
HAL Id: inria-00577945
https://hal.inria.fr/inria-00577945

Submitted on 22 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Engineering of Component-Based
Systems-of-Systems: A Reference Framework

Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, Philippe Merle

To cite this version:
Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, Philippe Merle. Software Engineering of
Component-Based Systems-of-Systems: A Reference Framework. 14th ACM SIGSOFT International
Symposium on Component-Based Software Engineering (CBSE’11), Jun 2011, Boulder, United States.
pp.61-65. �inria-00577945�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50002517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00577945
https://hal.archives-ouvertes.fr

Software Engineering of Component-Based
Systems-of-Systems: A Reference Framework

Frederic Loiret
KTH (Royal Institute of Technology)

Stockholm, Sweden
floiret@kth.se

Romain Rouvoy, Lionel Seinturier,
Philippe Merle

INRIA Lille – Nord Europe, Project-team ADAM
Univ. Lille 1 - LIFL CNRS UMR 8022, France

firstname.lastname@inria.fr

ABSTRACT

Systems-of-Systems (SoS) are complex infrastructures, which
are characterized by a wide diversity of technologies and re-
quirements imposed by the domain(s) they target. In this
context, the software engineering community has been focus-
ing on assisting the developers by providing them domain-
specific languages, component-based software engineering fr-
ameworks and tools to leverage on the design and the de-
velopment of such systems. However, the adoption of such
approaches often prevents developers from combining sev-
eral domains, which is a strong requirement in the context
of SoS. Furthermore, only little attention has been paid to
the definition of a modular toolset and an extensible runtime
infrastructure for deploying and executing SoS. In this pa-
per, we therefore propose a reference framework to leverage
on the software engineering of SoS. Our reference framework
has been validated on the development of two platforms,
namely Hulotte and FraSCAti, to demonstrate that the
resulting complexity is isolated in the core toolset, while the
development of domain-specific extensions is leveraged and
simplified by clearly identified abstractions.

Categories and Subject Descriptors

D.2.11 [Software Architectures]: [Domain-specific archi-
tectures, Service-oriented architecture (SOA)]

General Terms

Design

1. INTRODUCTION
The software engineering community has invested a lot of

effort in the development of complex systems deployed from
embedded devices to Internet-scale environments. These
complex systems, also known as Systems-of-Systems (SoS),
are characterized by an assembly of a wide diversity of build-
ing blocks [12], where processes, tools and design methods
should be adapted to various application domains with het-
erogeneous requirements. At the same time, the Component-
Based Software Engineering (CBSE) principles have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0723-9/11/06 ...$10.00.

thoroughly investigated to provide advanced solutions lever-
aging the characteristics of an application domain. In this
context, the high-level abstractions offered by CBSE are tai-
lored for capturing domain knowledge and are used as a cor-
nerstone of the design process, in particular i) for generat-
ing domain-specific middleware platforms [21], or implemen-
tation artifacts linked to third-party middleware (e.g., RT
CORBA [23]), supplying end-user applications with reusable
patterns, redundant and error-prone tasks; and ii) for con-
ducting domain-specific analysis in order to automatically
infer analysis models that are of particular importance for a
given domain (e.g., schedulability analysis in safety-critical
systems). Nevertheless, most of the existing CBSE approa-
ches [9] focus on a single application domain and do not try
to identify the key abstractions and principles to introduce
enough flexibility throughout the design process for support-
ing the challenges raised by SoS.

In this paper, we propose a reference framework to isolate
the common principles generally applied to develop Comp-
onent-Based Systems-of-Systems (CBSoS). The originality
of our solution is based on i) the extensive use of domain-
specific annotations and ii) the adoption of a reflective ap-
proach, where both the CBSoS infrastructure and the toolset
apply our reference framework. We assess this reference
framework by reporting on two component-based platforms
we developed: Hulotte and FraSCAti. The experiences
we realized suggest that our reference framework exhibits a
number of benefits, including support of principled develop-
ment of domain-specific concerns in CBSoS, elimination of
redundant development effort, separation of concerns, and
homogeneous design and implementation methods simplify-
ing both software maintenance and evolution.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the reference framework whose implementa-
tions and evaluations are detailed in Section 3. Section 4
discusses related works, and Section 5 concludes the paper.

