
HAL Id: hal-00578532
https://hal.archives-ouvertes.fr/hal-00578532

Submitted on 21 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast change point analysis on the Hurst index of
piecewise fractional Brownian motion
Mehdi Fhima, Arnaud Guillin, Pierre R., Bertrand

To cite this version:
Mehdi Fhima, Arnaud Guillin, Pierre R., Bertrand. Fast change point analysis on the Hurst index
of piecewise fractional Brownian motion. Journée de Statistiques 2011 (JDS 2011), May 2011, Tunis,
Tunisia. pp.XXX. �hal-00578532�

https://hal.archives-ouvertes.fr/hal-00578532
https://hal.archives-ouvertes.fr


Fast change point analysis on the Hurst index of piecewise

fractional Brownian motion

Pierre, R. BERTRAND1,2 Pierre.Bertrand@math.univ-bpclermont.fr

Mehdi FHIMA2 Mehdi.Fhima@math.univ-bpclermont.fr

Arnaud GUILLIN2 Arnaud.Guillin@math.univ-bpclermont.fr
1 INRIA Saclay
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Résumé: Dans cette présentation, nous introduisons une nouvelle méthode de détection de ruptures

sur l’indice de Hurst, pour un mouvement brownien fractionnaire par morceaux. En premier lieu, nous

définissons le modèle et le problème statistique. La méthode proposée est une transposition de la méthode

FDpV à l’estimation de l’indice de Hurst. La méthode FDpV (dérivée filtrée avec p-value) a été introduite

pour détecter des ruptures sur la moyenne par Bertrand et al. (2011). La statistique sous-jacente de

la technologie FDpV est un nouvel estimateur de l’indice de Hurst, appelé statistique de Bernouilli des

accroissements (IBS). À la fois les méthodes FDpV et IBS ont une complexité linéaire par rapport à la

taille de la série d’observation, aussi bien en temps de calcul que pour la mémoire, donc également leur

combinaison.

Mots clés: Détection de ruptures, Dérivée Filtrée, mouvement Brownien fractionnaire par
morceaux, paramètre de Hurst, Satistique de Bernouili des accroissements.

Abstract: In this presentation, we introduce a new method for change point analysis on the Hurst

index for a piecewise fractional Brownian motion. We first set the model and the statistical problem. The

proposed method is a transposition of the FDpV (Filtered Derivative with p-value) method introduced

for the detection of change points on the mean in Bertrand et al. (2011) to the case of changes on the

Hurst index. The underlying statistics of the FDpV technology is a new statistic estimator for Hurst

index, so-called Increment Bernoulli Statistic (IBS). Both FDpV and IBS are methods with linear time

and memory complexity, with respect to the size of the series. Thus the resulting method for change

point analysis on Hurst index reaches also a linear complexity.

Keywords: Change point analysis, Filtered derivative with p-value method, Hurst parameter,
Increment Bernoulli Statistic, piecewise fractional Brownian motion.

Introduction

Recent measurement methods allow us to record and to stock large data sets, so called ”the data
deluge”. For instance, today technology allows recording of heartbeat series during 24 hours
leading to data sets of size n ≥ 100, 000, and very high frequency (VHF) financial series leads to
data size n ≥ 40, 000. Tomorrow, many other series will be recorded at VHF leading to millions
of data.

Large or huge series with small meshes of time can be described as continuous time processes
observed at discrete times. Such a stochastic process X belongs to a certain class of model, that
is X ∈ M = {Xθ, θ ∈ Θ}, where Θ is a subset of Rd and d is the dimension of the model. The
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structural parameter θ is believed to provide relevant information on the system which generates
the series, and statisticians have to estimate it.

