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Abstract. Monte Carlo Tree Search is a recent algorithm that achieves
more and more successes in various domains. We propose an improve-
ment of the Monte Carlo part of the algorithm by modifying the simula-
tions depending on the context. The modification is based on a reward
function learned on a tiling of the space of Monte Carlo simulations.
The tiling is done by regrouping the Monte Carlo simulations where two
moves have been selected by one player. We show that it is very efficient
by experimenting on the game of Havannah.

1 Introduction

Monte Carlo Tree Search (MCTS) [5] is a recent algorithm for taking decisions
in a discrete, observable, uncertain environment with finite horizon that can be
described as a reinforcement learning algorithm. This algorithm is particularly
interesting when the number of states is huge. In this case, classical algorithms
like Minimax and Alphabeta [7], for two-player games, and Dynamic Program-
ming [2], for one-player games, are too time-consuming or not efficient. As MCTS
explores only a small relevant part of the whole problem, this allows it to ob-
tain good performance in such situations. This algorithm achieved particularly
good results in two-player games like computer Go or Havannah. But this algo-
rithm was also successfully applied on one-player problems like the automatic
generation of libraries for linear transforms [4] or active learning [8].

The use of Monte Carlo simulations to evaluate a situation is an advantage
of the MCTS algorithm; it gives an estimation without any knowledge of the
domain. However, it can also be a limitation. The underlying assumption is that
decisions taken by an expert are uniformly distributed in the whole space of
decisions. This is not true in most of the cases. In order to address this problem,
one can add expert knowledge in the Monte Carlo simulations as proposed in
[3]. However, this solution is application-dependent and limited because all the
different situations have to be treated independently.

In this paper, we present a first step to solve this problem in a generic way.
We introduce a modification of the Monte Carlo simulations that allows them to
be automatically modified depending on the context: Contextual Monte Carlo
(CMC) simulations. We show that it improves the performance for the game of
Havannah. In order to do that, we learn the reward function on a tiling of the



space of Monte Carlo simulations and use this function to modify the following
simulations. The idea is to group simulations where two particular actions have
been selected by the same player. Then, we learn the average reward on those
sets. And finally, we try to reach simulations from sets associated to a high
reward. This modification is generic and can be applied to two-player games as
well as one-player games. To the extent of our knowledge, this is the first time
a generic and automatic way of adapting the Monte Carlo simulations in the
MCTS algorithm has been proposed.

We first present reinforcement learning, the principle of the Monte Carlo
Tree Search algorithm and the principle of tiling. Then, we introduced those
new simulations: CMC simulations. Finally, we present the experiments and
conclude.

2 Value-Based Reinforcement Learning

In a reinforcement learning problem, an agent will choose actions in an environ-
ment described by states with the objective of maximizing a long-term reward.
The agent will act based on his previous trials (exploitation) and try new choices
(exploration).

Let S be a set of states. Let A be a set of actions. Let R ⊂ R be a set of
rewards.

At each time t ∈ 1, ..., T , the current state st ∈ S is known. After an action
at ∈ A is chosen, the environment returns the new state st+1 and the reward
rt+1 ∈ R.

The goal is to find a policy function π : S → A that maximizes the cumulative
reward Rt for each t:

Rt =

T
∑

k=t+1

rk

In value-based reinforcement learning, an intermediate value function is learned
to compute the policy. The value function V π(s) is the expected cumulative re-
ward starting state s and following the policy π thereafter.

V π(s) = Eπ[Rt|st = s]

This function is not known and will be empirically evaluated: V̂ π.

While there is some time left, the algorithm will iterate two different steps:

– utilization of the empirical estimation of the value function. V̂ π is used in or-
der to choose the actions (often based on a compromise between exploration
and exploitation).

– update of the empirical estimation of the value function. V̂ π is modified based
on the rewards obtained.



This is known as the policy iteration process [10].

The utilization and update of V̂ π can be done by different algorithms. For
example, [11] propose the TD(λ) algorithm in order to do the update. A classical
utilization of V̂ π is the ǫ-greedy algorithm.

3 Monte Carlo Tree Search

The principle of MCTS is to construct a highly unbalanced tree representing the
future by using a bandit formula and to combine it with Monte Carlo simulations
to evaluate the leaves.

3.1 Bandits

A classical k-armed bandit problem is defined as follows:

– A finite set J = {1, . . . , k} of arms is given.

