shifting by 8 bits instead of 4). The
proof works similarly provided that N satisfies N > 28k−7, which is not
required by the pkcs#1 v1.5 standard but is usually verified in practice.
This yields an advantage of at least:

252

255
·
(

254

255

)7

> 0.96

5 Broadcast Attacks on pkcs#1 v1.5

We now examine the security of pkcs#1 v1.5 in a multiple users context.
In such a scenario, i.e. when broadcast encryption is performed, the

sender wishes to transmit the same message m to ℓ parties P1, . . . , Pℓ.
As each party has its own key pki = (e,Ni) (with a common public
exponent e), the sender encrypts m using all the pki’s and sends the
resulting ciphertexts c1, . . . , cℓ to the corresponding recipients. It has long
been known that textbook rsa encryption should not be used in such
a context, since an attacker can easily recover the plaintext using the
Chinese Remainder Theorem as long as ℓ ≥ e. Therefore, m has to be
padded before applying the rsa function, and the padding has to be
different for each recipient.

In 1988, H̊astad [11] showed that using different linear paddings µi(m)
for all parties is not enough to guarantee security. Indeed, when e is small,
e ciphertexts are again sufficient to efficiently recover m provided that the
encoding functions µi are known to the attacker. To achieve this result,
H̊astad expressed the attack in terms of finding small roots of a uni-
variate modular polynomial, which he accomplishes using Coppersmith’s
techniques [6].

H̊astad’s attack does not apply to pkcs#1 v1.5, since the padding
used for a given recipient is random, and is thus unknown to an attacker.
The following sections will overcome this difficulty. Our main result is as
follows:

Proposition 4. Let c1, . . . , cℓ be ℓ pkcs#1 v1.5 ciphertexts of the same
message m, of byte length |m|. Each ci is encrypted for a receiver hav-
ing pki = (e,Ni). All Ni are k-byte long. Then there exists a heuristic
algorithm which, given c1, . . . , cℓ, outputs m, if:

ℓ >
e|m|

k − e(k − |m| − 3)
> 0



Its complexity is polynomial in e, |m| and k but exponential in the number
of ciphertexts ℓ.

We describe this algorithm in the coming sections. The core idea is to
reduce the problem to finding small modular roots of a multivariate poly-
nomial equation, which can be achieved using a standard generalization
of Coppersmith’s techniques. As usual, this generalization relies on an
assumption concerning independence between polynomials, which makes
the algorithm heuristic.

5.1 The Multivariate Polynomial of Broadcast pkcs#1 v1.5

Recall (section 2.1) that to encrypt message m for recipient Pi, a pkcs#1
v1.5 sender first generates an |ri|-byte randomizer ri, and then computes
the encoding function:

µ(m, ri) = 000216‖ri‖0016‖m

Numerically, this gives:

µ(m, ri) = m + 28|m|+8ri + 28|m|+8|ri|+9

The ciphertext ci is then computed as ci = µ(m, ri)
e mod Ni.

Consider then an adversary A who obtains c1, . . . , cℓ. Since the Ni

are of the same size, the randomizers ri have a common byte length |r|.
Therefore, the ciphertexts collected by A can be written as:

c1 = (m + Ar1 + B)e mod N1, . . . , cℓ = (m + Arℓ + B)e mod Nℓ

where A = 28|m|+8 and B = 28|m|+8|r|+9. Obviously, the Ni are pairwise
co-prime (otherwise, the factorization of some of the Ni could easily be
recovered). Thus, the Chinese Remainder Theorem ensures that the previ-
ous equations can be rewritten as a single congruence mod N = N1 · · ·Nℓ:

u1c1 + · · ·+ uℓcℓ = u1(m + Ar1 + B)e + · · ·+ uℓ(m + Arℓ + B)e mod N

where the constants u1, . . . , uℓ are given by the extended Euclidean algo-
rithm. It follows that the tuple (m, r1, . . . , rℓ) is a root of the multivariate
modular polynomial:

f(x, y1, . . . , yℓ) = u1(x+Ay1 +B)e + · · ·+uℓ(x+Ayℓ +B)e−C mod N
(3)



where C = u1c1 + · · · + uℓcℓ. This root is small in the sense that all
of its components are bounded by quantities that are small compared
to N : m is smaller than 28|m| and each ri is bounded by 28|r|. Under
suitable conditions on |m| and |r| which will be detailed below, it will
thus become feasible to recover this root, and hence m, in polynomial
time using Coppersmith’s techniques, as recalled in Appendix B.

