
HAL Id: inria-00578052
https://hal.inria.fr/inria-00578052

Submitted on 18 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transitive Closures of Affine Integer Tuple Relations
and their Overapproximations

Sven Verdoolaege, Albert Cohen, Anna Beletska

To cite this version:
Sven Verdoolaege, Albert Cohen, Anna Beletska. Transitive Closures of Affine Integer Tuple Relations
and their Overapproximations. [Research Report] RR-7560, INRIA. 2011. �inria-00578052�

https://hal.inria.fr/inria-00578052
https://hal.archives-ouvertes.fr

appor t
de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
75

60
--

F
R

+
E

N
G

Domaine 2

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Transitive Closures of Affine Integer Tuple Relations
and their Overapproximations

Sven Verdoolaege — Albert Cohen — Anna Beletska

N° 7560

March 2011

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Transitive Closures of Affine Integer Tuple Relations
and their Overapproximations

Sven Verdoolaege , Albert Cohen , Anna Beletska

Domaine : Algorithmique, programmation, logiciels et architectures
Équipe-Projet ALCHEMY

Rapport de recherche n° 7560 — March 2011 — 35 pages

Abstract: The set of paths in a graph is an important concept with many applica-
tions in system analysis. In the context of integer tuple relations, which can be used to
represent possibly infinite graphs, this set corresponds tothe transitive closure of the
relation. Relations described using only affine constraints and projection are fairly effi-
cient to use in practice and capture Presburger arithmetic.Unfortunately, the transitive
closure of such a quasi-affine relation may not be quasi-affine and so there is a need for
approximations. In particular, most applications in system analysis require overapprox-
imations. Previous work has mostly focused either on underapproximations or special
cases of affine relations. We present a novel algorithm for computing overapproxima-
tions of transitive closures for the general case of quasi-affine relations (convex or not).
Experiments on non-trivial relations from real-world applications show our algorithm
to be on average more accurate and faster than the best known alternatives.

Key-words: affine integer tuple relation, dependence graph, Floyd-Warshall, maxi-
mal reaching path length, polyhedral model, strongly connected components, transitive
closure

Transitive Closures of Affine Integer Tuple Relations
and their Overapproximations

Résuḿe : L’ensemble des chemins dans un graphe joue un rôle important pour de
nombreuses applications dans le domaine de l’analyse des syst̀emes. Dans le cas des
relations entre tuples d’entiers, lesquelles permettent de repŕesenter des graphes poten-
tiellement infinis, cet ensemble correspondà la cl̂oture transitive de la relation. Lorsque
ces relations sont décrites uniquement̀a l’aide de contraintes affines et de projections,
elles ont la puissance d’expression de l’arithmétique de Presburger, et elles donnent
lieu à des algorithmes relativement efficaces en pratique. Malheureusement, la clôture
transitive d’une telle relation quasi-affine n’est pas forćement quasi-affine, impliquant
le recours̀a des approximations. En particulier, la plupart des applicationsà l’analyse
des syst̀emes requiert des sur-approximations. Les résultats ant́erieurs se concentrent
soit sur des sous-approximations soit sur des cas particuliers de relations affines. Nous
proposons un nouvel algorithme pour le calcul de sur-approximations de cl̂otures tran-
sitives, dans le cas géńeral des relations quasi-affines (convexes ou non). Nos résultats
exṕerimentaux portent sur des relations non-triviales issuesd’applications ŕeelles, et
démontrent que notre algorithme est plus précis et plus rapide en moyenne que les
meilleures alternatives connues.

Mots-clés : relation affine entre des tuples d’entiers, graphe de dépendence, Floyd-
Warshall, longueur maximale d’un chemin d’accessibilité, mod̀ele polyh́edrique, com-
posantes fortement connexes, clôture transitive

Transitive Closures of Affine Integer Tuple Relations 3

for (i = 3; i <= n; i++)

a[i] = a[i - 3];

Figure 1: A sequential loop

3 4 5 6 7 8 9 10 11

Figure 2: The dependences and slices of the loop in Figure 1

#pragma omp parallel for

for (i = 3; i <= min(n, 5); i++)

for (j = i; j <= n; j += 3)

a[j] = a[j - 3];

Figure 3: A parallelized version of the loop in Figure 1

1 Introduction

Computing the transitive closure of a relation is an operation underlying many im-
portant algorithms, with applications to computer-aided design, software engineering,
scheduling, databases and optimizing compilers. In this paper, we consider the class of
parametrized relations over integer tuples whose constraints consist of affine equalities
and inequalities over variables, parameters and existentially quantified variables. This
class has the same expressivity as Presburger arithmetic. Such quasi-affine relations
typically describe infinite graphs, with the transitive closure corresponding to the set of
all paths in the graph, and are widespread in decision and optimization problems with
infinite domains, with applications to static analysis, formal verification and automatic
parallelization [4,5,8,16,18,19,24,28]. In this context,the use of quasi-affine relations
is preferred because most operations on such relations can be performed exactly and
fairly efficiently. However, as shown by Kelly et al. [28], the transitive closure of a
quasi-affine relation may not be representable as a quasi-affine relation, or may not be
computable at all. This leads to the design of approximationtechniques [2,7,10,25,28].
and/or the study of sub-classes, including sub-polyhedral domains, where an exact
computation is possible [3, 11–15, 19, 21]. Our approach belongs to the first group.
That is, our goal is not to investigate classes of relations for which the transitive clo-
sure is guaranteed to be exact, but rather to obtain a generaltechnique for quasi-affine
relations that always produces an overapproximation, striking a balance between accu-
racy and speed.

Approximation for the general case of quasi-affine relations has only been inves-
tigated by Kelly et al. [28], and their technique only provides an underapproximation
(which is sufficient for their applications). Yet the vast majority of the applications
require overapproximations, and the (unimplemented) algorithm proposed by Kelly et
al. computing overapproximations is very inaccurate. Overapproximations have been
considered by Beletska et al. [7], but in a more limited setting.

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 4

We use Iteration Space Slicing (ISS) to illustrate the application of the transitive
closure to quasi-affine relations [8]. The objective of this technique is to splitup the
iterations of a loop nest into slices that can be executed in parallel. Applying the tech-
nique to the code in Figure 1, we see that some iterations of the loop use a result
computed in earlier iterations and can therefore not be executed independently. These
dependences are shown as arrows in Figure 2 for the case wheren = 11. The intu-
ition behind ISS is to group all iterations that are connected through dependences and
to execute the resulting groups in parallel. The construction of these groups can be
formulated as a transitive closure on a relation representing the (extended) dependence
graph. The resulting relation connects iterations to directly or indirectly depending
iterations, from which the groups can be derived. In the example, three such groups
can be discerned, indicated by different colors of the nodes in Figure 2. The resulting
parallel program, with the outer parallel loop running overthe different groups and the
inner loop running over all iterations that belong to a group, is shown in Figure 3. It
is important to note here that if the transitive closure cannot be computed exactly, then
an overapproximation should be computed. This may result inmore iterations being
grouped together and therefore fewer slices and less parallelism, but the resulting pro-
gram would still be correct. Underapproximation, on the other hand, would lead to
invalid code.

In this paper, we present an algorithm for computing overapproximations of tran-
sitive closures. The algorithm subsumes those of [7] and [2]. Furthermore, it is exper-
imentally shown to be exact in more instances from our applications than that of [28]
and generally also faster on those instances where both produce an exact result. Our al-
gorithm includes three decomposition methods, two of whichare refinements of those
of [28], while the remaining one is new. Finally, we provide amore extensive experi-
mental evaluation on more difficult instances. As an indication, Kelly et al. [28] report
that they were able to compute exact results for 99% of their input relations, whereas
they can only compute exact results for about 60% of our inputrelations and our algo-
rithm can compute exact results for about 80% of them. This difference in accuracy is
shown to have an impact on the final outcome of some of our applications.

Section 2 gives background information on affine relations and transitive closures.
We briefly explain some of our target applications in Section3 and we discuss re-
lated work in Section 4. Section 5 details the core of our algorithm. Section 6 studies
decomposition methods to increase accuracy and speed. Section 7 describes the im-
plementation, while Section 8 explains the relationship with reachability analysis. The
results of our experiments are shown in Section 9.

2 Background

We consider binary relations onZd, i.e., relations mappingd-tuples of integers tod-
tuples of integers. The composition of two relationsR and S is denotedS ◦ R. A
relationR is transitively closedif R◦ R = R. Thetransitive closureof R, denotedR+,
is the (inclusion-wise) smallest relationT such thatR⊆ T andT is transitively closed.
The transitive closureR+ can be constructed as the union of all positive integer powers
of R:

R+ ≔
⋃

k≥1

Rk
, with Rk

≔

R if k = 1

R◦ Rk−1 if k ≥ 2.
(1)

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 5

A relation R is reflexively closedon a setD if the identity relation IdD is a subset of
R. Thereflexive closureof R on D is R∪ IdD. Thereflexive and transitive closureof
R on D is R∗D ≔ R+ ∪ IdD. Thecross productof two relationsR andS is the relation
R×S = { (x1, y1)→ (x2, y2) | x1→ x2 ∈ R∧ y1→ y2 ∈ S }. Occasionally, we will also
consider binary relations over labeled integer tuples, i.e., subsets of

⋃

d1,d2≥0(Σ×Zd1)→
(Σ × Zd2), with Σ a finite set of labels. By assigning an integer value to each label, any
such relation can be encoded as a relation over the (1+ d)-tuples withd the largest of
thed1s andd2s over all elements in the relation.

We work with relations that have a finite representation. A commonly used class of
such relations are those that can be represented using affine constraints. We consider
finite unions ofbasic relations R=

⋃

i Ri , each of which is represented as

Ri = { x1→ x2 ∈ Z
d × Zd | ∃z ∈ Ze : A1x1 + A2x2 + Bs+ Dz+ c ≥ 0 }, (2)

with s a vector ofn free parameters,Ai ∈ Z
m×d, B ∈ Zm×n, D ∈ Zm×e andc ∈ Zm. To

emphasize that the description may involve existentially quantified variablesz, we call
such relationsquasi-affine. Any Presburger relation can be put in this form.

Unfortunately, the transitive closure of a quasi-affine relation may not be repre-
sentable using affine constraints [28]. Similarly, a description ofall positive integer
powersk of R, parametrically ink, may not be representable either. We will refer to
this description as simply thepowerof Rand denote it asRk. Since the powerRk as well
as the transitive closureR+ may not be representable, we will compute approximations,
in particular overapproximations, denoted asPk(R) andT (R), respectively.