– Each arm j ∈ J is associated to an unknown random variable Xj with an
unknown expectation µj .

– At each time step t ∈ {1, 2, . . . }:

• the algorithm chooses jt ∈ J depending on (j1, . . . , jt−1) and (r1, . . . , rt−1).

• Each time an arm j is selected, the bandit gives a reward rt, which is a
realization of Xjt

.

The goal of the problem is to minimize the so-called regret: the loss due to
the fact that the algorithm will not always chose the best arm.

Let Tj(n) the number of times an arm has been selected during the first n
steps. The regret after n steps is defined by

µ∗n−

k
∑

j=1

µjE[Tj(n)] where µ∗ = max
1≤i≤k

µi

[1] achieve a logarithmic regret (it has been proved that this is the best regret
obtainable in [6]) uniformly over time with the following algorithm: first, tries
one time each arm; then, at each step, selects the arm j that maximizes

x̄j +

√

2ln(n)

nj
(1)

x̄j is the average reward for the arm j.

nj is the number of times the arm j has been selected so far.

n is the overall number of trials so far.

This formula consists in choosing at each step the arm that has the highest
upper confidence bound. It is called the UCB formula.



3.2 Monte Carlo Tree Search

The MCTS algorithm constructs in memory a subtree T̂ of the global tree T
representing the problem in its whole (see algorithm 1 (left) and Fig. 1 (left)).

The construction of the tree is done by the repetition while there is some
time left of 3 successive steps: descent, evaluation, growth.

Fig. 1. Left.Illustration of the Monte Carlo Tree Search algorithm from a presentation
of Sylvain Gelly. Right.Illustration of 3 overlapping tilings from the article [9].

Descent. The descent in T̂ is done by considering that taking decision is a
k-armed bandit problem. We use the formula 1 to solve this problem. In order
to do that, we suppose that the necessary information is stored for each node.
Once a new node has been reached, we just repeat the same principle until we
reached a situation F outside of T̂ .

Evaluation. Now that we have reached F and that we are outside of T̂ ,
there is no more information available to take a decision. As we are not at a leaf
of T , we can not directly evaluate F . Instead, we use a Monte Carlo simulation
(taking decisions uniformly until a final state is reached) to have a value for F .

Growth. We add the node F to T̂ . We update the information of F and of
all the situations encountered during the descent with the value obtained with
the Monte Carlo evaluation.

3.3 Monte Carlo Tree Search as a Reinforcement Learning

Algorithm

The tree representing the problem solved by MCTS can be described as a rein-
forcement learning problem with the following correspondence: states ∼ nodes
of the tree, actions ∼ branches of the tree, rewards ∼ results at the terminal
nodes of the tree.

The MCTS algorithm is a value-based reinforcement learning algorithm with
a UCB policy. The value V̂ UCB(s) is stored in the node corresponding to the
state s. It corresponds to the average reward for the situation s so far.



The utilization part of the algorithm is defined as follows: the action a chosen
in the state s is selected according to











argmaxa(V̂ UCB(sa) +
√

2ln(ns)
nsa

) if s ∈ T̂

mc(s) otherwise

(2)

sa is the situation reached from s after choosing the action a.
nsa

is the number of times the action a has been selected so far from the
situation s.

ns is the overall number of trials so far for situation s.
mc(s) returns an action uniformly selected among all the possible actions

from the state s.
When s is in T̂ , the action is chosen according to the UCB formula 1 (descent

part). When s is outside of T̂ , the action is chosen uniformly among the possible
actions (evaluation part).

The update part of the reinforcement learning algorithm is done after a final
state is reached and a new node has been added to T̂ . The reward is the value
r associated to the final state. For all states s ∈ T̂ that were reached from the
initial state to the final state

V̂ UCB(s)← (1− 1/ns)V̂
UCB(s) +

r

ns

4 Tile Coding

When the number of states is very large or even infinite in the case of continuous
parameters, it is necessary to use a function approximation to learn the value
function.

In tile coding (see [10]), the space D is divided into tiles. Such a partition
is called a tiling. It is possible to use several overlapping tilings. A weight is
associated by the user to each tile. The value of a point is given by the sum of
the weight of all the tiles in which the point is included. A representation of 3
overlapping tilings for a problem with one continuous dimension is given on Fig.
1 (right).