In particular, we show in section B.3 that the lattice construction of
Jochemsz and May [13] yields a heuristic polynomial time algorithm for
recovering the small root of f under the following condition:

ℓ|r|+ |m| < t(ν)

s(ν)
· ℓk

where ν is a parameter which determines the attack’s complexity, and
s(ν), t(ν) are defined as:

s(ν) =

eν∑

i=0

i

(
eν − i + ℓ

ℓ

)

=

(
ℓ + eν − 1

ℓ

)
(ℓ + eν)(1 + ℓ + eν)

2 + 3ℓ + ℓ2

and

t(ν) =
ν∑

i=1

(
eν − ie + ℓ + 1

ℓ + 1

)

We also prove in the same section that t(ν)/s(ν) → 1/e as ν tends to
+∞, so that the best achievable bound on |m| and |r| for which the
attack applies is:

ℓ|r|+ |m| < ℓk

e

Since |r| = k − |m| − 3 in pkcs#1 v1.5 we obtain the bound announced
in Proposition 4. As usual when using Coppersmith’s techniques, the
complexity of the attack is polynomial in the dimension of the constructed
lattice and in the size of the entries (see Appendix B for details on these
parameters).

Given pkcs#1 v1.5’s widespread use and the heuristic nature of mul-
tivariate Coppersmith-like techniques, it is important to practically assess

our attack. We report practical experiment results in Appendix C.

6 Conclusion

Figure 2 summarizes our current knowledge of pkcs#1 v1.5 security.
The authors regard the new flaws as an indication that the process of

phasing out pkcs#1 v1.5 should be accelerated.
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Fig. 2. Updated Security Status for pkcs#1 v1.5
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A Preliminaries

In this appendix we recall a few basic definitions necessary for an accurate
description of our attack:

A.1 Public-Key Encryption

A Public-Key Encryption Scheme P = (K, E ,D) is a collection of three
(probabilistic) algorithms:

A Key Generation Algorithm K: Given a security parameter k ∈ N,
the algorithm K produces a pair (pk, sk) of matching public and private
keys (which implicitly define a message space M).

An Encryption Algorithm E: Given a message m ∈ M and a public
key pk, E produces a ciphertext c = E(pk,m).

A Decryption Algorithm D: Given a ciphertext c and the private key
sk, D(sk, c) recovers a plaintext m or a special symbol ⊥/∈M.

For all m ∈ M and for properly generated {pk, sk}, the following
correctness condition holds:

D(sk, E(pk,m)) = m

We will denote by A adversaries, defined in the next section.



A.2 rsa Encryption

In [19], the algorithm K produces a pair (pk = (N, e), sk = d) where
N = pq is the product of two large primes and e and d are such that
ed = 1 mod ϕ(N). The encryption of a message m ∈ M = Z

∗
N , is simply

c = me mod N . c can be easily decrypted using d: m = cd mod N .

A.3 Security Definitions

Security is traditionally defined by combining an adversarial goal and
an attack model. We refer to classical texts on provable security, such as
[18], for precise statements of security definitions. Intuitively, a public-key
encryption scheme P is:

Unbreakable (UBK) If no adversary A can compute sk given pk.

One-Way (OW) If no adversary A can recover m ∈M given c and pk.

Indistinguishable (IND) If no adversary A can derive significant infor-
mation about m ∈M given only c and pk. IND is sometimes alternatively
referred to as ”semantically secure”.

Non-Malleable (NM) If no adversary A can, produce, given c and pk,
a new ciphertext corresponding to a plaintext m′ meaningfully related to
m.

In the above, ”no adversary” should be read as ”an efficient adversary
succeeding with a significant probability”. The terms ”efficiently”, ”signif-
icant probability”, ”significant information” and ”meaningfully related”
admit formal definitions which are beyond our scope.

Security notions for encryption schemes are obtained by combining
an adversarial goal with an attack model:

Chosen-Plaintext Attack (CPA) A is given nothing more than pk.