Next to quasi-affine relations, we will also make use of quasi-affine sets during
our computations. These sets are defined in essentially the same way as quasi-affine
relations. The only difference is that sets are unary relations on integer tuples instead of
binary relations. Sets can be obtained from relations in thefollowing ways. Thedomain
of a relationR is the set domR≔ { x1 ∈ Z

d | ∃x2 ∈ Z
d : x1 → x2 ∈ R}. Therangeof

a relationR is the set ranR≔ { x2 ∈ Z
d | ∃x1 ∈ Z

d : x1 → x2 ∈ R}. Thedifference set
of a relationR is the set∆R≔ { δ ∈ Zd | ∃x → y ∈ R : δ = y − x }. We also need the
following operations on sets. TheMinkowski sumof S1 andS2 is the set of sums of
pairs of elements fromS1 andS2, i.e.,S1 + S2 = {a+ b | a ∈ S1 ∧ b ∈ S1 }. Thekth
multiple of a set, withk a positive integer is defined as 1S = S andk S = (k− 1)S+S
for k ≥ 2. Note that as with thekth power of a relation, thekth multiple of a quasi-affine
set, withk a parameter, may not be representable as a quasi-affine set.

Most of the applications we consider operate within the context of the polyhedral
model [23], where single-entry single-exit program regions are represented, analyzed
and transformed using quasi-affine sets and relations. In particular, the set of all itera-
tions of a loop for which a given statement is executed is called theiteration domain.
When the loop iterators are integers and lower and upper bounds of all enclosing loops
as well all enclosing conditions are quasi-affine, then the iteration domain can be rep-
resented as a quasi-affine set. For example, the iteration domain of the single statement
in Figure 1 isn 7→ { i | 3 ≤ i ≤ n }. Dependence relationsmap elements of an iter-
ation domain to elements of another (or the same) iteration domain which somehow
depend on them for their execution. Two common types of dependences arememory
baseddependences andvalue baseddependences. There is a memory based depen-
dence between iterationi and iterationj if i is executed beforej and both access the
same memory location, with at least one of the accesses beinga write. The meaning
of such a dependence is that after transformation,i should still be executed beforej .
There is a value based dependence between iterationi and iterationj if i performs the

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 6

last write to a memory location read byj , meaning thatj reads the value written byi.
In Figure 1, each array element is only written once, so the two types of dependences
result in the same relation:n 7→ { i → i + 3 | 3 ≤ i, i + 3 ≤ n }. The graph with the
statements and their iterations domains as nodes and the dependence relations as edges
is called thedependence graph.

3 Applications

3.1 Sized Types

Chin et al. [18] present a technique for computing relationships between the sizes of
the arguments of a function in the context of a functional programming language. In
particular, they are interested in the relationship between the sizes of input and output
arguments and in the relationship between the sizes of the original input arguments of a
function and the sizes of the inputs to any (possibly indirect) recursive call of the same
function. In case a function does not call itself recursively, the relationship between
input and output sizes can be derived using some inference rules. If these relationships
can be represented using affine constraints, then the possible values of these sizes can
be represented using an affine set. In case a function does call itself recursively, similar
rules can be used to derive an affine relation that maps the sizes of the original call to
the sizes of the direct recursive call. The relationship between the original sizes and
those ofanyrecursive call are then obtained by computing the transitive closure of this
relation. Combining the exact transitive closure with the affine set representing the leaf
call results in the least fixed point of the sized type. If the transitive closure cannot
be computed exactly, approximations are allowed, but the sized type should still be a
fixed point. This means that the transitive closure should beoverapproximated and that
furthermore the result should be closed. Realizing thatOmega computes underapprox-
imations instead of overapproximations, the authors propose a heuristic method that
manipulates the output ofOmega until an overapproximation is obtained. As we will
show in Section 9.1, our algorithm produces better results.

3.2 Iteration Space Slicing

As already illustrated in the introduction, the purpose of iteration space slicing is to
partition the iteration domains of a program fragment into slices that are not connected
through any dependences. The simplest way to reduce this problem to a transitive
closure computation is to consider the union of the dependence relation and its inverse.
Any pair of iterations that is connected through one or more applications of this union
belongs to the same slice in the partition. The transitive closure of this relation therefore
connects each iteration to each other iteration in the same slice. Taking the union with
the identity relation on the iteration domains, we obtain a relation between each pair
of iterations in the same slice. In the example, the transitive closure of the union of
n 7→ { i → i + 3 | 3 ≤ i, i + 3 ≤ n } and its inverse is

n 7→ { i → j | ∃α : i − j = 3α ∧ 3 ≤ i, j ≤ n∧ (i > j ∨ i < j) }.

This transitive closure can be computed exactly using the techniques described below,
although the representation of the result will be slightly more complicated than the
representation shown above. Taking the union with the identity relation onn 7→ { i |

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 7

3 ≤ i ≤ n } results in

n 7→ { i → j | ∃α : i − j = 3α ∧ 3 ≤ i, j ≤ n }.

This relation can then be further manipulated to obtain a representative of each slice.
The most natural choice is to compute the (lexicographically) minimal element of the
image of a given element in the domain. All elements in the same slice will then be
mapped to the same minimal element, which can then be used to identify the slice. In
the example, we obtain

n 7→ { i → j | ∃α : i − j = 3α ∧ 3 ≤ i ≤ n∧ 3 ≤ j ≤ 5 }.

The actual algorithm for computing slices proposed by Beletska et al. [8] is slightly
more complicated as it avoids computing the transitive closure of a cyclic relation. In
general, this more complicated algorithm produces more accurate results.

3.3 Maximal Static Expansion

Scalar variables or array elements are often reused throughout the course of a program
to store different results. This reuse leads to extra memory based dependences that
can hamper parallelization. Maximal static expansion [4] isa technique for removing
some of these memory based dependences by allocating independent results to different
memory locations. In particular, the original storage mapping of the program, mapping
accesses to memory locations, is expanded in the sense that some accesses that used
to be mapped to the same memory location may now be mapped to distinct memory
locations. Essentially, the expansion is obtained by adding extra dimensions to the
arrays or by turning scalars into arrays. The expansion is static if no expansion is
performed on write accesses that, based on a conservative analysis, may have been
mapped to the same memory location in the original program and that may end up being
read by the same read access. That is, the extra dimensions, if any, are not allowed to
differentiate between such accesses. Since an expansion is a partition, it needs to be
defined in terms of an equivalence relation. In particular, the defining relation needs
to be transitively closed. We therefore need to compute the transitive closure of both
relations involved, i.e., that of possibly mapping to the same memory location in the
original program and that of possibly reaching the same readaccess. Note that, as in
the case of iteration space slicing, it is essential to obtain a representation of the actual
transitive closure and not just of some reachable set.

3.4 Free Schedules

A free schedule [20] executes each operation as soon as all the operations on which
it depends have been executed. Given a dependence graphG, the free schedule can
be obtained by first computing the lengths of all reaching paths inG to a given itera-
tion and then computing the maximum of those lengths. The length of a reaching path
is the exponentk associated to an element in the powerGk of the dependence graph.
These lengths can therefore be obtained by projecting out the domain ofGk and subse-
quently treatingk as the image of a mapping defined on the range ofGk. As explained
in Section 5.1, the power of a relation can be computed from the transitive closure of
a related relation. If the transitive closure and the power are overapproximations, then
there may be extra reaching path lengths associated to a given operation, possibly af-
fecting (increasing) the maximum length. The resulting schedule may no longer be the

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 8

free schedule, but it will still be a valid schedule. Underapproximations, on the other
hand, could lead to invalid schedules.

3.5 Equivalence Checking

Assume that we are given two programs that can be representedin the polyhedral model
and that we want to check whether those two programs are equivalent, i.e., that their
output arrays will contain the same values when given identical values for their input
arrays. Both programs can be represented as an inverted dependence graph that has
been annotated with the operations that are performed in each statement [37]. The two
programs are equivalent if every pair of paths that start outfrom the same elements of
the same output arrays are such that they pass through nodes that perform the same op-
eration and end up either in nodes that compute the same constant or in nodes that read
the same elements from the same input arrays. We can perform this check on an au-
tomaton that is the cross product of the two annotated dependence graphs. This check is
essentially a reachability analysis, but Barthou et al. [5]propose to perform this reach-
ability analysis by first computing a regular expression forall paths in the automaton
from initial states to leaf states, subsequently translating this regular expression into
operations on the dependence relations and finally applyingthe result of these opera-
tions on an initial state that represents pairs of identicaloutput array elements. If the
regular expression contains cycles, then these are translated into transitive closures.

Note that unlike most of our other target applications, transitive closures are not
essential for solving the equivalence checking problem. Infact, much better results can
be achieved using different approaches [37]. However, given our experience with this
problem, we have easy access to a set of problem instances. Furthermore, as in most of
our other target applications, the transitive closures involved are based on dependence
relations and are therefore representative for the kinds ofrelations for which we want to
compute transitive closures. In fact, they represent the more difficult kinds of relations
as they are based on pairs of dependence relations and may be the result of nested
transitive closure operations.

4 Related Work

The seminal work of Kelly et al. [28] introduced many of the concepts and algorithms
in the computation of transitive closures that are also usedin this paper. In particular,
we use a revised version of their incremental computation and we apply their modified
Floyd-Warshall algorithm internally. However, the authorsconsider a different set of
applications which require underapproximations of the transitive closures instead of
overapproximations. Their work therefore focuses almost exclusively on these under-
approximations. For overapproximations, they apparentlyonly consider some kind of
“box-closure”, which we recall in Section 7 and which is considerably less accurate
than our algorithm.

Bielecki et al. [9] aim for exact results, which may therefore be non-affine. In
our applications, affine results are preferred as they are easier to manipulate in further
calculations. Furthermore, the authors only consider bijective relations over a convex
domain. We consider general quasi-affine relations, which may be both non-bijective
and defined over finite unions of domains.

Beletska et al. [7] consider finite unions of translations, for which they compute
quasi-affine transitive closure approximations, as well as some othercases of finite

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 9

unions of bijective relations, which lead to non-affine results. Their algorithm applied
to unions of translations forms a special case of our algorithm for general affine rela-
tions.

Bielecki et al. [10] propose to compute the transitive closure using the classical
iterative least fixed point computation and if this process does not produce the exact
result after a fixed number of iterations, they resort to a variation of the “box-closure”
of [28]. To increase the chances of the least fixed point computation, they first replace
each disjunct in the input relation by its transitive closure, provided it can be computed
exactly using available techniques [9,28].

