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Asymptotic Extraction Approach for Antennas in a

Multilayered Spherical Media

Salam K. Khamas

Abstract—An efficient algorithm is introduced to enhance the conver-
gence of dyadic Green’s functions (DGF) in a layered spherical media
where asymptotic expressions have been developed. The formulated

expressions involve an infinite series of spherical eigenmodes that can
be reduced to the simple homogenous media Green’s function using the

addition theorem of spherical Hankel functions. Substantial improvements
in the convergence speed have been attained by subtracting the asymptotic

series representation from the original DGF. The subtracted components
are then added to the solution using the homogenous media Green’s
function format.

Index Terms—Dyadic Green’s function, method of moments, spherical
antennas.

I. INTRODUCTION

Rigorous analysis of electromagnetic waves’ radiation and scattering

in the presence of a layered dielectric sphere has been reported in a

number of studies [1]–[4], where the required dyadic Green’s function

has been expressed in the form of an infinite series of spherical eigen-

modes. This series is convergent and hence can be truncated using a

finite number of terms. However, the convergence speed depends on

a number of factors such as sphere radius, permittivity and the dis-

tance between the source and field points, �� and �, respectively. A

large number of terms must be added in the summation when �� and �

are in the vicinity of each other and both are in the proximity of a di-

electric interface. Once the source and the observation points are apart

from an interface, convergence of the series can be achieved using a

considerably reduced number of terms.

Accelerating the infinite summation convergence can produce a

computationally faster model. Furthermore, a common concern with

adding a larger number of terms is the requirement to compute the

spherical Hankel and Bessel functions, ������ and ������, of large

orders. This is generally known to be accompanied by numerical over

flows, or under flows; hence, it may result in a potentially unstable

model. Several studies on speeding up the convergence are available

in the literature using Watson [5] or Shanks [6], [7] transformations,

where the former cannot be used when the source and field points are

on the same radial line [7] and the latter needs additional numerical

considerations. Further, the required DGF expansion coefficients poles

need to be determined numerically for a multilayered structure when

Watson transformation is used [8], which increases the complexity

of the model. An alternative approach to reduce the required number

of summation terms has been reported in [8], where a closed-form

representation of the Green’s function has been attained using finite

difference algorithm to model the layered sphere. This approach

enhances the computation efficiency as the angular distance between

source and field points increases. Other solutions have been reported

in [9], [10] to accelerate convergence in the case of a radial monopole

above, or connected, to a large PEC sphere. However, those solutions

Manuscript received May 20, 2009; revised August 20, 2009. First published
December 31, 2009; current version published March 03, 2010.

The author is with the Communications Research Group, Department of Elec-
tronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD,
U.K. (e-mail: s.khamas@sheffield.ac.uk).

Color versions of one or more of the figures in this communication are avail-
able online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2009.2039333

cannot be adopted in the presence of conformal current sources or

for layered spherical structures. A different approach to reduce the

computation time has been proposed in [11], [12] through the devel-

opment of novel closed-form expressions for the required numerical

integrations in a method of moments (MoM) solution.

A well-known technique that has been employed in the analysis of

planar and cylindrical geometries is the asymptotic extraction approach

[13]–[16], where the quasi-static images are extracted from the Som-

merfeld-type integrals and then added back to the overall Green’s func-

tion using closed-form representations. In this article, the asymptotic

extraction is adopted for spherical structures to expedite the infinite se-

ries convergence. This is based on developing asymptotic expressions

for the DGF components as the summation index approaches infinity.

These expressions have been incorporated into a new infinite series that

can be expressed in a closed form by employing the spherical Hankel

function addition theorem. A rapidly convergent model is then accom-

plished by subtracting the new series from the original summation. The

subtracted series was subsequently added, albeit in a closed form, to the

overall DGF expression. A method of moments model has been devel-

oped by adopting the introduced procedure, where it was found that

the convergence speed is accelerated by several folds while accuracy is

maintained.

II. FORMULATION

Fig. 1 illustrates a layered sphere that consists of four layers where

each layer has a permittivity of �� and a permeability of �� . The source

and the field points could be located in any layer. For an antenna ra-

diating in the vicinity of such a sphere, the DGF may be expressed as

[1]–[3]
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where the superscript � refers to the layers of field and source points.