A slightly different approach is based on change point analysis: The structural parameter
θ is assumed to be piecewise constant with an unknown configuration of change τ . In this
framework, the first task of statisticians is the estimation of the location of the change points
and the second one could be the estimation of the structural parameters between change points.
There is a huge literature on change point analysis and model selection since the fifties, see e.g.
Basseville and Nikiforov (1993), Brodsky and Darkhovsky (1993), Csörgo and Horváth (1997),
Birgé and Massart (2007) or Bertrand et al. (2011) and the references therein. However, most of
the studies are devoted to change on the mean, on the variance or on the regression parameters.
But relevant informations are also provided by the time dependence structure of the process, see
e.g. Ayache and Bertrand (2011) and Khalfa et al. (2011). Fractional Brownian motion (fBm) is
a paradigmatic example of such process, indeed fBm is a zero mean Gaussian process depending
on two parameters: The Hurst index H linked to the time structure and a scale parameter σ.

In this presentation, we consider a simple model, that is a process X which is a piecewise
fBm with an unknown configuration of changes. Moreover, we set us in the frame of huge
datasets, and we focus our attention on time and memory complexity. These two reasons have
lead us to propose a new change point procedure for detection of change on the Hurst index for
a piecewise fBm. Our new procedure is the combination, on the one hand of the FDpV method,
introduced in Bertrand et al. (2011) for fast and light detection of change on the mean, variance
or regression parameter, and on the other hand of the Increment Bernoulli Statistic (IBS) a new
estimator for Hurst index, which is a variation on the Increment Ratio Statistic (IRS) estimator
introduced in Bardet and Surgailis (2010).

The rest of this paper is organized as follows: At first, in Section 1, we define our model of
piecewise fBm. Next, in Section 2, we introduce a new fast and robust estimator of the Hurst
index of fBm, namely the Increment Bernoulli Statistic. Then, in Section 3, we describe the
transposition of the FDp-V method to Hurst index.

1 Our model

We observe a process X at the discrete and regularly spaced time ti = i/n, where i = 0, . . . , n.
We assume the existence of a segmentation τ = (τk)k=0,...,K+1, with 0 = τ0 < τ1 < · · · < τK <
τK+1 = n, such that the restriction of the process X on each interval (τk, τk+1) for k = 0, . . . ,K
is a fBm with Hurst index Hk and scale parameter σk. The integer K corresponds to the number
of change points and (K +1) to the number of segments. Stress that K can be zero and in this
case the process X is a fBm.

Let us precise that in our roadmap the process X should be almost surely with continuous
paths. For this reason, the so-called piecewise fBm can not be defined by plugging a piecewise
Hurst index into one of the representations of the fBm. Indeed, by doing so, the process X
would almost surely have discontinuity at at each change point on Hurst index, and method for
detecting change on the mean will also be efficient for detecting change on Hurst index. Let us
refer to Taqqu and Samorodinitsky (1994) as a reference book on the different representations of
fBm and to Ayache and Taqqu (2005) for the construction of multi-fBm by plugging a continuous

2



time varying Hurst index into one of the fBm representations. A rather complicated solution to
avoid the drawback of pathwise discontinuities due to Hurst index discontinuities, was proposed
in Benassi et al. (2000) and cosigned by the first author. However, as point out by Antoine
Ayache during private conversations held in 2004, for statistical applications, it suffices to cancel
the discontinuity by adding a correction term. The same solution is also adopted in Bardet and
Kammoun (2008) .

The model having being specified, we are concerned with change point analysis on the Hurst
parameter, where the number of change K is unknown. There are few references on this prob-
lem. To our best knowledge, the only reference are Benassi et al. (2000) and Bardet and
Kammoun (2008).

2 Increment Bernoulli Statistic for fBm

In this section, we investigate the properties of a new estimator of the Hurst parameter of
fBm, namely the Increment Bernoulli Statistic (IBS). IBS is a variation on IRS which has been
introduced by Surgailis et al. (2008) and applied to fBm by Bardet and Surgailis (2010). Both
IRS and IBS are fast and robust estimator of the Hurst index. By fast we mean estimator with
linear time complexity, and by robust we mean estimator with invariant scaling property. The
choice of the IBS instead of the IRS is motivated by the fact that the IBS is bit less expensive,
in terms of time complexity, than the IRS.

In the next section, the IBS is used as the underlying estimator for the FDpV method, see
(1). For this reason, we define IBS for a every process X, even if we apply it to fBm in this
section. Let X be a process observed at a family of discrete times tk, we define the second order
increments by

∆X(tk) := X(tk+2)− 2X(tk+1) +X(tk).