Validating-Checking Attack (VCA) A is given access to a validity-
checking oracle indicating only if a given ciphertext is a valid or not (i.e.

returning the bit D(sk, c)
?
6=⊥). Note that this is not the same thing as a

Plaintext-Checking Attack (PCA) [18].



Chosen-Ciphertext Attack (CCA) A has access to a decryption ora-
cle.

Whenever oracle access is used A cannot submit to the oracle the
challenge ciphertext he has to attack. These definitions are classical and
we refer the reader to [18] for more details.

We denote security notions positively: e.g. OW-VCA[S] is the problem
of contradicting the one-wayness of scheme S under validity-checking at-
tack. This convention permits the easy description of hierarchies between
security notions using reductions (see Figure 3). When oracle access is
permitted (i.e. either for VCA or CCA), we denote by ℓ-GOAL-ATTACK[S]
the problem of contradicting GOAL ∈ {UBK,OW, IND,NM} in less than
ℓ oracle queries under an ATTACK ∈ {VCA,CCA}.

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA

⇓ ⇓ ⇓
OW-CCA ⇐= OW-VCA ⇐= OW-CPA

⇓ ⇓ ⇓
IND-CCA ⇐= IND-VCA ⇐= IND-CPA

⇓ ⇓ ⇓
NM-CCA ⇐= NM-VCA ⇐= NM-CPA

Fig. 3. Public-Key Encryption Security Hierarchy

A.4 rsa Security

Single User rsa Security rsa encryption is UBK-CPA-secure assuming
the hardness of factoring. Contradicting rsa’s OW-CPA security is known
as the RSA Problem and is believed to be intractable.

rsa’s determinism makes the validity-checking oracle useless and rsa

is therefore OW-VCA-secure relative to the RSA problem as well. Unfor-
tunately, because of this determinism, rsa cannot be semantically secure:
given the encryption c of either m0 or m1, the adversary simply computes
c0 = me

0 mod N and checks whether c0 = c. Many variants of this basic
scheme have been proposed with the hope of making them semantically
secure through the use of randomized padding schemes. This paper fo-
cuses on all the previously mentioned security notions for the padding
pkcs#1 v1.5.



Multiple User rsa Security The previous definitions do not cap-
ture security in a multicast context. In the early 1990s, attacks against
low-exponent rsa highlighted the danger of multi-user security threats
left uncaptured by single-user models. In independent works, Baudron,
Pointcheval and Stern [1] and Bellare, Boldyreva and Micali [2] proved
that for strong security notions (namely IND or NM), schemes with reduc-
tionist security in the multi-user setting are exactly those permitting se-
curity proofs in the single-user setting. However, encryption one-wayness
(OW) in a multi-user setting is not guaranteed only when the plaintexts
are somehow correlated.

For rsa encryption, if a common e is used, then e encryptions of
a given message under different public keys N1, . . . , Ne lead to an easy
plaintext recovery. Again, several countermeasures have been proposed
(e.g. padding the message with random bits) but with an unclear security
guarantees. The second part of this paper explores broadcast attacks on
pkcs#1 v1.5.

B Finding Small Modular Roots of a Multivariate

Polynomial

The problem of solving modular polynomial equations is believed to be
difficult in the general case. Nevertheless, when we restrict the problem to
finding small roots only, the problem becomes easier to solve. Indeed, in
1996, Coppersmith [5] introduced a technique, based on lattice reduction,
allowing to recover the root of a univariate modular polynomial provided
that this root is small enough. This construction was reformulated in sim-
pler terms by Howgrave-Graham [12] and its extensions to more variables
found numerous cryptanalytic applications.

B.1 Coppersmith’s Technique.

Starting from a polynomial f modulo a known composite integer N , the
idea behind Coppersmith’s method is to construct a set of polynomials
h1, . . . , hn sharing the same sought root over the integers. If the number of
these generated polynomials is sufficiently large (greater than the number
of variables) and under the assumption that all resultant computations
lead to non-zero results, then the root can easily be recovered. Note that
this assumption makes the method heuristic.

A sufficient condition ensuring that the polynomials h1, . . . , hn share
a common root in Z was formulated by Howgrave-Graham.