The first term represents the DGF component owing to antenna radi-

ating in an infinite homogenous media, while the second term is the

scattering DGF that accounts for the presence of a layered sphere, given

by [3]
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where ��� and ��� are the well-known spherical vector eigen-

functions of the transverse electric, ����, and transverse magnetic,

����, modes, respectively, the superscript (2) refers to the second

type spherical Hankel functions, 
� � �� ��� , 
� � �� ��� ,


� � �� ��� , 
� � �� ��� , �� is the Kronecker delta, and � is
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Fig. 1. Four layers dielectric sphere.

the number of spherical layers. Explicit expressions for the scattering

DGF coefficients���

��� ,���

��� ,���

��� and���

��� are reported in [3].

The proposed model has been formulated by deriving asymptotic

reflection and transmission coefficients to obtain the required scattering

DGF coefficients, which are used to achieve the final asymptotic DGF,

�
����
��

�
, where the subscript � denotes an asymptotic expression. Non

magnetic materials have been considered, that is, �� � ��. However,

the presented procedure can be extended to model magnetic materials

with no difficulty.

A. Asymptotic Expansion Coefficients

The development of asymptotic expressions for the equivalent reflec-

tions and transmission coefficients between dielectric spherical layers

is an essential step toward the accomplishment of an asymptotic DGF.

Detailed expressions of these coefficients are reported in [3, Eq. (18)].

The principal form asymptotic Bessel and Hankel functions formulas

given in Appendix A have been employed through the substitution of

(A8) and (A9) in the reflection and transmission coefficients to attain

the following:
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The asymptotic scattering DGF coefficients ���

���
�

, ���
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�

,

���
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�

, and ���

���
�

can be determined by substituting the coeffi-

cients of (3) in the accordant expressions given in Appendix B. When

both the source and field points are in the same layer, then, without

loss of generality, it can be shown that
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where ���
� �

� ���
� �

� � [3], �� � ��� � ��������� � �����,

���� � �� ����� ����� � ����������� � ������ ������ ����
���������� �����, and ���� � �� ��� ����� � ����������� �
�����. Local reflections at interfaces in the vicinity of the �th layer

have been considered because reflections from distant boundaries

and multiple reflections decay rapidly as � increases; hence, they

have no contribution to the DGF coefficients in (4)–(7). Furthermore,

the TE modes coefficients asymptote to zero for larger �, while the

corresponding TM modes coefficients depend on the wave reflections

at the dielectric interfaces.

B. Asymptotic Dyadic Green’s Functions

The asymptotic DGF components can be accomplished by substi-

tuting the coefficients given in (4)–(7) in the scattering DGF expression

given by (2). For example, ����� can be derived as
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� �� is the Legendre polynomial of degree �, and 	
� � �
	
� � 	
� �� � �� � �� �� 	
��� � ���. The double summation of (2)

has been reduced to a single summation using the addition theorem

of Legendre polynomial [4]. Employing (A5)–(A6) and assuming

��� �� � � for larger �, ����� can be written in a more convenient

form as
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The other asymptotic DGF components can be derived in the same way

as the component given in (9), and then incorporated into the following

unified expression:
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With the aid of (A1)–(A2), (10) may be expressed as
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where 
� � ����	 . By invoking the addition theorem of the spherical

Hankel function [4], (11) reduces to
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where �� � 	�� � 
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� �	
 �.

Therefore (1) can be expressed in a computationally efficient format

as
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and �
��

�� �
is given by (11).

III. RESULTS

To illustrate the significance of the presented procedure a moment

method model has been developed for the analysis of spherically con-

formal antennas. The geometry of Fig. 1 has been modeled assuming

the innermost layer to be a perfectly conducting, PEC, spherical core,

the third layer is a dielectric substrate and the second layer is a spher-

ical superstrate with the outermost layer represents free space.