Tile coding will lead to a piecewise constant approximation of the value
function:

∀p ∈ D,∃z ∈ R
+∗ such that, ∀p′ ∈ D ∧ distance(p, p′) < z, V̂ π(p) = V̂ π(p′)

5 Contextual Monte Carlo

In this section, we present how we learn the reward function on the space of
Monte Carlo simulations by defining a tiling on this space. Then, we explain
how we use this function to improve the following Monte Carlo simulations.



5.1 A New Tiling on the Space of Monte Carlo Simulations

We consider a planning problem, the goal is to maximize the reward. We consider
that a Monte Carlo Tree Search algorithm is used to solve this problem. Let G be
the set of the possible actions. We focus on the space of Monte Carlo simulations
EMC . A Monte Carlo simulation is the sequence of moves from outside the tree
T̂ until a final state. Each Monte Carlo simulation is therefore associated to a
reward. We define the tiles L(a1, a2) on EMC where (a1, a2) ∈ G2. L(a1, a2) is
composed of all the simulations containing a1 and a2 and where a1 and a2 has
been selected by one player P .

L = {{sim m such that a1 ∈ m∧a2 ∈ m∧Pm(a1)∧Pm(a2)}; (a1, a2) ∈ G2} (3)

We define V̂CMC : the empirical reward function based on L. In order to learn
the value V̂CMC(a1, a2), each time that a simulation m is rewarded with a value
r, we update the values for each tiles containing m.

For each L(a1, a2) such that s ∈ L(a1, a2),

V̂ CMC(a1, a2)← (1−
1

nCMC(a1, a2)
)V̂ CMC(a1, a2) +

r

nCMC(a1, a2)

nCMC(a1, a2) is the number of times a simulation in L(a1, a2) has been
played.

V̂ CMC(a1, a2) corresponds to the estimated reward for any simulation in
which two particular actions have been selected. If this value is high, it means
that each time the player manages to play a1 and a2 in a simulation, there is a
high chance that the simulation will give a high reward for that player.

5.2 Improving Monte Carlo Simulations

We focus on tiles where the estimated reward is high (superior to a user-defined
threshold B). The policy should try to reach simulations in those tiles. In order
to do that, if a tile associated with two actions a1 and a2 and with an estimated
value superior to B exists and if one player previously selected one of the actions,
we will then select the other. In fact, if several such tiles exist, we will select the
action that will lead to the simulation from the tile with the highest average
reward.

As the policy for situations in T̂ is already efficient, we modify the policy for
situations outside T̂ .

The utilization part previously defined in Eq. 2 is now defined as follows:
The action a chosen in the state s is selected according to



















argmaxa(V̂ UCB(sa) +
√

2ln(ns)
nsa

) if s ∈ T̂

{

cmc(s) if random() < prob
mc(s) otherwise

otherwise

(4)



prob is a parameter between 0 and 1. It corresponds to the probability of
choosing cmc(s) instead of mc(s). random() is a random number generated
between 0 and 1. cmc(s) is defined as follows:

cmc(s) = argmaxa,a∈Es
(U(V̂ CMC(a, b)))

Es is the set of the possible actions in the state s. b is the previous move
played by the same player. U is a threshold function with a threshold at B,
formally defined as follows:

U(x) =

{

x if x > B
0 otherwise

(5)

In order to keep the diversity in Monte Carlo simulation (the importance of
diversity is discussed in [3]), we apply this modification with a certain probability
prob. This probability is defined by the user.

The resulting algorithm is given in algorithm 1 (right).

Algorithm 1 Left. MCTS(s) Right. CMCTS(s) //s a situation

Initialization of T̂ , V̂ UCB , n
while there is some time left do

s′ = s
Initialization of game
//DESCENT//

while s′ in T̂ and s′ not terminal do

s′ = reachable situation chosen according
to the UCB formula (1)
game = game + s′

end while

F = s′

//EVALUATION//
while s′ is not terminal do

s′ = mc(s′)
end while

r = result(s′)
//GROWTH//

T̂ = T̂ + F
for each s in game do

ns ← ns + 1
V̂ UCB(s)← (1− 1/ns)V̂ UCB(s) + r

ns

end for

end while

Initialization of T̂ , V̂ UCB , n, V̂ CMC , nCMC

while there is some time left do

s′ = s
Initialization of game,gamemc
//DESCENT//

while s′ in T̂ and s′ not terminal do

s′ = reachable situation chosen according
to the UCB formula (1)
game = game + s′