2. REFERENCE FRAMEWORK
Our reference framework is organized as a triangle of three

complementary contributions to achieve the desired proper-
ties: i) a minimal set of high-level model artifacts required
for specifying component-based software and their domain-
specific extensions, ii) architectural styles and guidelines
for implementing domain-specific middleware platforms, and
iii) the key processing steps and extension points required
for analyzing and producing the supporting platforms.

The keystone of the reference framework is a component
model, whose concept semantics can be easily extended by

attaching annotations (cf. Section 2.1). These annotations
are supported by an open container infrastructure which fa-
cilitates both weaving and management of domain-specific
concerns (cf. Section 2.2). The integration of these con-
cerns as well as the validation of the generated architecture
is ensured by a modular toolset (cf. Section 2.3).

2.1 Versatile Component Model
The simplified abstract syntax of the component model we

use as a cornerstone of the reference framework is specified
by the meta-model depicted in Figure 1.

Component

Primitive

Component

Content

Interface

Binding
Composite

Component

Property

Artifact Annotation
annotatedBy

 subComponent

*

*
1

*

*

*
 superComponent

+ name: String

from to

0..1 0..1
container connector

Comp A Comp B

Legend Component

Composite

Interface

Property

Content

Binding

@Annotation @Annotation @Annotation

@Domain-Specific Annotations

Figure 1: The Component Meta-model.

The key principle of this model allows the design of generic
architecture instances whose semantics, roles, domain-specif-
ic properties, and meta-data attached to core artifacts can
be specialized via the use of annotations. Annotations can
be simple string-based attributes as well as arbitrary com-
plex data structures or views of the system, which can them-
selves reference core artifacts. For instance, an annota-
tion can specialize an interface with a particular role (re-
quired/provided or data producer/consumer) and a dedi-
cated IDL (a set of operation-based signatures or simple
data types). An annotation can also specialize a compo-
nent and a binding, for setting a domain-specific execution
or communication semantics, which will be handled by the
underlying middleware platform; or it can provide a domain
viewpoint of a composite for analysis purposes. Annotations
therefore play a central role throughout the architecture life-
cycle, since they are exploited either at design-time by the
application developer, at compile-time and/or at runtime by
the toolset presented in Section 2.3 to drive interpretation
steps.

2.2 Extensible Container
Our reference framework promotes an homogeneous de-

sign methodology where both the application, the middle-
ware platform, and the domain-specific services are designed
and implemented using the above presented component model.
This choice is motivated by the following points:

• To leverage on the use of architecture-based specifica-
tions in order to improve software production met-
rics (such as separation of concerns, modularity, reuse,
high-level design) at the middleware platform level,
which is a key point when designing middleware for

SoS, where well identified redundant patterns and al-
gorithms can be abstracted and reused in various ap-
plication domains;

• To rely on a single design model to investigate multi-
ple functional and non-functional properties of SoS en-
compassing services provided by the underlying mid-
dleware. This is of critical importance for designing
dependable systems whose reliability constraints must
be conjointly ensured at both application and middle-
ware levels;

• To reify built-in middleware services as fine-grained
components at runtime for providing reflective and re-
configuration capabilities, which is a key requirement
for supporting the evolution of family of systems de-
ployed on large-scale environments;

• To leverage on the use of high-level abstractions at
design-time in order to apply transformation and op-
timization techniques (in terms of memory footprint,
real-time responsiveness and execution time) to gen-
erate monolithic and static binaries of the SoS, which
is a key requirement for real-time and embedded sys-
tems.

Our reference framework makes the distinction between
i) middleware services, which are local to an application-
level component instance or a binding instance implemented
by component-based containers and connectors respectively,
and ii) those which are globally shared by the whole appli-
cation, implemented by third-party components.