Transitive closures are also used in the analysis of countersystems to accelerate
the computation of reachable sets. In this context, the power of a relation is known
as a “counting acceleration” [21], while our relations overlabeled tuples correspond to
Presburger counter systems [21], extended to the integers.Much of the work on counter
systems is devoted to the description of classes of systems for which the computations
can be performed exactly. See, e.g., the work of Bardin et al.[3] and their references
or the work of Bozga et al. [14]. By definition, these classes do not cover the class of
input relations that we target in our approach. Other work oncounter systems, e.g.,
that of Sankaranarayanan et al. [30], Feautrier and Gonnord[25] or Ancourt et al. [2],
focuses on the computation of invariants and therefore allows for overapproximations.
However, the analysis is usually performed on (non-parametric) polyhedra. That is,
the relations for which transitive closures are computed donot involve parameters,
existentially quantified variables or unions. The transitive closure algorithm proposed
by Ancourt et al. [2] is essentially the same as that used by Boigelot and Herbreteau
[13], except that the latter apply it on hybrid systems and only in cases where the
algorithm produces an exact result. The same algorithm alsoforms the core of our
transitive closure algorithm for single disjunct relations.

5 Powers and Transitive Closures

We present our core algorithm for computing overapproximations of the parametric
power and the transitive closure of a relation. We first discuss the relationship between
these two concepts and provide further evidence for the needfor overapproximations.
Then, we address the case whereR is a single basic relation, followed by the case of
multiple disjuncts. Finally, we explain how to check the exactness of the result and
why the overapproximation is guaranteed to be transitivelyclosed.

5.1 Introduction

There is a close relationship between parametric powers andtransitive closures. Based
on (1), the transitive closureR+ can be computed from the parametric powerRk by pro-
jecting out the parameterk. Conversely, an algorithm for computing transitive closure
can also be used to compute parametric powers. In particular, given a relationR, com-
puteC+ with C = R× { i → i + 1 }. For each pair of integer tuples inC, the difference
between the final coordinates is 1. The difference between the final coordinates of pairs
in C+ is therefore equal to the number of steps taken. To computeRk, one may equate
k to this difference and subsequently project out the final coordinates.

As mentioned in Section 2, it is not always possible to compute powers and closures
exactly, and we may aim instead for overapproximationsPk(R) andT (R). It should
be clear that both conversions above map overapproximations to overapproximations.

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 10

Figure 4: A graphical representation of the relation in (3).The R domain is marked
with filled circles, while the L domain is marked with open circles.

Important: note that the transitive closure may not be affinely representable even if the
input relation is a union of constant-distance translations. A well know case can be built
by considering the lengths of dependence paths associated to SUREs [20, Theorem 23].

As a related example, let us first consider the relation

{R(i, j)→ R(i,1+ j) | j ≥ 0∧ j ≤ −1+ i } ∪

{R(i, i)→ L(i, i) | i ≥ 0 } ∪

{L(i, j)→ L(i,−1+ j) | j ≥ 1∧ j ≤ i } ∪

{L(i,0)→ R(1+ i,0) | i ≥ 0 },

(3)

shown graphically in Figure 4. It should be fairly clear fromthe figure that the transitive
closure of this relationis affine. Indeed, this transitive closure can be represented as

{R(i, j)→ R(i, j′) | j ≥ 0∧ j′ ≥ 1+ j ∧ j′ ≤ i } ∪

{R(i, j)→ R(i′, j′) | j ≥ 0∧ j ≤ i ∧ j′ ≥ 0∧ j′ ≤ i′ ∧ i′ ≥ 1+ i } ∪

{R(i, j)→ L(i′, j′) | j ≥ 0∧ j ≤ i ∧ j′ ≥ 0∧ j′ ≤ i′ ∧ i′ ≥ i } ∪

{L(i, j)→ L(i, j′) | j′ ≥ 0∧ j′ ≤ −1+ j ∧ j ≤ i } ∪

{L(i, j)→ L(i′, j′) | j ≥ 0∧ j ≤ i ∧ j′ ≥ 0∧ j′ ≤ i′ ∧ i′ ≥ 1+ i } ∪

{L(i, j)→ R(i′, j′) | j ≥ 0∧ j ≤ i ∧ j′ ≥ 0∧ j′ ≤ i′ ∧ i′ ≥ 1+ i }.

However, it should be equally clear from the figure that the path lengths arenot affine.
For example the length of a path from L(i1,0) to L(i2,0), with i2 > i1 is equal to
i22+3i2− i21−3i1−1, a fact that can easily be verified usingbarvinok [35]. This means
that the transitive closure of the following relation is notaffine:

{R(i, j, k)→ R(i,1+ j, k+ 1) | j ≥ 0∧ j ≤ −1+ i } ∪

{R(i, i, k)→ L(i, i, k+ 1) | i ≥ 0 } ∪

{L(i, j, k)→ L(i,−1+ j, k+ 1) | j ≥ 1∧ j ≤ i } ∪

{L(i,0, k)→ R(1+ i,0, k+ 1) | i ≥ 0 }.

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 11

This example was inspired by Example 2 of [31, Section 3.1], which involves another
union of translations over fixed distances such that the transitive closure is affine, but
the parametric power is not.

5.2 Single Disjunct

Given a single basic relationR of the form (2), we look for an overapproximation of
R+ and we will derive it from an overapproximation ofRk. Furthermore, we want to
compute the approximation efficiently and we want it to be as close to exact as possible.

We will treat input relation as a (possibly infinite) union oftranslations. The dis-
tances covered by these translations are the elements of thedifference set∆ = ∆R.
We will assume here that∆ also consists of a single basic set; our implementation of
the∆R operation may result in a proper union due to our treatment ofexistentially
quantified variables discussed below. The union case is treated in Section 5.3. Our
approximation of thekth power contains translations over distances that are the sums
of k distances in∆. In particular, it contains those translations starting from and ending
at the same points as those of the input relation. That is, we compute all paths along
distances in∆

Pk = { x→ y | ∃δ ∈ Dk : y = x + δ }, with Dk = k∆ and k ∈ Z≥1, (4)

and intersect domain and range with those ofR,

Pk(R) = Pk ∩ (domR→ ranR) . (5)

Example 5.1 To see the importance of this intersection with domain and range, con-
sider the relation R= { (x, y) → (x, x) }. First note that this relation is transitively
closed already, so in our implementation we would not apply the algorithm here. If we
did, however, then we would have∆R = {0 } × Z, whence Pk = { (x, y) → (x, y′) }. On
the other hand,ranR= { (x, x) } and soT (R) = Pk(R) = { (x, y)→ (x, x) }.

Unfortunately, the setk∆ in (4) may not be affine in general and then the same holds
for P. As a trivial example ofk∆ not being affine, take∆ to be the parametric singleton
n→ {n }. If, however,∆ is a non-parametric singleton∆ = { δ }, i.e.,δ does not depend
on the parameters, thenk∆ is simply{ kδ } and we can compute our approximation of
the power according to (5). Otherwise, we drop the definitionofDk in (4) and compute
Dk as an approximation ofk∆, essentially copying some constraints of (a projection
of) ∆. This process ensures thatDk is easy to compute, although it may in some cases
not be the most accurate affine approximation ofk∆.

5.2.1 No parameters or existentially quantified variables

Let us first assume that the description of∆ does not involve any existentially quantified
variables or parameters. The constraints then have the form〈a, x〉+c ≥ 0. Any element
in k∆ can be written as the sum ofk elementsδi from ∆. Each of these satisfies the
constraint. The sum therefore satisfies the constraint

〈a, x〉 + c k≥ 0, (6)

meaning that the constraint in (6) is valid fork∆. Our approximationDk of k∆ is then
the set bounded by the constraints in (6). In this special case, we compute essentially

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 12

the same approximation as [2]. Note that if∆ has integer vertices, then the vertices of
∆ × {1 } generate the rational cone{ (x, k) ∈ Qd+1 | 〈a, x〉 + c k ≥ 0 }. This means that
∆ × {1 } is a Hilbert basis of this cone [32, Theorem 16.4] and that thereforeDk = k∆.

Example 5.2 As a trivial example, consider the relation R= { x→ y | 2 ≤ y− x ≤ 3 }.
We have∆ = ∆R = { δ | 2 ≤ δ ≤ 3 } andDk = { δ | 2k ≤ δ ≤ 3k }. Therefore,
Pk(R) = Pk = { x→ y | 2k ≤ y− x ≤ 3k } andT (R) = { x→ y | y− x ≥ 2 }.

5.2.2 Parameters

If the description of∆ does involve parameters then we cannot simply multiply the
parametric constant byk as that would result in non-affine constraints. One option is
to treat parameters as variables that just happen to remain constant. That is, instead of
considering the set

∆ = ∆R= s 7→ { δ ∈ Zd | ∃x→ y ∈ R : δ = y − x }

we consider the set

∆′ = ∆R′ = { δ ∈ Zn+d | ∃(s, x)→ (s, y) ∈ R′ : δ = (s− s, y − x) }. (7)

The firstn coordinates of every element in∆′ are zero. Projecting out these zero co-
ordinates from∆′ is equivalent to projecting out the parameters in∆. The result is
obviously a superset of∆, but all its constraints only involve the variablesx and can
therefore be treated as above.

Another option is to categorize the constraints of∆ according to whether they in-
volve set variables, parameters or both. Constraints involving only set variables are
treated as before. Constraints involving only parameters,i.e., constraints of the form

〈b, s〉 + c ≥ 0. (8)

are also valid fork∆. For constraints of the form

〈a, x〉 + 〈b, s〉 + c ≥ 0, (9)

involving both set variables and parameters, we need to consider the sign of〈b, s〉 + c.
If this expression is non-positive for all values ofs for which∆ is non-empty, i.e.,

∆ ∩ { δ | 〈b, s〉 + c > 0 } = ∅, (10)

then〈a, x〉 will always have a non-negative valuev and we havek 〈a, x〉 ≥ v for k ≥ 1.
The constraint in (9) is therefore also valid fork∆ if this condition holds. Our approx-
imationDk of k∆ is the set bounded by the constraints in (6), (8) and (9). Constraints
of the form (9) for which (10) does not hold are simply dropped. Since this may result
in a loss of accuracy, we add the constraints derived from∆′ above if any constraints
of the form (9) get dropped.

Example 5.3 Consider the relation from [28, Figure 12]:

n→ { (i, j)→ (i,1+ j) | i ≥ 1∧ j ≥ 1∧ j ≤ −1+ n∧ i ≤ n } ∪

n→ { (i,n)→ (1+ i,1) | i ≥ 1∧ i ≤ −1+ n }.
(11)

Kelly et al. [28] compute the exact transitive closure through an application of their
variation of the incremental computation. However, the transitive closure can also be

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 13

computed exactly using the basic technique of this section.The difference set of the
second disjunct is

∆ = n→ { (1,1− n) | n ≥ 2 }.

The second coordinate corresponds to an equality x2 = 1 − n, which in turn can be
split up into two inequalities x2 ≥ 1 − n and x2 ≤ 1 − n. Only the latter satisfies the
condition in(10). Our approximation for the non-affine k∆ = n→ { (k, k−kn) | n ≥ 2 }
is thereforeDk = n → { (k, x2) | k ≥ 1 ∧ x2 ≤ 1 − n ∧ n ≥ 2 }. This means that
any negative movement of at least n− 1 is allowed in the second coordinate as long
as the first coordinate is increased. The actual transitive closure of the relation in(11)
allows movements toany element with a higher first coordinate. The inaccurateness
in Dk therefore does not result in any inaccurateness of the transitive closure on this
example. We find that this kind of behavior is fairly typical for transitive closures of
dependence relations.