Lemma 2 (Howgrave-Graham [12]). Let h ∈ Z[x1, . . . , xn] be an in-
teger polynomial that consists of at most ω monomials. Suppose that

1. h(x01, . . . , x0n) ≡ 0 mod N for some |x01| < X1,. . . ,|x0n| < Xn

2. ‖h(x1X1, . . . , xnXn)‖ < N√
ω
.

Then h(x01, . . . , x0n) = 0 holds over the integers.

The problem can thus be reduced to finding polynomials h1, . . . , hn of
small norm having the same modular root as f . This can be achieved by
representing polynomials as coefficient vectors (using a suitable ordering
on monomials) and using lattice reduction techniques such as lll [17] to
search for small vectors in a lattice spanned by polynomials which are
known to have the sought modular root.

If L is a lattice of polynomials consisting of at most ω monomials and
all having the same modular root as f , then the condition

2
ω(ω−1)

4(ω+1−n) det(L)
1

(ω+1−n) <
N√
ω

(4)

ensures first n polynomials obtained by applying lll to the lattice L
match Howgrave-Graham’s bound. In the analysis, we let terms that do
not depend on N contribute to an error term ε, and simply use the de-
terminant condition det(L) ≤ Nw+1−n.

B.2 Lattice Construction

A variety of methods for constructing the lattice L have been proposed
in the literature. In what follows, we choose to rely on the technique
introduced by Jochemsz and May in [13].

Recall that we have a polynomial f with an unknown root x0 =
(x01, . . . , x0n) modulo some composite integer N whose factorization is
unknown. This root is small in the sense that each of its components is
bounded: |x0i| < Xi for i ∈ {1, . . . , n}. We denote by λ the leading mono-
mial of the polynomial f and by M(f) the set of monomials appearing
in f . Of course, λ can be assumed to be monic as otherwise one simply
has to multiply f by the modular inverse of its initial coefficient.

Given ε > 0, we fix an integer ν = ν(ε) and without loss of generality
we assume thatM(f j) ⊆M(f ν) for j ∈ {1, . . . , ν − 1}. If k is an integer
between 0 and ν + 1, we define the set Mk as M(f ν) ∩ λkM(f ν−k) (in
particular M0 = M(f ν) and Mν+1 = ∅). Next, we define the following
shift polynomials:

gi1...in(x1, . . . , xn) =
xi1

1 · · · xin
n

λk
fkNν−k



for k ∈ {0, . . . , ν} and xi1
1 · · · xin

n ∈ Mk \Mk+1. By definition, all poly-
nomials g have the root (x01, . . . , x0n) modulo Nν . We can now define
L as the lattice generated by the coefficient vectors of all polynomials
gi1...in(x1X1, . . . , xnXn). If the monomial ordering has been chosen cor-
rectly, the matrix corresponding to that lattice is lower triangular and the
determinant becomes easy to compute. Indeed, the diagonal elements are
those corresponding to the monomial λk in fk for each row. Therefore, the
diagonal terms of the matrix are Xi1

1 · · ·Xin
n Nν−k for k ∈ {0, . . . , ν} and

xi1
1 . . . xin

n ∈ Mk \Mk+1. By doing a simple computation and neglecting
low order terms, one can finally reduce the condition (4) to the following
new one:

n∏

j=1

X
sj

j < N sN for

{

sj =
∑

x
i1
1 ···xin

n ∈M0
ij (1 ≤ j ≤ n)

sN =
∑ν

k=1 |Mk|
(5)

This formula expresses an asymptotic condition on the bounds X1, . . . ,Xn

allowing to recover the root in polynomial time.

Remark 1. The method outlined above is what Jochemsz and May called
the “basic strategy”; they also proposed an “extended strategy” in which
we can use extra shifts of a certain variable and replace Mk for instance
by Mk =

⋃t
j=1 xj

1

(
M(f ν) ∩ λkM(f ν−k)

)
for some well-chosen parameter

t.

B.3 The Jochemsz-May Lattice in Broadcast pkcs#1 v1.5

Let us examine what the lattice L looks like in the particular setting of
broadcast pkcs#1 v1.5 encryption.