2.3 Modular Toolset
This section presents the core features and the workflow of

a modular and extensible toolset for analyzing and generat-
ing CBSoS. This toolset is itself implemented with the com-
ponent model presented in Section 2.1. A set of core compo-
nents implements the domain-agnostic logic of the toolset,
thus easing the interpretation steps for analyzing and gen-
erating implementation artifacts, which are reusable within
different family of systems, while the domain-specific logic
is implemented by clearly-defined extension points. Plug-
ins are designed as components implementing an interface
dedicated to the extension point on which they should be
deployed allowing the domain expert to inject the required
logic for handling domain-specific concepts. The reference
architecture of the toolset focuses on pre-defined extension
points, which are highlighted in Figure 2.

1/ The Front-End component is in charge of loading and
checking heterogeneous descriptors used to specify CBSoS

and instantiating the associated reference component model
as well as the domain-specific annotation models. Five ex-
tension points are defined for this purpose: i) ADL Loader

supporting various assembly descriptors. ii) IDL Loader

supporting various IDLs (e.g., Java, CIDL). iii) Property

Loader supporting various Property Description Languages
(PDLs, e.g., Java, XSD). iv) Content Loader supporting
various Component Implementation Languages (e.g., Java,
C). v) The last extension point identified at this stage of the
workflow (Description Checker) performs semantic verifi-
cations on the instantiated models.

2/ Container Generator is in charge of generating the
domain-specific middleware components based on the plat-
form model presented in Section 2.2. The core components
of the toolset (not represented in Figure 2) implement a Vis-
itor pattern traversing the architecture instantiated by the

Front-End. At this step of the process, each application-
level component and binding is given as input of the exten-
sion points handling the generation of the platform (Person-
ality Factory, Connector Factory, and Third-party In-

tegration components), before an initialization phase of the
container and the connector structures. If required, Content
Generation is in charge of generating the content implemen-
tation of the container components, typically in the case of
interceptor components, whose content depends on the sig-
nature of intercepted interfaces. The generation phase is
then finalized by the Container Checker extension point.

The generation step thus produces a complete architec-
ture of the system including application-level components
composed with the container infrastructure.

Front-End

Annotations Binding Property InterfaceComponent Content
ADL

parser

An ADL Loader

Another ADL Loader

Another ADL Loader
ADL Loader

ADL
Dispatcher

IDL Loader

Description Checker Content Loader

Property Loader

Description

Parser

Container-Generator

Container Generator

Dispatcher

Personality Factory

Third-party Integration

Connector Factory

Content Generation

Architecture Transformation Architecture Analysis

Back-End

Backend

Dispatcher

ADL
Files

PDL
Files

IDL
Files

Impl
Files

3

4

5

Model-Artefact-Factory

Metamodel Extension
Reference
Metamodel

Artefacts

handled

by the

toolset1

M
o

d
u

la
r

T
o

o
ls

e
t

2

Container check

Bootstrap Property
Interface

Content
Component Binding

Finalize

Assembly

A
D

L
 fi

le
s

ID
L

,
P

D
L

,
im

p
l.
 fi

le
s

Im
p

le
m

e
n

ta
ti
o

n
 a

rt
e

fa
c
ts

D
o

m
a

in
-s

p
e

c
ifi

c
 a

n
n

o
ta

ti
o

n
s
 i
n

s
ta

n
c
e

s

R
e

fe
re

n
c
e

 c
o

m
p

o
n

e
n

t
m

o
d

e
l
in

s
ta

n
c
e

Figure 2: The Toolset and its Extension Points.

3/ Architecture Transformation component is an ex-
tension point encapsulating plugins that apply transforma-
tions on the generated architecture. Within this interpreta-
tion step, the architecture can be restructured according to
domain-specific requirements. For instance, optimizations
can be implemented to fulfill performance requirements, like
merging composite components in a single primitive using al-
gorithms dedicated to inlining multiple contents into a single
and monolithic one, or flattening the architecture by using
only primitive components. The distribution support, when
subparts of the generated architecture must be deployed on
different distributed nodes according to deployment config-
urations expressed by annotations is another example of
transformations performed at this step. The toolset pro-
vides reusable components to perform these transformations
(merge, split up, unwrap algorithms among others).