Then, the Increment Bernoulli Statistic (IBS) is based on the comparison of the signs of consec-
utive second order increments. The results of these comparisons will be equal to 1 if the con-
secutive second order increments have the same sign, and 0 otherwise. Hence, this explains the
name of our new estimator, that is to say: Increment Bernoulli Statistic (IBS) which is given by

IBSn(X) =
1

n− 2

n−3∑

k=0

ψ (∆X(tk),∆X(tk+1))

where ψ(·, ·) is described as follows ψ(x, y) = 0 if sign(x) = sign(y) and 0 otherwise, where sign(z)
denotes the sign of z. Let us remark that IBS is scale invariant: Indeed, since ψ(σx, σy) = ψ(x, y)
for σ > 0, then IBSn(σX) = IBSn(X).

When X is a fBm, that is X = BH with a Hurst index H ∈ (0, 1), then the IBS converges
in distribution to a continuous monotonic increasing function Λ(H) defined as follows

Λ(H) := Λ0 (ρ(H))

Λ0(r) :=
1

π
arccos(−r)

ρ(H) =
(
−32H + 22H+2 − 7

) (
8− 22H+1

)−1
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where ρ(H) ∈ (−1, 1) represents the correlation between two successive second order increments.
The graph of Λ(H) is given in Figure 1. Then, due to the fact that Λ(·) is a reversible function,
it is easy to deduce an estimator of the Hurst parameter H given by Ĥn = Λ−1(IBSn(BH)).
Furthermore, we note that the function φ(·, ·) = ψ(·, ·) − Λ(H) is a Hermite function with rank
equal to 2. Then, by applying the Breuer-Major theorem, see e.g. Arcones (1994)[Theorem 4,
p.2256] or Nourdin et al. (2010)[Theorem 1, p.2], we can deduce the following Central Limit
Theorem (CLT): √

n (IBSn(BH)− Λ(H))
D→ N (0, σ2(H)),

where the sign
D→ means convergence in distribution and the asymptotic variance σ2(H) is

given by

σ2(H) =
∑

j∈Z

cov (ψ (∆BH(t0),∆BH(t1)) , ψ (∆BH(tj),∆BH(tj+1))) .

The main advantages of the IBS method are primarily its efficiency in terms of time and memory
complexity, and secondarily its robustness with respect to scaling properties of the fBm. At first,
we calculate by recurrence the second order increments (∆BH(tk))0≤k≤n−3. This first step is
performed in time and memory complexity on O (n). Next, the computing of IBSn(BH) requires
roughly n tests + n×pa(H) additions + 1 division, where pa(H) = Λ(H) ∈ (0, 1) corresponds to
the probability that two consecutive second order increments have the same sign. Then, we apply
the Newton algorithm to compute the inverse of the function Λ(·). Moreover, we note that the
function ψ(·, ·) satisfy the scale invariant property, i.e. for all C ∈ R, ψ(C.X,C.Y ) = ψ(X,Y ).
This means that the multiplication of BH by any scaling coefficient C does not impact the
estimation of the Hurst index, since IBSn(BH) = IBSn(C.BH). Hence, this proves the robustness
of the IBS method with respect to scaling.
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Figure 1: The graph of Λ(H).

3 Filtered Derivative with p-Value method

In this section, we describe the Filtered Derivative with p-value method (FDp-V). First, we
define the Filtered Derivative function. Next, we describe the two steps of the FDp-V method:

4



Step 1 is based on Filtered Derivative and select the potential change points, whereas Step 2
calculate the p-value associated to each potential change point, for disentangling right change
points and false alarms.

At first, we note that Λ(H) is a continuous monotonic increasing function of H, see Figure 1.
So, the detecting of change points on the Hurst parameter H is equivalent to detecting change
points on Λ(H). Consequently, the estimator IBSn(BH) of the parameter Λ(H) is used as the
underlying estimator for the FDpV method. We reefer to Bertrand et al. (2011) and Bertrand
and Fhima (2009) for the introduction of FDpV technology and its numerical efficiency. Let us
stress that the choice of the direct estimator Ĥn = Λ−1(IBSn(BH)) as the underlying estimator
for the FDpV would be more expensive in term of numerical complexity.