end while

F = s′

//EVALUATION//
while s′ is not terminal do

if random() < prob then

s′ = cmc(s′)
else

s′ = mc(s′)
end if

gamemc← gamemc + s′

end while

r = result(s′)
//GROWTH//

T̂ = T̂ + F
for each s in game do

ns ← ns + 1
V̂ UCB(s)← (1− 1/ns)V̂ UCB(s) + r

ns

end for

for each (P (a1), P (a2)) in s′, P being one
player do

nCMC(a1, a2)← nCMC(a1, a2) + 1

V̂ CMC(a1, a2) ← (1 −
1

nCMC (a1,a2)
)V̂ CMC(a1, a2) +

r
nCMC (a1,a2)

end for

end while



6 Experiments

We have tested the effect of contextual Monte Carlo simulations on the game of
Havannah. In this section, we first describe the game of Havannah and then give
our results.

6.1 Havannah

Havannah is a two-player board game recently introduced in the community of
computer game [12]. Invented by Christian Freeling, the game of Havannah is
played on an hexagonal board with hexagonal locations, and different board sizes
(size of 8 or 10 is usual). The rules are really simple. White player starts, and
after that each player plays alternately by putting a stone in an empty location.
If there is no any empty location free, and if no player has won yet, then the
game is a draw. To win, a player has to realize :

– a ring, which is a loop around one or more cells (empty or not, occupied by
black or white stones).

– a bridge, which is a continuous string of stones connecting to one of the six
corners to another one.

– a fork, which is a continuous string of stones linking three edges of the board
(corner locations are not considered as belonging to the edges).

Fig. 2. Three finished games: a ring (a loop, by black), a bridge (linking two corners,
by white) and a fork (linking three edges, by black).

On Fig. 2, we present these three ways to win a game.
The game of Havannah is known as hard for computers for different reasons.

First, there is a large action space, for instance, in size 10, there are 271 possible
moves for the first player. Second, there is no pruning rule for reducing the
number of possible moves. Another important reason is that, there is no natural
evaluation function. A such function is really useful, in the sense that, it gives a
very good evaluation of a position, as, for instance in chess. And finally, a last
reason is the lack of patterns in the game of Havannah. A pattern is an expert
knowledge which give information on a move or a position. For instance, in chess,
it is always good having his king in a safe place, therefore, a pattern could be
castling if it is possible.



6.2 Results

In this section we experiment our Havannah program with the CMC improve-
ment against the same player without this improvement. The reward is 1 (if the
situation is a won game) or 0 (if the situation is a loss). The experiments are
done with 1000 simulations per move for each player.

We study the impact of the two parameters prob and B. prob defines the
percentage of time our modification will be applied (see Algo. 1). B defines
which tiles we want to reach (see Eq. 5). The results are given on Fig. 3 and are
commented below.

First, we see that the utilization of CMC is efficient. It leads to 57% of victory
against the base version for prob = 35 and B = 0.

On Fig. 3 (left), we show the effect of changing B for a fixed value of prob =
75%. The winning percentage starts at 56% for B = 0 and is stable until B = 60
where it starts going down to 50% for B = 100. When B is too high, CMC is
used less often and therefor the results are worse. When B is low, it means that
we will select the best tile even if all the possible tiles have a bad average reward.
It seems that this is never worst than playing randomly. In the following, we use
B = 0.

On Fig. 3 (right), we modify the value of prob while keeping B fixed. When
prob is too high, the diversity of the Monte Carlo simulations is not preserved
and the results are worse. On the other hand, if prob is too low, the modification
has not enough effect. There is a compromise between this two properties.
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Fig. 3. Left.Winning percentage for the CMC version against the basic version with
prob = 35. Right.Winning percentage for the CMC version against the basic version
with B = 0.

7 Conclusion

We presented a domain-independent improvement of the Monte Carlo Tree
Search algorithm. This was done by modifying the MC simulations by using



a reward function learned on a tiling of the space of MC simulations: CMC. To
the extent of our knowledge, this is the first time that an automatic modification
of the Monte Carlo has been proposed.

It achieves very good results for the game of Havannah with a winning per-
centage of 57% against the version without CMC.

It is, for the moment, tested only in the case of one example of two-player
game. An immediate perspective of this work is to experiment CMC on other
problems.

It is possible to apply an infinite amount of tilings to the space of Monte
Carlo simulations. We proposed a successful specific one but others can surely
be found as we used only a small part of the information contained in this space.
In the future, we intend to give a formal description of the learning in the space
of Monte Carlo simulations.
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