Recall from section 5.1 that recovering m from c1, . . . , cℓ reduces to
finding the root (x0, y0,1, . . . , y0,ℓ) = (m, r1, . . . , rℓ) of the following mod-
ular polynomial:

f(x, y1, . . . , yℓ) = u1(x+Ay1 +B)e + · · ·+uℓ(x+Ayℓ +B)e−C mod N

We know that this root satisfies the bounds |x0| < X and |y0i| < Y for
all i ∈ {1, . . . , ℓ} with X = 28|m| and Y = 28|r|. We examine how the
Jochemsz-May bounds described in the previous section translate into
bounds on |m| and |r| allowing the message to be recovered in polynomial
time.



Form of the Sets Mk. The analysis’ first step consists in describing
the sets Mk. Note first that the set of monomials M(f) is included in
{xayb1

1 · · · y
bℓ

ℓ | a + b1 + · · · + bℓ ≤ e}. In other words, the geometrical
shape of the polynomial f is included in a “pyramid” of dimension ℓ+1 of
monomials with total degree less than e. We choose the deglex monomial
order, according to which the leading monomial of f is xe. The sets Mk

can then be described as follows:

M0 = {xayb1
1 · · · y

bℓ

ℓ | a + b1 + · · · + bℓ ≤ eν}
M1 = {xayb1

1 · · · y
bℓ

ℓ | a + b1 + · · · + bℓ ≤ eν with a ≥ e}
...

Mν = {xayb1
1 · · · y

bℓ

ℓ | a + b1 + · · · + bℓ ≤ eν with a ≥ eν}

which makes it easy to count the number of monomials in each of them.

Condition on the Bounds. Given the above description, we can evalu-
ate the quantities sj and sN of equation (5) as follows. First, by symmetry,
si, sj1, . . . sjℓ

are all equal to:

s(ν) =
eν∑

i=0

i(eν − i + 1)(eν − i + 2) · · · (eν − i + ℓ)

ℓ!

Furthermore, we have:

sN = t(ν) =

ν∑

i=1

(eν − ie + 1)(eν − ie + 2) · · · (eν − ie + ℓ + 1)

(ℓ + 1)!

Condition (5) can then be rewritten as Xs(ν)Y ℓs(ν) < N t(ν), and since N
is of byte size ℓk, this gives:

ℓ|r|+ |m| < t(ν)

s(ν)
· ℓk

Asymptotic Bound. The functions s(ν) and t(ν) are polynomials in ν.
Hence, it suffices to evaluate their leading coefficients to obtain an asymp-
totic estimate as ν → +∞. Note further that s(ν) and t(ν) are easily ex-
pressed in terms of the antidifference operator, which takes a polynomial
P (X) to the polynomial σ(P )(X) defined by σ(P )(j) =

∑j
i=1 P (i) for



j ∈ N. Indeed:

s(ν) =

eν∑

i=0

(eν − i)P (i) = eν · σ(P )(eν) − σ(XP )(eν) + eν

with P (X) =
(X + 1) · · · (X + ℓ)

ℓ!

t(ν) =

ν∑

i=1

Q(i) = σ(Q)(ν)

with Q(X) =
(eX − e + 1) . . . (eX − e + ℓ + 1)

(ℓ + 1)!

Now it is easily seen that if the leading coefficient of P is cdX
d, the leading

coefficient of σ(P ) is cdX
d+1/(d+1). It follows that, as ν → +∞, we have:

s(ν) ∼ eν · (eν)ℓ+1

ℓ!(ℓ + 1)
− (eν)ℓ+2

ℓ!(ℓ + 2)
=

(eν)ℓ+2

(ℓ + 2)!
and t(ν) ∼ eℓ+1νℓ+2

(ℓ + 2)!

In particular, t(ν)/s(ν)→ 1/e when ν → +∞. Thus, the best asymptotic
bound on |m| and |r| for which the attack is theoretically possible is:

ℓ|r|+ |m| < ℓk

e

C Broadcast Attack Experimental Results

Given pkcs#1 v1.5’s widespread use and the heuristic nature of Copper-
smith’s techniques in the multivariate case, it is important to practically

assess our attack. In particular, one of the main questions remains to
know how many ciphertexts an attacker really needs in practice to re-
cover m. In the particular instance {log2 N = 1024, e = 3}, the number
of required ciphertexts is, in fact, really low.