Example 5.4 Consider the relation

R= n→ { (x, y)→ (1+ x,1− n+ y) | n ≥ 2 }.

We have
∆R= n→ { (1,1− n) | n ≥ 2 }

and so, by treating the parameters in a special way, we obtainthe following approxi-
mation for R+:

n→ { (x, y)→ (x′, y′) | n ≥ 2∧ y′ ≤ 1− n+ y∧ x′ ≥ 1+ x }.

If we consider instead

R′ = { (n, x, y)→ (n,1+ x,1− n+ y) | n ≥ 2 }

then
∆R′ = { (0,1, y) | y ≤ −1 }

and we obtain the approximation

n→ { (x, y)→ (x′, y′) | n ≥ 2∧ x′ ≥ 1+ x∧ y′ ≤ x+ y− x′ }.

If we consider both∆R and∆R′, then we obtain

n→ { (x, y)→ (x′, y′) | n ≥ 2∧ y′ ≤ 1− n+ y∧ x′ ≥ 1+ x∧ y′ ≤ x+ y− x′ }.

Note, however, that this is not the most accurate affine approximation that can be ob-
tained. In particular, the following approximation is moreaccurate

n→ { (x, y)→ (x′, y′) | y′ ≤ 2− n+ x+ y− x′ ∧ n ≥ 2∧ x′ ≥ 1+ x }.

5.2.3 Existentially quantified variables

If the description of∆ does involve existentially quantified variables, we compute
unique representatives for these variables, picking the lexicographically minimal value
for each of them using parametric integer programming [22].The result is an ex-
plicit representation of each existentially quantified variables as greatest integer parts

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 14

of affine expressions in the parameters and set variables. This representation may in-
volve case distinctions, leading to a partitioning of∆. If the representation involves
only parameters, then the existentially quantified variable can be treated as a parame-
ter. Similarly, if it only involves set variables, the existentially quantified variable can
be treated as a set variable too. Otherwise, any constraintsinvolving the variable are
discarded. If this happens then, as before, we add the constraints derived from∆′ (7).

Example 5.5 Consider the relation

R= n→ { x→ y | ∃α0, α1 : 7α0 = −2+ n∧ 5α1 = −1− x+ y∧ y ≥ 6+ x }.

The difference set of this relation is

∆ = ∆R= n→ { x | ∃α0, α1 : 7α0 = −2+ n∧ 5α1 = −1+ x∧ x ≥ 6 }.

The existentially quantified variables can be defined in terms of the parameters and
variables as

α0 =

⌊

−2+ n
7

⌋

and α1 =

⌊

−1+ x
5

⌋

.

α0 can therefore be treated as a parameter, whileα1 can be treated as a variable. This
in turn means that7α0 = −2+n can be treated as a purely parametric constraint, while
the other two constraints are non-parametric. The corresponding Pk is therefore

n→ { (x, z)→ (y,w) | ∃α0, α1, k, f : k ≥ 1∧ y = x+ f ∧ w = z+ k∧

7α0 = −2+ n∧ 5α1 = −k+ x∧ x ≥ 6k }.

Projecting out the final coordinates encoding the length of the paths, results in the exact
transitive closure

R+ = n→ { x→ y | ∃α0, α1 : 7α1 = −2+ n∧ 6α0 ≥ −x+ y∧ 5α0 ≤ −1− x+ y }.

5.3 Multiple Disjuncts

When the set of distances∆ is a proper union of basic sets∆ = ∪i∆i , we apply the
technique of Section 5.2 to each∆i separately, yielding approximationsDk

i of ki ∆i and
corresponding pathsPk

i from (4). The set of global paths should take a total ofk steps
along the∆is, which can be obtained by essentially composing thePk

i s and takingk
to be the sum of allkis. However, we need to allow for somekis to be zero, so we
introduce stationary pathsSi = IdZd ∩ { x → y | ki = 0 } and compute the set of global
paths as

Pk =
(

(Pkm
m ∪ Sm) ◦ · · · ◦ (Pk2

2 ∪ S2) ◦ (Pk1
1 ∪ S1)

)

∩ { x→ y | k =
∑

i

ki > 0 }. (12)

The final constraint ensures that at least one step is taken. The approximation of the
power is then again computed according to (5). As explained in Section 5.1,Pk(R) can
be represented asT (C), with C = R× { i → i + 1 }. Using this representation, all∆i

have 1 as their final coordinate andSi above is simply IdZd+1.
We need to be careful about scalability at this point. Given aset of distances∆ with

m disjuncts, a naive application of (12) results in aPk relation with 2m − 1 disjuncts.
We try to limit this explosion in three ways. First, we handleall singleton∆i together;

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 15

second, we try to avoid introducing a union withSi ; and third, we try to combine
disjuncts. In particular, the paths along∆i = { δi } can be computed as

Pk = { x→ y | ∃ki ∈ Z≥0 : y = x +
∑

i

ki δi ∧
∑

i

ki = k > 0 }.

In this special case, we compute essentially the same approximation as [7]. For the
remaining∆i , if the result of replacing constraintk ≥ 1 by k = 0 in the computation of
Pk yields the identity mapping, thenPk

i ∪Si is simplyQk
i with Qk

i the result of replacing
k ≥ 1 by k ≥ 0. It is tempting to always replacePk

i ∪ Si by this Qk
i , even if it is an

overapproximation, but experience has shown that this leads to an significant loss in
accuracy. Finally, if neither of these optimizations apply, then after each composition
in (12) we “coalesce” the resulting relation. Coalescing detects pairs of disjuncts that
can be replaced by a single disjunct without introducing anyspurious elements [36].

5.4 Properties

By construction (Section 5.2 and Section 5.3), we have the following lemma.

Lemma 5.6 Pk(R) is an overapproximation of Rk, i.e., Rk ⊆ Pk(R).

The transitive closure approximation is obtained by projecting out the parameterk.
Pk(R) can be represented asT (C), with C = R × { i → i + 1 }. T (R) is obtained
fromT (C) by projecting out the final coordinates. We immediately have the following
lemma.

Lemma 5.7 T (R) is an overapproximation of R+, i.e., R+ ⊆ T (R).

In many cases,Pk(R) will be exactly Rk. Given a particularR it is instructive
to know whether the computedPk(R) is exact or not, either for applications working
directly with powers or as a basis for an exactness test on closures detailed below. The
exactness test on powers amounts to checking whetherPk(R) satisfies the definition of
Rk in (1):

P1(R) ⊆ R and Pk(R) ⊆ R◦ Pk−1(R) for k ≥ 2.

The reverse inclusion is guaranteed by Lemma 5.6. IfPk(R) is exact, thenT (R) is
also exact since the projection is performed exactly. However, if Pk(R) is not exact
thenT (R) might still be exact. We therefore prefer the more accuratetest of [28,
Theorem 5]:

T (R) ⊆ R∪ (R◦ T (R)) .

However, this test can only be used ifR is acyclic, i.e., ifR+ has no fixed points.
SinceT (R) is an overapproximation ofR+, it is sufficient to check thatT (R) has no
fixed points, i.e., that0 < ∆T (R). If T (R) does have fixed points, then we apply the
exactness test onPk(R) instead.

In some applications, notably those of [18], [4] and [8], it is not sufficient that the
computed approximation of the transitive closure be an overapproximation, it should
also be transitively closed. The power approximationPk(R) computed above is transi-
tively closed as soon asPk is transitively closed: ifx→ y ∈ Pk1(R) andy→ z ∈ Pk2(R),
thenx → z ∈ Pk1+k2(R), becausePk is transitively closed (and sox → z ∈ Pk1+k2),
x ∈ domR andz ∈ ranR. If x1 ∈ D

k1 andx2 ∈ D
k2, then both combinations sat-

isfy (6) and therefore also their sum. Constraint (9) is alsosatisfied forx1 + x2 and

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 16

so x1 + x2 ∈ D
k1+k2. We conclude that in the single disjunct case,Pk in (4) is tran-

sitively closed, which in turn implies that alsoPk in (12) is transitively closed in the
multiple disjunct case.T (R) is transitively closed because for anyx→ y andy→ z in
T (R), there is some pairk1, k2 such thatx → y ∈ Pk1(R) andy → z ∈ Pk2(R) and so
x→ z ∈ Pk1+k2(R). We therefore have the following theorem.

Theorem 5.8 T (R) is a transitively closed overapproximation of R+.

6 Decomposition Methods

In order to improve accuracy, we apply several methods for breaking up the transi-
tive closure computation. The first one is a decomposition into strongly connected
components. The other two are variations of methods in [28]:we apply the modi-
fied Floyd-Warshall algorithm internally after partitioning the domain and we apply an
incremental computation method.

6.1 Strongly Connected Components

Computations in Section 5.2 and Section 5.3 focus on the distance between elements in
relation. The domain and range of the input relation are onlytaken into account at the
very last step in (5). This means that translations described by one disjunct are applied
to domain elements of other disjuncts, even if the domains are completely disjoint. In
this section, we describe how the accuracy ofPk(R) andT (R) can be improved by
decomposing the disjuncts ofR into strongly connected components (SCCs).

The translations ofR+ are compositions of translations in the disjuncts ofR. Two
disjunctsRi andRj should be lumped into a connected component if there exist trans-
lations inRk that first go throughRi and then throughRj , and translations that first go
throughRj and then throughRi . Formally, we consider the directed graph where the
vertices are the disjuncts inR and the arcs connect pairs of vertices (Ri ,Rj) if Ri can
immediately followRj . The SCCs can be computed from this graph using Tarjan’s
algorithm [33]. In principle,Ri can immediately followRj if the range ofRj intersects
the domain ofRi , i.e., if Ri ◦ Rj , ∅. However, ifRi ◦ Rj ⊆ Rj ◦ Ri then we can always
interchangeRi andRj in any sequence leading to an element ofR+ whereRi immedi-
ately followsRj . It is therefore sufficient to introduce an edge betweenRi andRj only
if

Ri ◦ Rj * Rj ◦ Ri . (13)

Once the components have been obtained, we computeT (Rc) on each component
Rc separately. TheseT (Rc) can be combined into a globalT (R) in the same way the
paths are combined in (12). The combination must be performed in the correct order:
the results of the components should be combined according to a topological ordering
of the components. This topological ordering is a byproductof Tarjan’s algorithm. The
decomposition preserves the validity of Lemma 5.6. The exactness check of Section 5.4
is performed on each component separately. If the approximation turns out to be inex-
act for any of the components, then the entire result is marked inexact and the exactness
check is skipped on the remaining components.