As an example, a conformal Archimedean spiral antenna printed on

a grounded dielectric spherical substrate has been considered [17]. The

spiral arm is defined by � � �����, where �� is the feeding segment

length,� is the spiral constant and� is the winding angle. The thin wire

approximation has been adopted, piecewise sinusoidal current pulses

have been employed and a delta gap voltage source has been used for

excitation.

The input impedance has been calculated in two cases: first, as-

suming the antenna is placed in the third layer that has a relative per-

mittivity of �
� � � and a thickness of 0.75 cm, and then when the

spiral is located at the second layer. In both cases, the antenna has been

positioned at the interface between the two layers. The permittivities

of the first and second layers have been assumed to be �� � �� � ��
and the radius of the PEC spherical core chosen as 5 cm, that is, ��� at

an operating frequency of 6 GHz. The spiral has been modeled using

�� � ���� ��, � � ����� ������, a maximum winding angle of

12.4 rad and a wire radius of 0.02 cm [17].

Fig. 2 shows the convergence of the input impedance when the in-

finite summation of (2) is truncated using asymptotic extraction ap-

proach compared to the case when the summation is implemented di-

rectly, that is, with no use of asymptotic extraction. It is evident from

these results that the required number of terms to truncate the series has

been reduced from over 100 to approximately 25 when the proposed

Fig. 2. Convergence of the input impedance of a spherical spiral using a PEC
spherical core radius of �� when the antenna is placed at the dielectric interface
between a spherical substrate and free space, where � refers to the index of the
antenna layer.

Fig. 3. Convergence of the input impedance of a spherical spiral positioned at
dielectric interface using a PEC spherical core radius of �� .

model is employed. As expected, the convergent input impedance is

the same whether the antenna is positioned in the second or the third

layer as long as it is located at the interface, with a slight difference

in the imaginary part owing to the numerical computations of Hankel

functions using different arguments.

The required number of terms increases as the size of the sphere is

increased, hence a structure with a larger sphere radius has been inves-

tigated. Fig. 3 presents the impedance convergence when a PEC spher-

ical core of radius ��� is used, where, again, it can be seen that a con-

vergent solution has been achieved using approximately 75 terms when

asymptotic extraction is employed, compared with more than 300 terms

when the summation is implemented directly. It should be mentioned

that the impedance converges to ���� �� � compared to ���� �� �
for an identical planar spiral when the antenna is located at the third

layer.

The convergence of the input impedance at the presence of a dielec-

tric superstrate is then studied using �
� � ���, �
� � ���, �� �
�� ��, �� � ���� �� and �� � ���� �� at a frequency of 5 GHz.

The spiral parameters have been chosen as those reported in [18] for an

equivalent spiral in an identical planar media, that is, �� � ����� ��,

Authorized licensed use limited to: Sheffield University. Downloaded on March 03,2010 at 04:15:28 EST from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Convergence of the input impedance of a spherical spiral located at an
interface of a dielectric substrate and a superstrate using a PEC spherical core
radius of �� .

� � ����� �����	 and a maximum winding angle of 12.4 rad. In

this example the antenna has been assumed to be placed first in the

second layer, i.e., the spherical superstrate, and then in the third layer,

i.e., the spherical substrate, at the interface between those layers. The

input impedance convergence is presented in Fig. 4 where a signifi-

cant acceleration in the convergence is again accomplished when the

asymptotic extraction is employed.

The capability of the model to analyze structures with electrically

thin spherical layers has been examined by modeling a probe-fed cir-

cular patch antenna that is printed on a 0.2 cm spherical substrate and

covered by a superstrate with a similar thickness. The PEC spherical

core radius and the substrate permittivity have been chosen as �� �


� �� and ��� � �, respectively. The patch antenna has been mod-

eled using an arc radius of 1.88 cm, and it has been fed using a probe

that is located at an arc distance of 0.94 cm from its center. The patch

and the probe have been placed in the third layer with the patch an-

tenna positioned at the dielectric boundary between the second and the

third layers. Further, the structure has been analyzed using different su-

perstrate permittivities: the first is ��� � � and the second is ��� � �,

which results in two resonance frequencies of 2.54 GHz and 2.49 GHz,

respectively. Employing similar substrate and superstrate permittivi-

ties facilitates evaluation of the effectiveness of the model when the

patch is close to, but not located at, a dielectric interface. Fig. 5 il-

lustrates the convergence of the input impedance at the accordant reso-

nance frequencies, where it can be observed that a substantially reduced

number of expansion terms are sufficient to accomplish convergence

when asymptotic extraction is employed. It can be seen from these re-

sults that the convergence of the direct summation improved noticeably

when the antenna is shifted from the dielectric boundary.