Corollary 1. If a pkcs#1 v1.5 user encrypts the same message m with
64-bit randomizers to multiple recipients using 1024-bit moduli and e = 3,
then there exists a heuristic polynomial time algorithm that recovers m
from ℓ = 4 ciphertexts.

Proof. This is a direct consequence of Proposition 4, given that, for 1024-
bit moduli and 64-bit randomizers, message size is equal to 936 bits.

These parameters, corresponding to optimal message size and encryp-
tion speed for 1024-bit moduli, are quite realistic and widely implemented.
The practical implications of this result are potentially serious.



C.1 Partial Information.

Consider an attacker who does not collect all the ℓ required ciphertexts.
In that specific case, even if m can not be fully recovered, the attacker can
nevertheless obtain partial information on m. In particular, in a scenario
where m would not be of full size and would have been previously padded
with zero bits (e.g. using an aes key), the attack can still be performed.

C.2 Practical Implementations.

To check the applicability of the attack, we investigated three configu-
rations: An attacker having access to two, three and four ciphertexts.
Before implementing the attack in each scenario, we first evaluated the
dimension of the corresponding lattices (for reasonably small values of the
parameter ν) and then expressed the number of bits on m that should be
recovered in practice. The results obtained for 1024-bit moduli and e = 3
are shown in the following table.

ℓ = 2 ℓ = 3 ℓ = 4

ν dim(L) |m| dim(L) |m| dim(L) |m|
2 84 213 210 246 462 249
3 220 306 715 395 2002 451
4 455 359 1820 483 6188 578
5 816 394 3876 542 15504 664
6 1330 418 7315 584 33649 726
7 2024 435 12650 615 65780 773

10 5456 469 46376 675 324632 863

As we can see, the number of bits of m that we are able to recover in-
creases with ν, and approaches 936 bits for (ℓ, ν) = (4, 10). Unfortunately,
the dimensions of the constructed lattices are often quite impractical. In
many cases, matrix size turns out to exceed 1000, making lattice reduction
unfeasible in practice. As a result, and because we had limited processor
time at our disposal, we only ran practical experiments in the small cases,
namely ℓ = 2 and ν = 2, 3.

Experiments have been performed on a hepta-processor Intel Xeon
clocked at 1.86ghz. Each test was done in the same way: construction
of the appropriate lattice, lll-reduction and then extraction of short
vectors. Although one only theoretically requires a number of vectors
equal to the number of variables, in practice we decided to take as much
vectors as possible to increase the attack’s success odds. Most cpu time



was claimed by the lll-reduction step (approximately 3 hours for (ℓ, ν) =
(2, 3)). With 1024-bit moduli and 64-bit randomizers, we managed to
recover a 115-bit message (padded with zero msbs).

C.3 Toy example.

To better illustrate the attack process, we present here a toy example
for 150-bit moduli and 5-bit message m. Once the polynomial f had
been constructed and the lattice generated (the lattice is of dimension
84 in this case), lll-reduction was performed. Here the first 50 vectors
corresponded to polynomials having the desired root over the integers.
We then took all these polynomials and computed a Gröbner basis of the
ideal they generated. The results were the following:

Ni = 150 bits,m = 5 bits, r = 6 bits, e = 3, ν = 2
f(x, y, z) with modular root (24, 58, 34)







p1 = z4 + 512z3 + 98304z2 + 86093442y − 94710946z − 1908346880
p2 = yz2 − 89

81z3 + 256yz − 7936
27 z2 + 16384y − 573440

27 z − 33783328
81

p3 = y2 − 62
27yz + 961

729z2 − 1024
27 y + 31744

729 z + 262144
729

p4 = x− 55297y + 63489z + 1048576

The Gröbner basis computation does not allow us to directly recover
the message m, since the corresponding subvariety is not of dimension
zero, as was usually the case in most experiments. In fact, we commonly
faced problems of algebraic dependence between the resulting polynomials
(hence our choice to take a large number of polynomials, rather than the
first few, to compute the Gröbner basis). Nevertheless, it was usually
possible to recover the message, as the polynomials in the Gröbner basis
had a very simple form. In this particular case, for instance, p4 is affine
and p3 can be written as (ay + bz + c)2, making it easy to recover the
common root.