To ensure closedness ofT (R), we need to make a minor modification. If we are
to perform the decomposition based solely on criterionRi ◦ Rj , ∅, then the same
property will also hold for the components and, because of (5), for the powers of the
components, implying that the final result is also transitively closed. If (13) is ever

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 17

Figure 5: The relation from Example 6.1

used, however, then transitive closedness of the result is not guaranteed unless all com-
putations are performed exactly. We therefore explicitly check whether the result is
transitively closed when the computation is not exact and when (13) has been used. If
the check fails, we recompute the result without a decomposition into SCCs.

Example 6.1 Consider the relation in exampleclosure4 that comes with the Omega
calculator [26], R= R1 ∪ R2, with

R1 = { (x, y)→ (x, y+ 1) | 1 ≤ x, y ≤ 10}

R2 = { (x, y)→ (x+ 1, y) | 1 ≤ x ≤ 20∧ 5 ≤ y ≤ 15}.

This relation is shown graphically in Figure 5. The basic technique of Section 5 would
not be able to compute the exact transitive closure for this relation since the computed
approximation would allow any path from a domain element to arange element that
moves right and up. However, a decomposition into strongly connected components
does lead to the exact result. We have

R1 ◦ R2 = { (x, y)→ (x+ 1, y+ 1) | 1 ≤ x ≤ 9∧ 5 ≤ y ≤ 10}

R2 ◦ R1 = { (x, y)→ (x+ 1, y+ 1) | 1 ≤ x ≤ 10∧ 4 ≤ y ≤ 10}.

Clearly, R1 ◦ R2 ⊆ R2 ◦ R1 and so

(R1 ∪ R2)+ =
(

R+2 ◦ R+1
)

∪ R+1 ∪ R+2 .

Example 6.2 Consider the relation on the right of [7, Figure 2], reproduced in Figure 6.
Note that one of the arrows is missing in the original figure. The relation can be de-
scribed as R= R1 ∪ R2 ∪ R3, with

R1 = n 7→ { (i, j)→ (i + 3, j) | i ≤ 2 j − 4∧ i ≤ n− 3∧ j ≤ 2i − 1∧ j ≤ n }

R2 = n 7→ { (i, j)→ (i, j + 3) | i ≤ 2 j − 1∧ i ≤ n∧ j ≤ 2i − 4∧ j ≤ n− 3 }

R3 = n 7→ { (i, j)→ (i + 1, j + 1) | i ≤ 2 j − 1∧ i ≤ n− 1∧ j ≤ 2i − 1∧ j ≤ n− 1 }.

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 18

Figure 6: The relation from Example 6.2

The figure shows this relation for n= 7. Beletska et al. [7] explain that they are
not able to compute the exact parametric power of this relation using their technique
(a special case of the technique in Section 5), but that they can compute the exact
transitive closure. Using the decomposition into stronglyconnected components, we
can also compute the parametric power exactly. Both R3 ◦R1 ⊆ R1 ◦R3 and R3 ◦R2 ⊆

R2 ◦ R3. R3 can therefore be moved forward in any path. For the other two basic
relations, we have both R2 ◦R1 * R1 ◦R2 and R1 ◦R2 * R2 ◦R1 and so R1 and R2 form
a strongly connected component. By computing the power of R3 and R1∪R2 separately
and composing the results, the power of R can be computed exactly.

6.2 Domain Partitioning

We have just seen how to split off disjuncts that can be serialized with respect to other
disjuncts. Within a strongly connected component of disjuncts, however, we may still
be able to group their domains and ranges into disjoint sets.This typically happens
when an entire dependence graph is encoded in a single relation, as is done in, e.g., [4,
Section 6.1]: the original iteration domains are encoded asdisjoint subsets ofZd, with
the domain and range of each individual disjunct in the inputrelation entirely contained
in a single of these disjoint subsets. For disjuncts mappingacross different subsets, i.e.,
encodings of dependences between different iteration domains, it makes little sense to
compute the difference set. Since the algorithm of Section 5 is based on nothing but
this difference set, we cannot expect to obtain accurate results on such inputs. The
solution is to detect disjoint groups of domains and ranges and to apply the modified
Floyd-Warshall algorithm of [28], reproduced in Algorithm1, on relations between
these groups. Let the input relationRbe a union ofmbasic relationsRi . Let D2i be the
domains ofRi andD2i+1 the ranges ofRi . The first step groups overlappingD js until a
partition is obtained. If the partition consists of a singlepart, then we continue with the
standard algorithm. Otherwise, we apply Floyd-Warshall onthe graph whose vertices
are the parts of the partition and whose edges are theRi attached to the appropriate

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 19

Algorithm 1 : The modified Floyd-Warshall algorithm of [28]
Input : RelationsRpq, 0 ≤ p,q < n
Output : Updated relationsRpq such that each relationRpq contains all indirect

paths fromp to q in the input graph

for r ∈ [0,n− 1] do1

Rrr ≔ T (Rrr)2

for p ∈ [0,n− 1] do3

for q ∈ [0,n− 1] do4

if p , r or q , r then5

Rpq≔ Rpq∪
(

Rrq ◦ Rpr

)

∪
(

Rrq ◦ Rrr ◦ Rpr

)

6

pairs of vertices. Consider a partition ofn partsGk. We constructn2 relations

Rpq≔

⋃

i s.t. domRi⊆Gp∧ranRi⊆Gq

Ri ,

apply Algorithm 1 and return the union of all resultingRpq asT (R). Each iteration
of the r-loop in Algorithm 1 updates all relationsRpq to include paths that go from
p to r, possibly stay there for a while, and then go fromr to q. Note that paths that
“stay in r” include all paths that pass through earlier vertices sinceRrr itself has been
updated accordingly in previous iterations of the outer loop. In principle, it would be
sufficient to use theRpr andRrq computed in the previous iteration of ther-loop in
Line 6. However, from an implementation perspective, it is easier to allow either or
both of these to have been updated in the same iteration of ther-loop. This may result
in duplicate paths, but these can usually be removed by coalescing the result of the
union in Line 6, which should be done in any case. The transitive closure in Line 2
is performed using a recursive call. This recursive call includes the partitioning step,
but the resulting partition will usually be a singleton. Theresult of the recursive call
will either be exact or an overapproximation. The final result of Floyd-Warshall is
considered exact only if each recursive call produces an exact result.

To see that the Floyd-Warshall algorithm preserves closedness, letx→ y ∈ Ri j and
y → z ∈ Rjk. Let r1 andr2 be the iterations of the outermost loop of the algorithm in
which these elements were introduced, or−1 if they are elements of the input relation.
Let r be the largest ofr1 andr2. If j > r, thenx → z is introduced in iterationj. If
j ≤ r, thenx→ z is introduced in iterationr.

As explained at the start of this section, applying Floyd-Warshall should produce
more accurate results on certain types of relations. This expectation is confirmed by
the experiments of Section 9. However, the algorithm comes with the cost of having to
apply recursive transitive closures. We would therefore like to make sure that applying
Floyd-Warshall will never produce less accurate results onanyrelation. Unfortunately,
this may not be the case in general due to our handling of existentially quantified vari-
ables. Nevertheless, we have not been able to construct a counterexample and we
expect them to be rare if they exist at all.

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 20

Figure 7: The relation (solid arrows) on the right of Figure 1of [7] and its transitive
closure

Example 6.3 Consider the relation on the right of Figure 1 of [7], reproduced in
Figure 7. This relation can be described as

{ (x, y)→ (x2, y2) | (3y = 2x∧ x2 = x∧ 3y2 = 3+ 2x∧ x ≥ 0∧ x ≤ 3)∨

(x2 = 1+ x∧ y2 = y∧ x ≥ 0∧ 3y ≥ 2+ 2x∧ x ≤ 2∧ 3y ≤ 3+ 2x) }.

The basic approach of Section 5 is unable to find the exact transitive closure for this
map. However, the exact transitive closure can be computed using either the domain
partitioning of this section or the incremental computation of Section 6.3. Let us con-
sider domain partitioning. Note that the domain of the upward relation overlaps with
the range of the rightward relation and vice versa, but that the domain of neither re-
lation overlaps with its own range or the domain of the other relation. The domains
and ranges can therefore be partitioned into two parts, P0 and P1, shown as the white
and black dots in Figure 7, respectively. Applying the Floyd-Warshall algorithm of
Algorithm 1, we initially have

R00 = ∅

R01 = { (x, y)→ (x+ 1, y) | (x ≥ 0∧ 3y ≥ 2+ 2x∧ x ≤ 2∧ 3y ≤ 3+ 2x) }

R10 = { (x, y)→ (x2, y2) | (3y = 2x∧ x2 = x∧ 3y2 = 3+ 2x∧ x ≥ 0∧ x ≤ 3) }

R11 = ∅.

In the first iteration, R00 remains the same (∅+ = ∅). R01 and R10 are therefore also
unaffected, but R11 is updated to include R01 ◦ R10, i.e., the dashed arrow in the figure.
This new R11 is obviously transitively closed, so it is not changed in thesecond iteration
and it does not have an effect on R01 or R10. However, R00 is updated to include
R10 ◦ R01, i.e., the dotted arrow in the figure. The transitive closureof the original
relation is then equal to R00∪ R01∪ R10∪ R11.

6.3 Incremental Computation

In some cases it is possible and useful to compute the transitive closure of union of
basic relations incrementally. In particular, ifR is a union ofm basic maps,

R=
⋃

j

Rj ,

then we can pick someRi and compute the transitive closure ofRas

R+ = R+i ∪
(

⋃

j,i

R∗i ◦ Rj ◦ R∗i

)+

, (14)

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 21

assuming both of the transitive closures on the right hand side can be computed exactly.
The reflexive closureR∗i = R+i ∪ IdD is taken over some setD that covers the union of
domain and range ofR. ([28] uses the notationR?

i .) For this approach to be successful,
it is crucial that each of the disjuncts in the argument of thesecond transitive closure in
(14) be representable as a single basic relation, i.e., without a union. If this condition
holds, then by using (14), the number of disjuncts in the argument of the transitive
closure can be reduced by one. Now,R∗i = R+i ∪ IdD is a union, but, as in Section 5.3
with Pi ∪ Si , it is sometimes possible to relax the constraints ofR+i to include the
identity relation on some appropriateD. As before, we relax the constraintk ≥ 1 to
k ≥ 0, but we also useP∩ (D → D). instead of (5) and check that the result does not
contain any spurious elements, i.e., that projecting outk results in exactlyR+i ∪ IdD. As
to the choice ofD, we compute the “simple hull” of domR∪ ranR, where the simple
hull of a setS is defined as the smallest basic set that coversS and is described by
only translates of the constraints describingS. It is not clear whichD is used in [28].
Presumably, they use either the convex hull of domR∪ ranR or some approximation
of this convex hull.