Overall, the processing performed by plugins within this
extension point determines how the generated architecture
will be reified at runtime.

4/ Architecture Analysis is an extension point where
plugins related to domain-specific analysis can be bundled
within the toolset prior to the last code generation phase
of the Back-End (e.g., static analysis, event-tree analysis
or schedulability analysis in safety-critical systems, perfor-
mance analysis, reachability analysis to establish liveliness
and safety properties of concurrent systems). From the ar-
chitecture model built in the preceding steps, model trans-

formations can be performed to automatically infer domain-
specific analysis models, which can be in turn exploited by
external analysis engines (e.g., model checkers, SAT solvers).

5/ Back-End reflects the last step of the toolset work-
flow. It is in charge of producing code-level implementation
artifacts for a target executable language, including the gen-
eration of the bootstrap and substrate code. The back-end
is organized according to the key concepts of the reference
component model, as illustrated in the bottom part of Fig-
ure 2. The Assembly component implements a two-steps-
depth-first traversal of the input architecture. The first step
triggers the extension points if generation of implementation
artifacts for each key concept of the model to instantiate is
required. The second step consists of generating bootstrap
files of the assembly. Finally, the Finalize extension point
is invoked, encapsulating plugins required to generate the
final binary of the system (e.g., makefiles generation, com-
pilation, linking).

3. EVALUATION
In order to assess its applicability, the reference frame-

work has been fully applied to the design of two platforms:
Hulotte [17]1 which addresses Distributed and Real-Time
Environments and FraSCAti [27]2 which addresses Large-
Scale Environments.

In the remainder of this section, we report on the core
features of the two platforms that distinguish them. Ta-
ble 1 summarizes the set of coarse-grained domain-specific
features presented in this section and specifies the plugins
they implement, according to the extension points detailed
in Section 2.3.

3.1 Hulotte: Distributed & Real-Time Embed-
ded Environments

The default ADL language supported by Hulotte is an
annotation-aware extension of Fractal-ADL [4], based on
XML. Two other languages may also be optionally bundled
in the toolset, for parsing architecture descriptors and IDLs
specified with Think-ADL [1] (a grammar-defined textual
ADL) or FCM3 (an XMI-based ADL inherited from UML
architectural concepts).

The Back-End supports two target programming languages:
C/assembler and Java. Both are extensible according to
the extension points described in Section 2.3 and both are
configurable—via the use of annotations—for producing sub-
strate code allowing introspection and reconfiguration of the
architecture at runtime. However, since we are concerned by
performance issues raised in embedded systems, these fea-
tures can be applied to a subset of the architecture, or not
at all if not required, thus optimizing the memory footprint
of the binaries produced by the toolset. Interested readers
can refer to [16] for further details. Four domain-specific
extensions, described below, have been designed.

Real-Time Audio Applications. Domain-specific ex-
tensions have been implemented in order to provide to the
application developer a design space for component-based
audio and music applications implemented in C, which is
fully reported in [18]. These multitask, concurrent and real-

1http://adam.lille.inria.fr/soleil/hulotte/
2http://frascati.ow2.org
3
Flex-eWare Component Model (http://www.
flex-eware.org).

Table 1: Domain-Specific Features and their Toolset Extension Points.
Front-End Container Arch Arch Back-End

Trans. Analysis

Domain-Specific Features M
e
t
a
m

o
d
e
l

A
D

L

I
D

L

P
r
o
p
e
r
t
y

C
o
n
t
e
n
t

C
h
e
c
k
e
r
s

P
e
r
s
o
n
a
li
t
y

C
o
n
n
e
c
t
o
r

T
h
ir
d
-
P
a
r
t
y

C
o
n
t
.

G
e
n
.