A two-element array has been analysed using the aforementioned

microstrip antenna and sphere parameters, where the mutual coupling

has been evaluated using ��� � � at a frequency of 2.54 GHz,

that is, the array is located at an interface between thin layers.

The convergence has been investigated in two configurations: first

using an arc distance of � � �� between the centers of the patches,

and then using a larger arc distance of �, where � is the patch

radius. The mutual impedance has been obtained from the solution

of the MoM block-Toeplitz impedance matrix, where 200 terms have

been added for the self-term matrix entries to ensure convergence,

while the added number of terms for the mutual coupling entries has

been varied as shown in Fig. 6. Mutual coupling results show that

Fig. 5. Convergence of the input impedance of a conformal probe-fed patch an-
tenna using � � � and different superstrate permittivities at the corresponding
resonance frequencies.

Fig. 6. Convergence of the mutual impedance between two identical circular
patches with a radius of � and an arc separation distance of � between their
centers.

asymptotic extraction expedites convergence considerably for small

as well as large angular separation distances.

The numerical results illustrate the advantages of employing the

introduced solution in the analysis of geometries that consist of

electrically thick as well as thin spherical layers. Compared to other

acceleration techniques, asymptotic extraction avoids the computation

overheads that are associated with traditional approaches such as

Watson and Shanks transformations [5]–[7]. The algorithm enhances

the computation efficiency significantly for arbitrarily angular dis-

tances between the source and field points, which is different from a

previously reported methodology that is suitable for larger separation

distances [8]. Furthermore, in contrast to the solutions introduced in

[9], [10], there is no restriction on the sphere size, number of layers, or

antenna orientation. However, the accomplished improvement and the

effectiveness of the model depend on the proximity of the antenna to a

dielectric interface. This is owing to the rapid decline of the extracted

quasi-static images’ contributions as the antenna is moved away from

a dielectric boundary, where the direct summation of the infinite

series converges using a considerably reduced number of spherical

eigenmodes.

Authorized licensed use limited to: Sheffield University. Downloaded on March 03,2010 at 04:15:28 EST from IEEE Xplore.  Restrictions apply. 
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IV. CONCLUSION

An asymptotic extraction procedure has been established to accel-

erate the convergence of the infinite series of DGF in a multilayered

spherical media. The superiority of the introduced model has been

demonstrated in the MoM analysis of conformal antennas located at

a spherical surface, where various configurations have been inves-

tigated. Early truncation of the series reduces the computation time

considerably and eliminates the numerical limitations associated with

a large-order Hankel and Bessel functions.

In this study, attention is given to the problem of source and field

points located in the same layer. The presented procedure can be fol-

lowed to formulate asymptotic Green’s functions when the source and

observation points are in different layers. The computations speed can

be enhanced further by adopting the closed-form expressions reported

in [11], [12] in conjunction with the proposed procedure in the analysis

of a number of spherical antennas geometries.

APPENDIX A

When � � �, the spherical Bessel and Hankel functions can be

approximated using the principal asymptotic expressions [19]
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Since � � �, (A7) can be expressed as
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� �������	 (A9)

APPENDIX B

The following recurrence formulas can be employed to compute the

scattering DGF coefficients [3]
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With the aid of (3) explicit asymptotic expressions can be derived for

the aforementioned coefficients. For instance, in the four layers geom-

etry shown in Fig. 1, it can be proved that
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where the first three terms correspond to local reflections at the dielec-

tric interfaces and the last term accounts for multiple reflections, which

is generally smaller than the other terms hence it can be neglected. Fur-

ther, as ��� � � for any spherical geometry the third term of (B5)

declines rapidly by a factor �������
����

as ���. Therefore, sub-

stituting (A1)–(A2) into the first and second terms of (B5) gives

���
� �
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��������
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	 (B6)