It is also possible to use a domainD that doesnot include domR∪ ranR, but then
we have to compose withR∗ more selectively. In particular, if we have

for eachj , i, either domRj ⊆ D or domRj ∩ ranRi = ∅ (15)

for eachj , i, either ranRj ⊆ D or ranRj ∩ domRi = ∅ (16)

then we can refine (14) to

R+i ∪
((

⋃

domRj⊆D

ranRj⊆D

R∗◦Rj◦R
∗

)

∪

(

⋃

domRj∩ranRi=∅

ranRj⊆D

R∗◦Rj

)

∪

(

⋃

domRj⊆D

ranRj∩domRi=∅

Rj◦R
∗

)

∪

(

⋃

domRj∩ranRi=∅

ranRj∩domRi=∅

Rj

))+

.

If only property (15) holds, we can use

R+i ∪
((

R+i ∪ IdZd

)

◦

((

⋃

domRj⊆D

Rj ◦ R∗
)

∪

(

⋃

domRj∩ranRi=∅

Rj

))+)

,

while if only property (16) holds, we can use

R+i ∪
(((

⋃

ranRj⊆D

R∗ ◦ Rj

)

∪

(

⋃

ranRj∩domRi=∅

Rj

))+

◦

(

R+i ∪ IdZd

))

.

Incremental computation is only applied when the result is exact, therefore it is transi-
tively closed.

7 Implementation Details

The algorithms described in the previous sections have beenimplemented in theisl
library, available fromhttp://freshmeat.net/projects/isl/. The library sup-
ports both a parametric power (Pk(R)) and a transitive closure (T (R)) operation. Most
of the implementation is shared between the two operations.The transitive closure
operation first checks if the input happens to be transitively closed already and, if so,
returns immediately. Both operations then check for strongly connected components,
assuming there are at least two disjuncts. Within each component, either the modi-
fied Floyd-Warshall algorithm is applied or an incremental computation is attempted,

RR n° 7560

http://freshmeat.net/projects/isl/

Transitive Closures of Affine Integer Tuple Relations 22

depending on whether the domain and range can be partitioned. For practical reasons,
incremental computation of powers has not been implemented. In the case of the power
or in case no incremental computation can be performed, the basic single or multiple
disjunct algorithm is applied. The exactness test is performed on the result of this ba-
sic algorithm. In the case of the transitive closure, the final coordinates encoding the
path lengths are projected out on the same result. In the caseof the power, the final
coordinates are only projected out at the very end, after equating their difference to the
exponent parameter. Theisl library has direct support for unions of relations over
pairs of labeled tuples. When the transitive closure of such aunion is computed, we
first apply the modified Floyd-Warshall algorithm on a partition based on the label and
tuple size. Each recursive call is then handled as describedabove.

In an attempt to make a meaningful experimental comparison with the approach
of Kelly et al. [28], we have also implemented a “box” implementation based on their
ideas. Their own implementation in the Omega library only computes underapproxi-
mations [27, Section 6.4], so it is impossible to compare theaccurateness of our ap-
proach with their implementation in those cases where the results are not exact. The
base case of their approach is a simplified version of the algorithm in Section 5.2. They
overapproximate∆ by a rectangular box, possibly intersected with a rectangular lattice,
with the box having fixed (i.e., non-parametric) but possibly infinite, lower and upper
bounds. This overapproximation therefore has only non-parametric constraints and the
correspondingDk can be constructed using some very specific instances of (6).This
algorithm clearly results in an overapproximation ofRk and therefore, after projection,
of R+. As the rest of their paper focuses on underapproximations,we use the above
“box-closure” in our box implementation. To improve accuracy, however, we also try
the incremental approach, but using their algorithm and only in those cases where the
result is exact. Since the domain on which the reflexive closure is taken is not clear
from their description, we use the same domain as in our approach, namely the simple
hull [36] of domain and range of the input relation. TheApproxClosure operation
which appeared in very recent versions ofOmega+ applies a similar algorithm. The
main differences are that it does not perform an incremental computation and that it
computes a box-closure on each disjunct individually.

8 Reachability Analysis

There is a strong relationship between transitive closuresand reachability analysis. In
fact, one of our target applications, the equivalence checking problem, is essentially a
reachability problem. Consider atransition relation T⊆

⋃

d1,d2≥0(Σ×Zd1)→ (Σ×Zd2),
with Σ a finite set of labels orcontrol pointsand a set of initial statesS0 ⊆

⋃

d≥0 Σ×Z
d,

the reachable setis the setS ⊆
⋃

d≥0 Σ × Z
d of states that can be reached from an

initial state through zero or more applications of the transition relation. Note that most
researchers in reachability analysis consider integer tuples of a fixed dimension.

It is clear that transitive closures can be used to compute reachable sets. Simply
apply the transitive closure of the transition relation to the set of initial sets and take
the union with this initial set, i.e.,

S = S0 ∪ T+(S0).

An overapproximation of the transitive closure will lead toan overapproximation of
the reachable set, which can be used to obtain invariants on the set of reachable states.
Such an approach is taken in, e.g., [2].

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 23

double x[2][10];

int old = 0, new = 1, i, t;

for (t = 0; t < 1000; t++) {

for (i = 0; i < 10; i++)

x[new][i] = g(x[old][i]);

new = (new+1) % 2; old = (old+1) % 2;

}

Figure 8: Flip-flop example from [2, Fig. 3]

Example 8.1 Consider the example from [2], reproduced in Figure 8. The authors
consider several variations of essentially interchangingthe values ofnew andold and
the main objective is to show thatnew and old always have different values. The
variation shown in Figure 8 is one for which the authors are unable to prove this
invariant, mainly because they do not support existentially quantified variables. The
effect of the loop on the two variables can be represented as

T = { (n,o)→ (n′,o′) | ∃α0, α1 : 2α0 = −1−n+n′∧2α1 = −1−o+o′∧0 ≤ n′,o′ ≤ 1 }.

The (exact) transitive closure of this relation is

T+ = { (n,o)→ (n′,o′) | ∃α0 : 2α0 = −n−o−n′+o′∧n′ ≥ 0∧n′ ≤ 1∧o′ ≥ 0∧o′ ≤ 1 }.

The set of reachable states is

S = { (0,1) } ∪ T+({ (0,1) }) = { (n,1− n) | n ≥ 0∧ n ≤ 1 }.

Conversely, by introducing an extra set of variables that isinitialized to be equal
to the main set of variables and that remains constant in the entire transition system,
an overapproximation for the transitive closure of a relation can be obtained from an
invariant analysis. To ensure that the transition relationis taken at least once, each
control point is duplicated into an “initial” copy and a “final” copy and the transition
relation is applied both between initial and final copy and between two final copies. The
invariant on the final copies then yields an overapproximation of the transitive closure.
Note that many tools only support functional transitions, but general relations can still
be represented by adding an extra control point [1]. Existentially quantified variables
can be handled in an entirely similar way. Parameters can be handled as variables that
remain constant.

Example 8.2 Let us first consider a translation relation, e.g.,

{ x→ 1+ x | x ≥ 0 }. (17)

An Aspic [25] model corresponding to this relation is shown in Figure 9. The initial
state equatesin_0 to x0 at control points0. The relation is applied both from the
initial control point to the final control points1 and from the final control point to
itself. The invariant on control points1 provides an overapproximation of the transitive
closure of the input relation.

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 24

model m1 {

var x0, in_0;

states s0, s1;

transition t0 := {

from := s0;

to := s1;

guard := x0 >= 0;

action := x0’ = 1+x0;

};

transition t1 := {

from := s1;

to := s1;

guard := x0 >= 0;

action := x0’ = 1+x0;

};

}

strategy s1 {

Region init := { state = s0 && in_0 = x0 };

}

Figure 9: Aspic model for relation (17)

Example 8.3 Let us now consider a proper relation, e.g.,

{ x→ y | y ≥ 3+ x∧ y ≤ 4+ x∧ x ≥ 0∧ y ≥ 0 }. (18)

An Aspic model corresponding to this relation is shown in Figure 10. An extra variable
x1 is used to represent the value of y. The relation is then represented using two
transitions. The first resets the values ofx1 to an arbitrary value (?) and the second
picks out those pairs of x and y that satisfy relation, takingthe value ofx1 to be the
new value ofx0. The Fast tool [3] does not support an assignment with?. Instead, the
value ofx1 is allowed to be decremented and incremented by any amount insteps of
one. The resulting model is shown in Figure 11.

9 Experiments

In all our experiments, we have usedisl version isl-0.05.1-125-ga88daa9,Omega+
version 2.1.6 [17],Fast version 2.1,Aspic version 3.2 and the latest version ofStInG
[30]. The Fast andAspic tests are based on the encoding described in Section 8.
Version 2.1.6 ofOmega+ provides three transitive closure operations: the original im-
plementation, calledTransitiveClosure (TC), which computes an underapproxima-
tion of the transitive closure;ApproxClosure (AC), which computes an overapprox-
imation of the reflexive and transitive closure; andcalculateTransitiveClosure
(CTC), which appears to first try the least fixed point algorithm of [10] and then falls
back onApproxClosure. The execution times of theOmega+ transitive closure op-
erations include the time taken for an extra exactness test.For TransitiveClosure,
this test is based on [28, Theorem 1]. Presumably, a similar exactness test is performed
internally, but the result of this test is not available to the user. In some cases,Omega+

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 25

model m1 {

var x0, x1, in_0;

states s0, s1, s2;

transition t0 := {

from := s0;

to := s2;

guard := true;

action := x1’ = ?;

};

transition t1 := {

from := s1;

to := s2;

guard := true;

action := x1’ = ?;

};

transition t2 := {

from := s2;

to := s1;

guard := -3-x0+x1 >= 0 && 4+x0-x1 >= 0 &&

x0 >= 0 && x1 >= 0;

action := x0’ = x1, x1’ = 0;

};

}

strategy s1 {

Region init := { state = s0 && in_0 = x0 };

}

Figure 10: Aspic model for relation (18)

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 26

model m1 {

var x0, x1, in_0;

states s0, s1, s2;

transition t0 := {

from := s0;

to := s2;

guard := true;

action := x0’ = x0;

};

transition t1 := {

from := s1;

to := s2;

guard := true;

action := x0’ = x0;

};

transition t2 := {

from := s2;

to := s2;

guard := true;

action := x1’ = x1 + 1;

};

transition t3 := {

from := s2;

to := s2;

guard := true;

action := x1’ = x1 - 1;

};

transition t4 := {

from := s2;

to := s1;

guard := -3-x0+x1 >= 0 && 4+x0-x1 >= 0 &&

x0 >= 0 && x1 >= 0;

action := x0’ = x1;

};

}

strategy s1 {

setMaxState(0);

setMaxAcc(100);

Region init := { state = s0 && in_0 = x0 };

Region final := { state = s1 };

Transitions t := { t0, t1, t2, t3, t4 };

Region reach := post*(init, t) && final;

print(reach);

}

Figure 11: Fast model for relation (18)

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 27

returns a result containing UNKNOWN constraints and then it is clear that the result is
not exact. In other cases, the user has no way of knowing whether the result is exact
except by explicitly applying an exactness test. Theisl library, by contrast, returns the
exactness as an extra result. ForApproxClosure, we apply the test of [28, Theorem 5].
Note that this test may result in false positives when applied to cyclic relations. The ex-
actness of theAspic results is evaluated in the same way. Recall from Section 5.4that
we do not apply this test insideisl on relations that may be cyclic. Since it is not clear
whethercalculateTransitiveClosure will always produce an overapproximation,
we apply both tests when checking its exactness. For theFast results, no exactness
test is needed sinceFast will only terminate if it has computed an exact result. On the
other hand, the execution time ofFast includes a conversion of the resultingArmoise
formula to a quasi-affine relation, i.e., a disjunctive normal form. SinceFast only sup-
port non-negative variables, we split all variables into a pair of non-negative variables
whenever the input relation contains any negative value.