C
h
e
c
k
e
r
s

B
o
o
t
s
t
r
a
p

P
r
o
p
e
r
t
y

I
n
t
e
r
fa

c
e

C
o
n
t
e
n
t

C
o
m

p
o
n
e
n
t

B
in

d
in

g

F
in

a
li
z
e

Hulotte: Real-Time Audio
√ √ √ √ √ √ √ √ √ √ √

DRTE RTSJ Framework
√ √ √ √ √ √ √ √ √ √ √ √ √

Environment Behav. Models Inf.
√ √ √ √

Impl. Const. Check
√ √ √ √

Interfaces
√ √ √ √ √ √

FraSCAti: Properties
√ √ √ √ √

VLS Comp. Personalities
√ √ √ √ √ √ √ √ √ √

Environment Implementations
√ √ √ √ √ √ √ √ √ √ √ √

Bindings
√ √ √ √ √ √ √ √ √ √

time applications implement audio flows processing algo-
rithms controlled by the end-user via HMIs (Human-Machine
Interfaces), and requiring basic services of a Real-Time Op-
erating System, implemented by a third-party component.

Component Framework for RTSJ. Hulotte has been
experimented in the implementation of a component-based
framework for RTSJ-based systems, presented in [25]. The
Real-Time Specification for Java (RTSJ [3]) is a specifi-
cation for the development of predictable real-time Java-
based applications with the concepts of: i) real-time threads
(RealTimeThread, NoHeapRealTimeThread) that have pre-
cise scheduling semantics, and ii) special types of memory
areas (ScopedMemory, ImmortalMemory), which are outside
the scope of the garbage collector to ensure predictable mem-
ory access among the objects where they are allocated.

Behavioral Models Inference from a Static Anal-
ysis. Inferring global behavior properties from an archi-
tecture is a requirement to ensure dependability constraints
of real-time systems. We propose a behavior specification
based on automata, abstracting the internal control flows of
the components, where transitions are labeled by incoming
and outgoing interactions externalized by the interfaces of
the component, and by internal access to global variables
defined within the component’s scope.

Constraints Checker at Architectural and Imple-
mentation Levels. Since we rely on a generic mechanism
where architectural artifacts can be annotated by arbitrary
annotations, their use imposes constraints for the applica-
tion developer [22]. Therefore, the implementations of the
components must also fulfill the constraints imposed by the
use of domain-specific annotations (e.g., for a component
annotated with a “thread-dispatch annotation”, its imple-
mentation must not spawn new threads).

3.2 FraSCAti: Large-Scale Environments
The cornerstone ADL on which FraSCAti is built is

the Service Component Architecture (SCA) Assembly Lan-
guage [2] for building large-scale distributed SOA systems.
The Front-End is thus in charge of loading the SCA as-
sembly descriptors and instantiating the associated SCA
and FraSCAti EMF metamodels. While the SCA meta-
model groups all the concepts defined by the SCA specifica-
tions, the FraSCAti metamodel captures arbitrary domain-
specific extensions.

Application-level bindings between components are fully
dynamic in FraSCAti since they are implemented at the
middleware level as SCA components, e.g., the URI of a
Web service (available as a property of these components)
can be changed at runtime, thus reconfiguring the archi-

tecture of the distributed application. Dynamic component
instantiation is another original feature of FraSCAti since
the toolset provides an API, which can be invoked at run-
time to create new instances of components with different
personalities (detailed below), according to the application
management requirements. Finally, since the toolset is itself
implemented by an SCA composite, this enable the dynamic
deployment of new plugins to tailor the toolset to new us-
age conditions upon demand, unforeseen at startup. Five
domain-specific extensions, described below, have been de-
signed.

Heterogeneous IDLs and PDLs. Various Interface
and Property Description Languages can easily extend the
kernel of the toolset within the IDL/Property Loader ex-
tension points, whose plugins provide their parsers and in-
stantiate consequently their EMF models. In addition to
Java, the set of plugins currently supports WSDL, UPnP,
and C headers in terms of IDLs as well as XSD as a PDL.

Component Personalities. FraSCAti currently sup-
ports three personalities designed by component-based con-
tainers following the architectural styles described in Sec-
tion 2.2: SCA, OSGi, and Spring.