Following a similar procedure, asymptotic representations of all the

coefficients can be accomplished.
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Miniature Internal Penta-Band Monopole Antenna for

Mobile Phones

Chia-Ling Liu, Yi-Fang Lin, Chia-Ming Liang,

Shan-Cheng Pan, and Hua-Ming Chen

Abstract—A compact T-slit monopole antenna with slotted ground plane
in the mobile phone for penta-band operation is proposed. In this config-

uration, the antenna comprises a T-slit monopole printed on the top un-
grounded portion of an FR4 substrate of small size of �� � ��� and
a slotted ground plane etched on the back side of the substrate of size of

�� �� �� . In addition, an inverted-L copper strip is soldered to the
end edge of the monopole for extending the electrical length of the antenna

for GSM band; that is, the proposed antenna occupies a small volume of
�� �� � �� inside the mobile phone and is suitable to operate as

an internal antenna. By controlling the related parameters, the proposed
antenna can resonates at different operating bands to cover GSM850/900

and DCS/PCS/UMTS operations independently.

Index Terms—Mobile phone, penta-band, T-slit monopole antenna.

I. INTRODUCTION

Recently with the rapid development of cellular communication,

various types of antennas for mobile phones have been extensively

presented and the trend of the mobile phones is getting smaller and

slimmer because of the consumer’s needs and the multiplicity of

functions. Conventional internal antennas for the mobile phones

applications are generally in forms of monopole antennas because it

can provides a wide impedance bandwidth [1]–[6]. These monopole

antennas generally use two separate resonant paths of different lengths

operated at their quarter-wavelength modes to cover the mobile

phone’s operating bands.

In this communication, we present a promising compact penta-band

monopole antenna with an occupied volume of �� � �� � � ��
�

in the mobile phone to operate GSM (824–894/890–960 MHz),
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Fig. 1. Configuration of the T-shaped slit monopole antenna with slotted
ground plane for mobile phone application.

DCS (1710–1880 MHz), PCS (1850–1990 MHz), and UMTS

(1920–2170 MHz) bands. The proposed antenna is easily printed on

a thin substrate at low cost and fabricated by a bending metal plate

shown a very low profile of 5 mm. The low profile of the antenna

allows it very promising to be embedded inside the mobile phone as

an internal antenna. In order to determine the performance of varying

design parameters on bandwidth and resonance frequency, parametric

study is carried out using simulation software HFSS and experimental

results. Detailed design considerations of the proposed antenna are

described in this article.

II. ANTENNA CONFIGURATION

Fig. 1 shows the configuration of the T-slit monopole antenna with

slotted ground plane for mobile phone application. A 0.8-mm thick FR4

substrate of relative permittivity 4.4 and of size ���� �� ��
� is used

as the system circuit board with a ground plane of the same size. The

dimensions of the system circuit board and ground plane considered

here are practical for general mobile phones. In Fig. 1(a), the antenna

comprises a T-slit monopole printed on the top ungrounded portion of

an FR4 substrate of small size �� � ��� ��
� and a slotted ground

plane etched on the back side of the substrate of size �� � �� ��
�.

In this study, an inverted-L copper strip is soldered to the end edge

of the monopole for extending the electrical length of the antenna for

GSM band. For the inverted-L copper strip, it comprises a horizontal

section of size ��� � ��
� and a vertical section of size �� � ��

�.

In addition, a T-slit is etched on the monopole radiator to realize two

major current paths and achieving an additional resonant mode. A 50-	

microstrip feed line printed on the top side of the system circuit board

has a length of 35 mm and a width of 1.5 mm. Fig. 1(b) shows the

dimensions of the pattern of the ground plane on the back side of the

substrate. The pattern comprises a narrow straight slot and a narrow slit.

By varying the length of the slit, the various coupling energy between

the feed line and the pattern in the ground plane can results in another

excited resonant mode. Detailed dimensions of the antenna are given

in Fig. 1.
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