9.1 Sized Types

Chin and Khoo [18] apply the transitive closure operation tothe following relation,
derived from their Ackermann example:

{ (i, j)→ (i − 1, j1) | i ≥ 1∧ j ≥ 1 } ∪ { (i, j)→ (i, j − 1) | i ≥ 1∧ j ≥ 1 }

∪ { (i,0)→ (i − 1,1) | i ≥ 1 }.

Omega produces an underapproximation and the authors heuristically manipulate this
underapproximation to arrive at the following overapproximation:

{ (i, j)→ (i1, j1) | i1 ≥ 0∧i1 ≤ i−1∧ j ≥ 0 } ∪ { (i, j)→ (i, j1) | j1 ≥ 0∧ j1 ≤ j−1∧i ≥ 1 }.

We compute the exact transitive closure:

{ (i, j)→ (o0,o1) | o0 ≥ 0∧ o0 ≤ −1+ i ∧ j ≥ 0∧ o0 ≤ −2+ i + j } ∪

{ (i, j)→ (o0,1) | o0 ≤ −1+ i ∧ j ≥ 0∧ o0 ≥ 0 } ∪

{ (i, j)→ (i,o1) | i ≥ 1∧ o1 ≥ 0∧ o1 ≤ −1+ j } ∪

{ (i, j)→ (o0,0) | o0 ≤ −1+ i ∧ j ≥ 0∧ o0 ≥ 1 }.

9.2 Equivalence Checking

Our most extensive set of experiments is based on the algorithm of [5] for checking
the equivalence of a pair of static affine programs. Since the original implementation
was not available to us, we have reimplemented the algorithmusingVAUCANSON [29]
to compute regular expressions andisl to perform all set and relation manipulations.
For the transitive closure operation we use the algorithm presented in this paper, the
“box” implementation described in Section 7 or one of the implementations inOmega+.
Since it is not clear whethercalculateTransitiveClosure will always produce an
overapproximation, we did not test this implementation in this experiment. The equiv-
alence checking procedure requires overapproximations oftransitive closures and us-
ing calculateTransitiveClosure might therefore render the procedure unsound.
SinceTransitiveClosure computes an underapproximation, we only use the results
if they are exact. If not, we fall back onApproxClosure. We will refer to this im-
plementation as “TC+AC”. For the other methods, we omit the exactness test in this
experiment.

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 28

isl box Omega+ TC+AC Omega+ AC
proved equivalent 72 46 49 50
not proved equivalent 15 51 28 45
out-of-memory 17 12 14+18 4+12
time-out 9 4 4 2

Table 1: Results for equivalence checking

Omega+
isl box TC AC CTC Fast Aspic StInG

exact 472 334 366 267 274 139 201 215
inexact 67 227 157 266 245 0 268 240
failure 34 12 50 40 54 434 104 118

Table 2: Outcome of transitive closure operations from equivalence checking

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.0001 0.001 0.01 0.1 1 10 100 1000

O
m

eg
a+

 A
pp

ro
xC

lo
su

re
 ti

m
e

(s
)

isl time (s)

Figure 12: Comparison of equivalence checking times in successful cases

The equivalence checking procedure was applied to the output of CLooG [6] on 113
of its tests. In particular, the output generated when usingtheisl backend was com-
pared against the output when using thePPL backend. These outputs should be equiv-
alent for all cases, as was confirmed by the equivalence checking procedure of [37].
Table 1 shows the results. Usingisl, 72 cases could be proven equivalent, while
usingOmega+ this number was reduced to only 49 or 50. This does not necessarily
mean that all transitive closures were computed exactly; itjust means that the results
were accurate enough to prove equivalence. In fact, usingApproxClosure on its
own, we can prove one more case equivalent than first usingTransitiveClosure

and then, if needed,ApproxClosure. On the other hand, as we will see below,

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 29

 1

 10

 100

 1000

 1 10 100 1000

O
m

eg
a+

 T
ra

ns
iti

ve
C

lo
su

re
 ti

m
e

(t
ic

ks
)

isl time (ticks)

Figure 13: Comparison of transitive closure computation times in successful cases

TransitiveClosure is generally more accurate thanApproxClosure. A time limit
of 1 hour was imposed, resulting in some cases timing out, andmemory usage was
capped at 2GB, similarly resulting in some out-of-memory conditions. For theOmega+
cases, we distinguish the real out-of-memory and maxing outthe number of constraints
(2048). Theisl library does not impose a limit on the number of constraints.For
those cases thatOmega+’s ApproxClosure was able to handle (a strict subset of those
that could be handled byisl), Figure 12 compares the running times. In all but one
case,isl is faster thanOmega+’s ApproxClosure. This result is somewhat surprising.
What is no surprise is that the running times (not shown in the figure) of the combined
TransitiveClosure andApproxClosure method are much higher still because it
involves an explicit exactness test.

In order to compare the relative performance of the transitive closure operations
themselves, we collected all transitive closure instancesrequired in the above experi-
ment. This resulted in a total of 573 distinct cases. The results are shown in Table 2,
where failure may be out-of-memory (1GB), time-out (60s), or in case ofOmega+,
maxing out the number of constraints. Since only isl, box andFast give an indication
of whether the computed result is exact or not the results of the other methods are ex-
plicitly checked for exactness. This exactness test may also contribute to some failures.
The results show that our box implementation is not very goodat mimicking the origi-
nalOmega+ implementation, sinceTransitiveClosure is more accurate. The likely
reason is thatTransitiveClosure also computes small powers of the input relation
and then checks whether these small powers reach a fixed point. Or, the implementation
may have evolved since the publication of the paper. What is more surprising is that
on this test set our “box” implementation is more accurate than bothApproxClosure
andcalculateTransitiveClosure. On average, theisl implementation is more
accurate than any of theOmega+ implementations on the test set. There are also some

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 30

exceptions, however. There are two cases where one or two of theOmega+ implemen-
tations computes an exact result where bothisl and the box implementation do not. In
all those cases whereisl fails, the other implementations either also fail or compute
an inexact result. This observation, together with the higher failure rate (compared to
the box implementation), suggests that our algorithm may betrying a little bit too hard
to compute an exact result.

Figure 13 shows that for those transitive closures that bothisl and Omega+’s
TransitiveClosure compute exactly,isl is as fast as or faster thanOmega+ in
all but a few exceptional cases. This result is somewhat unexpected sinceOmega+’s
TransitiveClosure performs its operations in machine precision, whileisl per-
forms all its operations in exact integer arithmetic using GMP.

Omega+
isl box TC AC CTC Fast Aspic StInG

top-level
memory based exact 70 44 58 43 53 25 15 39

inexact 7 60 11 50 6 0 87 22
failure 57 30 65 41 75 109 32 73

value based exact 72 44 57 43 57 28 37 39
inexact 2 73 26 56 12 0 41 22
failure 60 17 51 35 65 106 56 73

nested
memory based exact 37 25 35 7 31 1 1 15

inexact 10 42 17 50 19 0 67 43
failure 21 1 16 11 18 67 0 10

value based exact 53 35 47 23 37 7 8 28
inexact 12 41 20 48 33 0 59 36
failure 12 1 10 6 7 70 10 13

Table 3: Success rate of transitive closure operations fromISS experiment

9.3 Iteration Space Slicing

The ISS experiments were performed on the test set of loops previously used in [8] and
extracted from version 3.2 of NAS Parallel Benchmarks [38] consisting of five ker-
nels and three pseudo-applications derived from computational fluid dynamics (CFD)
applications. These loops were represented in a format required by our dependence
analysis tool. From 431 studied loops of the NAS benchmark, it was possible to extract
dependences from 257 loops (it is not possible to analyze loops containing “break”,
“goto”, “continue”, “exit” statements, functions and whenarray indexes are elements
of other arrays). Of these 257 loops, 123 have no dependences. For each of the remain-
ing 134 loops, a dependence graph was computed using either value based dependence
analysis or memory based dependence analysis. Each of thesedependence graphs was
encoded as a single relation and passed to the transitive closure operation. The results
are shown in Table 3. Since the input encodes an entire dependence graph,isl is ex-
pected to produce more accurate results thanOmega+ as it implements Floyd-Warshall
internally. We therefore also show the results on all the nested transitive closure oper-
ations computed during the execution of Floyd-Warshall. Itshould be noted, though,

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 31

that isl also performs coalescing on intermediate results, so an implementation of
Floyd-Warshall on top ofOmega+ may not produce results that are as accurate.

9.4 Reachability Analysis

As explained in Section 8, our transitive closure algorithmcan also be used to com-
pute overapproximations of reachable sets. In practice, however, the results are rather
disappointing, mainly because the set of initial states is not taken into account during
the computation of the transitive closure. Let us first consider the results of applying
our algorithm to theAspic [25] test cases. The main objective is to find invariants on
the variables for each control point. Of the 21 test cases available from theAspic web
site, we found that one could not be handled by the latest version (3.2) ofAspic, while
two test cases took more than 10 minutes to handle byisl. For two test cases,Aspic
andisl produced identical results.Aspic produced more accurate results on three test
cases, whileisl produced more accurate results on seven cases. Note that these more
accurate results are mainly due to the fact thatisl has support for existentially quan-
tified variables. For the remaining six cases, neither was equally or more accurate than
the other, meaning that the intersection of the results would be strictly more accurate.

The results on theLever [34] test cases were much less encouraging. In particular,
we considered the safety analysis problems, where we need tocheck that a specified
set of bad states is unreachable. Of the 32 test cases,isl only managed to prove safety
(within a reasonable amount of time) for 7 cases. Furthermore, isl was only faster
thanLever in two cases.