Filtered Derivative function

Let X be a piecewise fBm observed at a family of discrete times tj = j/n, for j = 0, . . . , n. The
Filtered Derivative for IBS is defined as the difference between the estimators of the parameter
Λ(H) computed on two sliding windows respectively at the right and at the left of the index k,
both of size A, that is specified by the following function

D(k,A) = IBS (X, k,A) − IBS (X, k −A,A) for k ∈ [A,n −A] (1)

where

IBS (X, k,A) = A−1
k+A∑

j=k+1

ψ (∆X(tk),∆X(tk+1))

is an estimator of Λ(H) on the sliding box [k + 1, k + A]. It is easy to see that the Filtered
Derivative function D is computed by recurrence with linear time and memory complexity.
Eventually, this method consists on filtering data by computing the estimators of the parameter
Λ(H) before applying a discrete derivation. This construction explains the name given by
Benveniste and Basseville (1984), the so-called Filtered Derivative method.

Step 1: Detection of potential change points

In order to detect the potential change points, we test the null hypothesis (H0) of no change
in the Hurst parameter H against the alternative hypothesis (H1) indicating the existence of at
least one change point

(H1) : There is an integer K ∈ N
∗ and 0 = τ0 < τ1 < · · · < τK < τK+1 = n such that

H1 = · · · = Hτ1 6= Hτ1+1 = · · · = Hτ2 · · · 6= HτK+1 = · · · = HτK+1
.

where Hj = Hτk is the value of the Hurst parameter at tj ∈ [τk−1/n, τk/n).
Now, we fix a probability of type I error at level p∗1, and we determine the corresponding critical
value C1 given by

P

(
max

k∈[A:n−A]
|D(k,A)| > C1|H0 is true

)
= p∗1.

Of course, such a probability is usually not available, so that we only consider the asymptotic
distribution of the maximum of |D|. Then, the change points τ̃k is selected as a potential change
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point if its local maxima satisfy |D(τ̃k, A)| > C1. We remark through the graph of the function
|D| that there are not only the ”right hats” (surrounded in green in Figure 2) which gives the
right change points, but also false alarms (surrounded in black in Figure 2). Consequently, we
have introduced another step in order to keep just the right change points.

Step 2: Elimination of false alarms

The list of potential change points (τ̃1, . . . , τ̃Kmax
) obtained at step 1 contains right change points

but also false alarms. In the second step, a test is carried out to remove the false alarms from
the list of change points found at step 1. More precisely, for all potential change point τ̃k, we
test whether the Hurst parameter is the same on the two successive intervals (τ̃k−1/n, τ̃k/n) and
(τ̃k/n, τ̃k+1/n), or not. Formally, for all 1 ≤ k ≤ Kmax, we apply the following hypothesis testing

(H0,k) : Hk = Hk+1 versus (H1,k) : Hk 6= Hk+1,

where Hk is the value of H on the segment (τ̃k−1/n, τ̃k/n). By using this second test, we
calculate new p-values (p̃1, . . . , p̃Kmax

) associated respectively to each potential change points
(τ̃1, . . . , τ̃Kmax

). Then, we only keep the change points which have a p-value smaller than a
critical level denoted p∗2. By doing so, we obtain a subset

(
τ̂1, . . . , τ̂K̂

)
of the first list which

represents the estimators of the change points in the Hurst parameter of mBm.

Figure 2: Detection of potential change points. Above: Simulated piecewise fBm with five change
points in the Hurst parameter. Below: Filtered Derivative function —D—.

Conclusion

In conclusion, it appears that the combination of the FDpV and the IBS methods provides a fast
(time) and cheap (memory) algorithm to the detection of change points on the Hurst parameter
of piecewise fBm. So, this algorithm is adapted to segment random signals with large datasets.
In future work, we will develop the FDpV + IBS method in order to detect abrupt changes on
parameters of real data drawn from financial and physiological domains.
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