Component Implementation Languages. In addi-
tion to Java 5, which is the default component implemen-
tation language of FraSCAti, the toolset can be packaged
with plugins supporting other languages: Java Beans, Scala,
Spring, OSGi, Fractal, BPEL, and scripting languages.

Bindings. Currently, nine plugins are implemented as
FraSCAti extensions for supporting heterogeneous com-
munication protocol technologies: Java RMI, SOAP, HTTP,
JSON-RPC, SCA, OSGi, JNA, SLP, and UPnP. These pro-
tocols are encapsulated as connectors, encapsulating stubs
and skeletons SCA components, which implement protocol
specificities, such as message marshalling.

Third-Party Integration. In the case of FraSCAti,
the notion of third-party components presented in Section 2.2
is used for implementing classical built-in middleware ser-
vices (e.g., logging, transaction, security, etc.) [27]. These
middleware services are reified as services required by the
application architecture via annotations, and are instanti-
ated by the Third-party Integration extension point of
the toolset. The binding mechanism between these two lay-
ers is handled dynamically by containers based on aspect-
oriented techniques for injecting and managing application-
level requests.

4. RELATED WORK
In terms of comparison with versatile component models,

our contribution is related to Fractal [4], OpenCom [8],

Think [1], and SOFA [5]. These approaches provide a seri-
ous foundation for developing CBSoS, from IT to embedded
systems, since they propose extension mechanisms via flexi-
ble execution infrastructures also based on the container and
connector idioms. However, they fail to manage variability
of their conceptual models, such as the capability to handle
multiple ADLs, IDLs and implementation languages, they
lack generic principles for specializing and parameterizing
application-level components with arbitrary domain-specific
concerns, and they do not provide a modular toolset han-
dling variability with clearly identified extension points.

In the Architecture Description Languages area, most of
the initial propositions [20] report an important diversity in
terms of semantics implicitly attached to architectural ar-
tifacts and interpreted consequently for analysis or synthe-
sis. They rely on monolithic toolsets and are not extensi-
ble, except ACME [14] somehow, an architecture description
interchange language between different ADLs. A more re-
cent proposal, xADL [10], is an extensible ADL based on
modular and composable XML schemas. xADL addresses
the design of SoS but does not provide a modular toolset
nor a container infrastructure to support the deployment
and the execution of these systems. We can also make
a connection between the principles presented in this pa-
per for specializing domain-specific middleware platforms
and Aspect-Oriented ADLs, such as AO-ADL [24], Aspec-
tualACME [13], or AspectLEDA [19].

Our work has some relationships with Model-Driven En-
gineering (MDE) approaches, such as [7, 26] or Fujaba [6]
based on MDE toolsets for real-time component-based ap-
plications.These approaches focus on generating and deploy-
ing executable systems and provide extensive model analysis
and model transformation capabilities. However, they do
not emphasis on the integration of heterogeneous require-
ments of CBSoS, which is one of the challenge addressed
by our contribution.

Finally, [11] and [15] clearly share with our work the idea
of an extensible framework for heterogeneous architecture
description processing, including architectural analysis, code
generation, etc. However, both approaches fail i) to pro-
pose a systematic handling of the interpretation logic based
on core architectural constructs to finely drive the domain-
specific processing tasks, and ii) to expose clearly identified
extension points throughout their workflows.

5. CONCLUSION
Component-Based Software Engineering (CBSE) has been

thoroughly investigated for the development of Systems-of-
Systems (SoS). Although a plethora of component models
and middleware frameworks have been proposed, no consen-
sus has been achieved on a reference framework for build-
ing SoS scaling from embedded to very-large-scale environ-
ments. Based on our experience in this domain, we present
in this paper a reference framework for building component-
based SoS, which can be applied in various environments
and accommodate a wide variety of domain-specific require-
ments. This reference framework builds on a versatile com-
ponent model, which is exploited by a modular toolset to
build extensible containers. The originality of our contribu-
tion lies in the adoption of the same versatile component
model for designing and executing the modular toolset as
well as the container infrastructure. This reference frame-
work has been applied on the development of two open-

source platforms, Hulotte and FraSCAti, to validate the
acquaintance of the introduced concepts. In particular, we
demonstrated that the adoption of this reference framework
leverages on the integration of domain-specific requirements
from the perspectives of the domain expert and the applica-
tion developer.