10 Conclusions and Future Work

We presented a novel algorithm for computing overapproximations of transitive clo-
sures for the general case of affine relations. The overapproximations computed by the
algorithm are guaranteed to be transitively closed. The algorithm was experimentally
shown to be significantly more accurate than the best known alternative on representa-
tive benchmarks from our target applications, and our implementation is generally also
faster despite performing all computations in exact integer arithmetic.

Although our algorithm can be applied to any affine relation, we have observed that
the results are not very accurate if the input relation is cyclic. As part of future work,
we therefore want to devise improved strategies for handling such cyclic relations.
The comparison with tools for reachability or invariant analysis have has revealed that
our problems have quite different characteristics, in that our algorithm does not work
very well on their problems while their algorithms do not workvery well on ours.
The design of a combined approach that could work for both classes of problems is
therefore also an interesting line of research.

11 Acknowledgments

We would like to thank Louis-Noel Pouchet for showing us how touseVAUCANSON,
Laure Gonnord for extendingAspic to produceisl compatible output and Jérôme
Leroux for explaining how to encode relations inFast.

RR n° 7560

Transitive Closures of Affine Integer Tuple Relations 32

References

[1] Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Bounding the computational com-
plexity of flowchart programs with multi-dimensional rankings. Tech. Rep. 7235,
INRIA (Mar 2010)

[2] Ancourt, C., Coelho, F., Irigoin, F.: A modular static analysis approach to affine
loop invariants detection. Electron. Notes Theor. Comput.Sci. 267, 3–16 (Octo-
ber 2010),http://dx.doi.org/10.1016/j.entcs.2010.09.002

[3] Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to
practice. STTT 10(5), 401–424 (2008)

[4] Barthou, D., Cohen, A., Collard, J.F.: Maximal static expansion. Int. J. Parallel
Programming 28(3), 213–243 (2000)

[5] Barthou, D., Feautrier, P., Redon, X.: On the equivalence of two systems of affine
recurrence equations. In: Euro-Par Conference. Lect. Notes in Computer Science,
vol. 2400, pp. 309–313. Springer-Verlag, Paderborn (Aug 2002)

[6] Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT ’04: Proceedings of the 13th International Conferenceon Parallel Archi-
tectures and Compilation Techniques. pp. 7–16. IEEE Computer Society, Wash-
ington, DC, USA (2004)

[7] Beletska, A., Barthou, D., Bielecki, W., Cohen, A.: Computing the transitive clo-
sure of a union of affine integer tuple relations. In: COCOA ’09: Proceedings
of the 3rd International Conference on Combinatorial Optimization and Applica-
tions. pp. 98–109. Springer-Verlag, Berlin, Heidelberg (2009)

[8] Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., Siedlecki, K.: Coarse-
grained loop parallelization: Iteration space slicing vs affine transformations. Par-
allel and Distributed Computing, International Symposiumon 0, 73–80 (2009)

[9] Bielecki, W., Klimek, T., Trifunovic, K.: Calculating exact transitive closure for a
normalized affine integer tuple relation. Electronic Notes in Discrete Mathematics
33, 7–14 (2009)

[10] Bielecki, W., Klimek, T., Palkowski, M., Beletska, A.:An iterative algorithm
of computing the transitive closure of a union of parameterized affine integer tu-
ple relations. In: Proceedings of the 4th international conference on Combina-
torial optimization and applications - Volume Part I. pp. 104–113. COCOA’10,
Springer-Verlag, Berlin, Heidelberg (2010)

[11] Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. Ph.D. thesis,
Universit́e de Lìege (1998)

[12] Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Proceed-
ings of the 6th International Conference on Computer-AidedVerification. Lecture
Notes in Computer Science, vol. 818, pp. 55–67. Springer-Verlag (1994)

[13] Boigelot, B., Herbreteau, F.: The Power of Hybrid Acceleration. In: Ball, T.,
Jones, R.B. (eds.) Computer Aided Verification, 18th International Conference.
Lecture Notes in Computer Science, vol. 4144, pp. 438–451. Springer, Seattle,
WA United States (2006),http://hal.inria.fr/inria-00335905/en/

RR n° 7560

http://dx.doi.org/10.1016/j.entcs.2010.09.002
http://hal.inria.fr/inria-00335905/en/

Transitive Closures of Affine Integer Tuple Relations 33

[14] Bozga, M., Ĝırlea, C., Iosif, R.: Iterating octagons. In: Proceedings
of the 15th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems: Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2009,.
pp. 337–351. TACAS ’09, Springer-Verlag, Berlin, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-00768-2_29

[15] Bozga, M., Iosif, R., Konecńy, F.: Fast acceleration of ultimately periodic re-
lations. In: Touili, T., Cook, B., Jackson, P. (eds.) Computer Aided Verifica-
tion, 22nd International Conference, CAV 2010, Edinburgh,UK, July 15-19,
2010. Proceedings. Lecture Notes in Computer Science, vol.6174, pp. 227–242.
Springer (2010)

[16] Bultan, T., Gerber, R., Pugh, W.: Model-checking concurrent systems with un-
bounded integer variables: symbolic representations, approximations, and exper-
imental results. ACM Trans. Program. Lang. Syst. 21(4), 747–789 (1999)

[17] Chen, C.: Omega+ library (2009),http://www.chunchen.info/omega/

[18] Chin, W.N., Khoo, S.C.: Calculating sized types. Higher Order Symbol. Comput.
14(2-3), 261–300 (2001)

[19] Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: CAV’98, LNCS 1427. pp. 268–279. Springer (1998)

[20] Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization.
Birkhauser Boston (2000)

[21] Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Towards a model-checker
for counter systems. In: Graf, S., Zhang, W. (eds.) Automated Technology for
Verification and Analysis, 4th International Symposium, ATVA 2006, Beijing,
China, October 23-26, 2006. Lecture Notes in Computer Science, vol. 4218, pp.
493–507. Springer (2006)

[22] Feautrier, P.: Parametric integer programming. Operationnelle/Operations Re-
search 22(3), 243–268 (1988)

[23] Feautrier, P.: The Data Parallel Programming Model, LNCS, vol. 1132, chap.
Automatic Parallelization in the Polytope Model, pp. 79–100. Springer-Verlag
(1996)

[24] Feautrier, P., Griebl, M., Lengauer, C.: On index set splitting. In: Parallel Ar-
chitectures and Compilation Techniques (PACT’99). NewportBeach, CA (Oct
1999)

[25] Feautrier, P., Gonnord, L.: Accelerated invariant generation for c programs with
aspic and c2fsm. Electron. Notes Theor. Comput. Sci. 267, 3–13 (October 2010),
http://dx.doi.org/10.1016/j.entcs.2010.09.014

[26] Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman,T., Wonnacott, D.: The
Omega calculator and library. Tech. rep., University of Maryland (Nov 1996)

[27] Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman,T., Wonnacott, D.: The
Omega library. Tech. rep., University of Maryland (Nov 1996)

RR n° 7560

http://dx.doi.org/10.1007/978-3-642-00768-2_29
http://www.chunchen.info/omega/
http://dx.doi.org/10.1016/j.entcs.2010.09.014

Transitive Closures of Affine Integer Tuple Relations 34

[28] Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite
graphs and its applications. In: Huang, C.H., Sadayappan, P., Banerjee, U., Gel-
ernter, D., Nicolau, A., Padua, D.A. (eds.) Languages and Compilers for Parallel
Computing, 8th International Workshop, LCPC’95, Columbus, Ohio, USA, Au-
gust 10-12, 1995, Proceedings. Lecture Notes in Computer Science, vol. 1033,
pp. 126–140. Springer (1996)

[29] Lombardy, S., Ŕegis-Gianas, Y., Sakarovitch, J.: Introducing VAUCANSON.
Theor. Comput. Sci. 328(1-2), 77–96 (2004)

[30] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: SAS’04. pp. 53–68 (2004)

[31] Saouter, Y., Quinton, P.: Computability of recurrenceequations. Theor. Comput.
Sci. 116(2), 317–337 (1993)

[32] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons
(1986)

[33] Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

[34] Vardhan, A., Viswanathan, M.: Lever: A tool for learning based verification.
In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006,Proceedings.
Lecture Notes in Computer Science, vol. 4144, pp. 471–474. Springer (2006)

[35] Verdoolaege, S.: barvinok, a library for counting the number of
integer points in parametrized and non-parametrized polytopes (2010),
http://freshmeat.net/projects/barvinok

[36] Verdoolaege, S.: isl: An integer set library for the polyhedral model. In: Fukuda,
K., Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software - ICMS
2010, Lecture Notes in Computer Science, vol. 6327, pp. 299–302. Springer
Berlin / Heidelberg (2010)

[37] Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static
affine programs using widening to handle recurrences. In: Computer Aided Veri-
fication 21. pp. 599–613. Springer (Jun 2009)

[38] NAS benchmarks suite.http://www.nas.nasa.gov

RR n° 7560

http://freshmeat.net/projects/barvinok
http://www.nas.nasa.gov

Transitive Closures of Affine Integer Tuple Relations 35

Contents

1 Introduction 3

2 Background 4

3 Applications 6
3.1 Sized Types . 6
3.2 Iteration Space Slicing . 6
3.3 Maximal Static Expansion . 7
3.4 Free Schedules . 7
3.5 Equivalence Checking . 8

4 Related Work 8

5 Powers and Transitive Closures 9
5.1 Introduction . 9
5.2 Single Disjunct . 11

5.2.1 No parameters or existentially quantified variables 11
5.2.2 Parameters . 12
5.2.3 Existentially quantified variables 13

5.3 Multiple Disjuncts . 14
5.4 Properties . 15

6 Decomposition Methods 16
6.1 Strongly Connected Components . 16
6.2 Domain Partitioning . 18
6.3 Incremental Computation . 20

7 Implementation Details 21

8 Reachability Analysis 22

9 Experiments 24
9.1 Sized Types . 27
9.2 Equivalence Checking . 27
9.3 Iteration Space Slicing . 30
9.4 Reachability Analysis . 31

10 Conclusions and Future Work 31

11 Acknowledgments 31

RR n° 7560

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Background
	Applications
	Sized Types
	Iteration Space Slicing
	Maximal Static Expansion
	Free Schedules
	Equivalence Checking

	Related Work
	Powers and Transitive Closures
	Introduction
	Single Disjunct
	No parameters or existentially quantified variables
	Parameters
	Existentially quantified variables

	Multiple Disjuncts
	Properties

	Decomposition Methods
	Strongly Connected Components
	Domain Partitioning
	Incremental Computation

	Implementation Details
	Reachability Analysis
	Experiments
	Sized Types
	Equivalence Checking
	Iteration Space Slicing
	Reachability Analysis

	Conclusions and Future Work
	Acknowledgments