Acknowledgements. The work presented in this paper
has been partially funded by the ANR ARPEGE 2008-SEGI-
10 ITEmIS project.

6. REFERENCES
[1] M. Anne, et al. Think: View-Based Support of Non-functional

Properties in Embedded Systems. In Proc. of ICESS, 2009.

[2] Beisiegel, M. et al. Service Component Architecture, 2007.
http://www.osoa.org.

[3] G. Bollela, et al. The Real-Time Specification for Java. 2000.

[4] E. Bruneton, et al. The Fractal Component Model and its
Support in Java. SPE, 36(11-12), 2006.

[5] T. Bureš, P. Hnětynka, and F. Plášil. SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component Model. In
Proc. of SERA, 2006.

[6] S. Burmester, et al. The Fujaba Real-Time Tool Suite:
Model-Driven Development of Safety-Critical, Real-Time
Systems. In Proc. of ICSE, 2005.

[7] J. Carlson, et al. Deployment Modelling and Synthesis in a
Component Model for Distributed Embedded Systems. In Proc.
of SEAA, 2010.

[8] G. Coulson, et al. A Generic Component Model for Building
Systems Software. ACM TOCS, 26(1), 2008.

[9] I. Crnkovic, et al. A Classification Framework for Software
Component Models. IEEE TSE, 2010.

[10] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. An
Infrastructure for the Rapid Development of XML-based
Architecture Description Languages. In Proc. of ICSE, 2002.

[11] G. Edwards and N. Medvidovic. A Methodology and
Framework for Creating Domain-Specific Development
Infrastructures. In Proc. of ASE, 2008.

[12] P. Feiler, et al. Ultra-Large-Scale Systems. 2006.

[13] A. Garcia, et al. On the Modular Representation of
Architectural Aspects. In Proc. of EWSA, 2006.

[14] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural
Description of Component-Based Systems. In Foundations of
Component-Based Systems. 2000.

[15] M. Leclercq, et al. Supporting Heterogeneous Architecture
Descriptions in an Extensible Toolset. In Proc. of ICSE, 2007.

[16] F. Loiret, et al. Component-Based Real-Time Operating
System for Embedded Applications. In Proc. of CBSE, 2009.

[17] F. Loiret, et al. Constructing Domain-Specific Component
Frameworks through Architecture Refinement. In Proc. of
SEAA, 2009.

[18] F. Loiret, et al. A Three-Tier Approach for Composition of
Real-Time Embedded Software Stacks. In Proc. of CBSE, 2010.

[19] A. N. Mart́ınez, et al. An ADL Dealing with Aspects at
Software Architecture Stage. Information & Software
Technology, 51(2), 2009.

[20] N. Medvidovic and R. N. Taylor. A Classification and
Comparison Framework for Software Architecture Description
Language. IEEE TSE, 26(1), 2000.

[21] G. A. Moreno. Creating Custom Containers with Generative
Techniques. In Proc. of GPCE, 2006.

[22] C. Noguera and F. Loiret. Checking Architectural and
Implementation Constraints for Domain-Specific Component
Frameworks using Models. In Proc. of SEAA, 2009.

[23] OMG. CORBA Component Model. http://www.omg.org.

[24] M. Pinto and L. Fuentes. AO-ADL: an ADL for describing
aspect-oriented architectures. In Proc. of Early Aspects, 2007.

[25] A. Pľsek, et al. A Component Framework for Java-based
Real-time Embedded Systems. In Proc. of Middleware, 2008.

[26] A. Radermacher. Generating Execution Infrastructures for
Component-Oriented Specifications with a Model Driven
Toolchain. In Proc. of GPCE, 2009.

[27] L. Seinturier, et al. A Component-Based Middleware Platform
for Reconfigurable Service-Oriented Architectures. SPE, 2011.

